Maximal Oscillatory Singular Integrals with Kernels in $L \log L\left(\mathbf{S}^{n-1}\right)$

Ahmad Al-Salman

Abstract

In this paper, we study the L^{p} mapping properties of a certain class of maximal oscillatory singular integral operators. We establish the L^{p} boundedness of our operators provided that their kernels belong to the natural space $L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$. Our result substantially improves a previously known result. Moreover, the approach developed in this paper can be applied to handle more general maximal oscillatory singular integral operators.

Key Words: Oscillatory singular integrals, Rough kernels, Maximal functions.

1. Introduction and statement of Results

Let $\mathbf{R}^{n}, n \geq 2$ be the n-dimensional Euclidean space and \mathbf{S}^{n-1} be the unit sphere in \mathbf{R}^{n} equipped with the normalized Lebesgue measure $d \sigma$. For nonzero $y \in \mathbf{R}^{n}$, we shall let $y^{\prime}=|y|^{-1} y$. Let $\Omega \in L^{1}\left(\mathbf{S}^{n-1}\right)$ be a homogeneous function of degree zero on \mathbf{R}^{n} which satisfies the cancelation property

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}} \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{1.1}
\end{equation*}
$$

For suitable mappings $\mathcal{P}(y): \mathbf{R}^{n} \rightarrow \mathbf{R}^{d}$ and $\Phi: \mathbf{R}^{n} \rightarrow \mathbf{R}$, define the oscillatory singular integral operator $T_{\mathcal{P}, \Phi, \Omega}$ and the maximal oscillatory singular integral operator $T_{\mathcal{P}, \Phi, \Omega}^{*}$

[^0]
AL-SALMAN

(initially for \mathcal{C}_{0}^{∞} functions on \mathbf{R}^{d}) by

$$
\begin{align*}
T_{\mathcal{P}, \Phi, \Omega}(f)(x) & =\int_{\mathbf{R}^{n}} e^{i \Phi(y)} f(x-\mathcal{P}(y)) \Omega\left(y^{\prime}\right)|y|^{-n} d y \tag{1.2}\\
T_{\mathcal{P}, \Phi, \Omega}^{*}(f)(x) & =\sup _{\varepsilon>0}\left|T_{\mathcal{P}, \Phi, \Omega}^{\varepsilon}(f)(x)\right| \tag{1.3}
\end{align*}
$$

where

$$
T_{\mathcal{P}, \Phi, \Omega}^{\varepsilon}(f)(x)=\int_{|y|>\varepsilon} e^{i \Phi(y)} f(x-\mathcal{P}(y)) \Omega\left(y^{\prime}\right)|y|^{-n} d y
$$

It is clear that if $\Phi(y)=0$ and $\mathcal{P}(y)=y$, then the operators $T_{\mathcal{P}, \Phi, \Omega}$ and $T_{\mathcal{P}, \Phi, \Omega}^{*}$ are the classical Calderón-Zygmund singular integral operator and the maximal singular integral operator respectively. When $\Phi(y)=0$ and $\mathcal{P}(y)=y$, we shall simply let $T_{\Omega}=T_{\mathcal{P}, \Phi, \Omega}$ and $T_{\Omega}^{*}=T_{\mathcal{P}, \Phi, \Omega}^{*}$. In their fundamental work on singular integrals, Calderón and Zygmund established the L^{p} boundedness of the operators \mathbf{T}_{Ω} and T_{Ω}^{*} for $1<p<\infty$ under the condition that $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$, i.e.

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}}\left|\Omega\left(y^{\prime}\right)\right| \log ^{+}\left|\Omega\left(y^{\prime}\right)\right| d \sigma\left(y^{\prime}\right)<\infty \tag{1.4}
\end{equation*}
$$

The condition in the form that $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$ turns out to be the most desirable size condition for the L^{p} boundedness of \mathbf{T}_{Ω} to hold. In fact, Calderón and Zygmund ([4], [5]) showed that \mathbf{T}_{Ω} may fail to be bounded on L^{p} for any p if the condition $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$ is replaced by any condition $\Omega \in L\left(\log ^{+} L\right)^{1-\varepsilon}\left(\mathbf{S}^{n-1}\right), \varepsilon>0$. It is worth pointing out that the space $L \log L\left(\mathbf{S}^{n-1}\right)$ contains the space $L^{q}\left(\mathbf{S}^{n-1}\right)$ (for any $q>1)$ properly.

When $\Phi(y)=0$, the L^{p} boundedness properties of the operators (1.2)-(1.3) are well understood ([16], [18]; see also [2], [8], among others). However, for general mappings Φ and \mathcal{P}, the problem regarding the L^{p} boundedness of the corresponding operators $T_{\mathcal{P}, \Phi, \Omega}$ and $T_{\mathcal{P}, \Phi, \Omega}^{*}$ is still under investigation ([1], [3], [12], [13], [14], [15]).

It should be pointed out that the boundedness of the operators $T_{\mathcal{P}, \Phi, \Omega}^{*}$ imply the boundedness of the corresponding operators $T_{\mathcal{P}, \Phi, \Omega}$. In fact, establishing the a-priori bound $\left\|T_{\mathcal{P}, \Phi, \Omega}^{*} f\right\|_{p} \leq C\|f\|_{p}$ with constant C independent of $f \in L^{p}$, implies that for any $f \in L^{p}, T_{\mathcal{P}, \Phi, \Omega}^{\varepsilon}(f)$ converges (to $\left.T_{\mathcal{P}, \Phi, \Omega}(f)\right)$ almost everywhere as $\varepsilon \rightarrow 0^{+}$. Hence, the boundedness of $T_{\mathcal{P}, \Phi, \Omega}$ follows by an application of Fatou's lemma. For the significance

AL-SALMAN

of studying maximal operators of the form (1.3), we advice the reader to consult ([16], [17], [18], [19], among others).

In this paper, we focus our attention on studying the L^{p} mapping properties of a class of the maximal operators $T_{\mathcal{P}, \Phi, \Omega}^{*}$. More specifically, in [10], Fan and Yang studied the operators $T_{\mathcal{P}, \Phi, \Omega}^{*}$ under the conditions that $\mathcal{P}(y)=\left(P_{1}, \ldots, P_{d}\right)$ where each P_{j} is a real valued polynomial and Φ is a homogeneous function that satisfies

$$
\begin{align*}
\Phi\left(t y^{\prime}\right) & =t^{\beta} \Phi\left(y^{\prime}\right) \text { for } t>0 \tag{1.5}\\
\Phi\left(y^{\prime}\right) & \in L^{\infty}\left(\mathbf{S}^{n-1}\right), \text { and } \int_{\mathbf{S}^{n-1}}\left|\Phi\left(y^{\prime}\right)\right|^{-\delta} d \sigma\left(y^{\prime}\right)<\infty \tag{1.6}
\end{align*}
$$

for some $\delta>0$ and for some $\beta \neq 0$. Fan and Yang proved the following theorem.
Theorem A ([10]). Suppose that Ω is a homogeneous function of degree zero on \mathbf{R}^{n} that satisfies (1.1) and that $\Omega \in L^{q}\left(\mathbf{S}^{n-1}\right)$ for some $q>1$. Suppose also that $\mathcal{P}(y)=$ $\left(P_{1}, \ldots, P_{d}\right)$ is a polynomial mapping. If Φ is a homogeneous function that satisfies (1.5)-(1.6) with either the index $\beta \neq 0$ is not a positive integer or β is a positive integer larger than $\max \left\{\operatorname{deg}\left(P_{j}\right): 1 \leq j \leq d\right\}$, then the operator $T_{\mathcal{P}, \Phi, \Omega}^{*}$ is bounded on L^{p} for all $1<p<\infty$. Moreover, the operator norm is independent of the coefficients of the polynomial mappings $\left\{P_{j}: 1 \leq j \leq d\right\}$.

Since, by Calderón-Zygmund's result discussed above, the natural condition to impose on the function Ω is that $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$, the following question naturally arises.

Question. Suppose that Ω is a homogeneous function of degree zero on \mathbf{R}^{n} that satisfies (1.1). Suppose also that \mathcal{P}, Φ, and $T_{\mathcal{P}, \Phi, \Omega}^{*}$ are as in Theorem A. Does the result of Theorem A still hold if the condition $\Omega \in L^{q}\left(\mathbf{S}^{n-1}\right)$ for some $q>1$ is replaced by the weakest and more natural condition $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$?

In this paper, we shall answer this question in the affirmative. In fact, we have the following theorem.

Theorem B Suppose that Ω is a homogeneous function of degree zero on \mathbf{R}^{n} that satisfies (1.1) and that $\Omega \in L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$. Suppose also that $\mathcal{P}(y)=\left(P_{1}, \ldots, P_{d}\right)$ is a polynomial mapping. If Φ is a homogeneous function that satisfies (1.5)-(1.6) with either the index $\beta \neq 0$ is not a positive integer or β is a positive integer larger than $\max \left\{\operatorname{deg}\left(P_{j}\right): 1 \leq j \leq d\right\}$, then the operator $T_{\mathcal{P}, \Phi, \Omega}^{*}$ is bounded on L^{p} for all $1<p<\infty$.

AL-SALMAN

Moreover, the operator norm is independent of the coefficients of the polynomial mappings $\left\{P_{j}: 1 \leq j \leq d\right\}$.

Throughout this paper the letter C will denote a constant that may vary at each occurrence, but it is independent of the essential variables. For a set A, we let χ_{A} denote the characteristic function of A.

Finally, the author would like to thank the referee for his/her valuable remarks.

2. Some Lemmas

We shall begin by recalling the following result in [9]:
Lemma 2.1 ([9]). Let $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$ be a polynomial mapping from \mathbf{R}^{n} into \mathbf{R}^{d}. Suppose $\Omega \in L^{1}\left(\mathbf{S}^{n-1}\right)$ and

$$
\mu_{\Omega, \mathcal{P}} f(x)=\sup _{j \in \mathbf{Z}} \int_{2^{j} \leq|y|<2^{(j+1)}}|f(x-\mathcal{P}(y))||y|^{-n}\left|\Omega\left(y^{\prime}\right)\right| d y .
$$

Then for $1<p \leq \infty$ there exists a constant $C_{p}>0$ independent of Ω, and the coefficients of P_{1}, \ldots, P_{d} such that

$$
\left\|\mu_{\Omega, \mathcal{P}} f\right\|_{p} \leq C_{p}\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)}\|f\|_{p}
$$

for every $f \in L^{p}\left(\mathbf{R}^{d}\right)$.

The following lemma will be useful in handling the needed oscillatory integrals:
Lemma 2.2 (van der Corput [18]). Suppose ϕ is real-valued and smooth in (a, b), and that $\left|\phi^{(k)}(t)\right| \geq 1$ for all $t \in(a, b)$. Then the inequality

$$
\left|\int_{a}^{b} e^{-i \lambda \phi(t)} \psi(t) d t\right| \leq C_{k}|\lambda|^{-\frac{1}{k}}
$$

holds when:
(i) $k \geq 2$, or
(ii) $k=1$ and ϕ^{\prime} is monotonic.

The bound C_{k} is independent of a, b, ϕ, and λ.

AL-SALMAN

We now prove the following lemma.
Lemma 2.3 Let $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$ be a polynomial mapping from \mathbf{R}^{n} into \mathbf{R}^{d}. Suppose $m \in \mathbf{N}, \Omega \in L^{1}\left(\mathbf{S}^{n-1}\right)$, and $\Phi \in L^{\infty}\left(\mathbf{S}^{n-1}\right)$ is a homogeneous function of degree $\beta \neq 0$. Let

$$
\begin{aligned}
D^{(1, m)} & =\left\{y \in \mathbf{R}^{n}:|y|>2^{2 m}\right\} \\
D^{(2, m)} & =\left\{y \in \mathbf{R}^{n}:|y|<2^{2 m}\right\}
\end{aligned}
$$

and

$$
D^{(0, m)}=\left\{y \in \mathbf{R}^{n}: 1 \leq|y|<2^{2 m}\right\} .
$$

Let $M_{\mathcal{P}, \Phi, \Omega}^{(0)}, M_{\mathcal{P}, \Phi, \Omega}^{(1)}$, and $M_{\mathcal{P}, \Phi, \Omega}^{(2)}$ be the operators given by

$$
M_{\mathcal{P}, \Phi, \Omega}^{(0)}(f)(x)=\left.\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} e^{i \Phi(y)} f(x-\mathcal{P}(y))\right| y\right|^{-n} \Omega\left(y^{\prime}\right) \chi_{D^{(0, m)}} \mid d y
$$

and

$$
M_{\mathcal{P}, \Phi, \Omega}^{(i)}(f)(x)=\left.\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon}\left(e^{i \Phi(y)}-1\right) f(x-\mathcal{P}(y))\right| y\right|^{-n} \Omega\left(y^{\prime}\right) \chi_{D^{(i, m)}} \mid d y
$$

for $i=1,2$. Then for all $1<p<\infty$ there exists a constant $C_{p}>0$ independent of Ω and m such that

$$
\begin{equation*}
\left\|M_{\mathcal{P}, \Phi, \Omega}^{(i)}(f)\right\|_{p} \leq m\|\Omega\|_{L^{1}\left(\mathbf{S}^{n-1}\right)} C_{p}\|f\|_{p} \tag{2.1}
\end{equation*}
$$

for $i=0,1,2$ with $\beta<0$ for $i=1$ and $\beta>0$ for $i=2$.
Proof. We start by proving (2.1) for $i=0$. Notice that

$$
\begin{align*}
M_{\mathcal{P}, \Phi, \Omega}^{(0)}(f)(x) & \leq \int_{1 \leq|y|<2^{2 m}}\left|\Omega\left(y^{\prime}\right)\right||y|^{-n}|f(x-\mathcal{P}(y))| d y \\
& =\sum_{l=0}^{2 m-1}\left\{\int_{2^{l} \leq|y|<2^{l+1}}\left|\Omega\left(y^{\prime}\right)\right||y|^{-n}|f(x-\mathcal{P}(y))| d y\right\} \\
& \leq \sum_{l=0}^{2 m-1} \mu_{\Omega, \mathcal{P}} f(x)=2 m \mu_{\Omega, \mathcal{P}} f(x) \tag{2.2}
\end{align*}
$$

AL-SALMAN

where $\mu_{\Omega, \mathcal{P}} f$ is the operator given in Lemma 2.1. Hence (2.1) for $i=0$ follows by (2.2) and Lemma 2.1.

Now, we prove (2.1) for $i=1$. First, observe that

$$
\begin{align*}
M_{\mathcal{P}, \Phi, \Omega}^{(1)}(f)(x) & \leq \int_{|y|>2^{2 m}}|\Phi(y)|\left|\Omega\left(y^{\prime}\right)\right||y|^{-n}|f(x-\mathcal{P}(y))| d y \\
& \leq \int_{|y|>2^{2 m}}\left|\Phi\left(y^{\prime}\right)\right|\left|\Omega\left(y^{\prime}\right)\right||y|^{-n+\beta}|f(x-\mathcal{P}(y))| d y \tag{2.3}
\end{align*}
$$

Thus, by (2.3) and the assumption that $\Phi \in L^{\infty}\left(\mathbf{S}^{n-1}\right)$, we have

$$
\begin{aligned}
M_{\mathcal{P}, \Phi, \Omega}^{(1)}(f)(x) & \leq\|\Phi\|_{\infty} \int_{|y|>2^{2 m}}\left|\Omega\left(y^{\prime}\right)\right||y|^{-n+\beta}|f(x-\mathcal{P}(y))| d y \\
& =\|\Phi\|_{\infty} \sum_{j=2}^{\infty} \int_{2^{m j}<|y|<2^{m(j+1)}}\left|\Omega\left(y^{\prime}\right)\right||y|^{-n+\beta}|f(x-\mathcal{P}(y))| d y \\
& \leq\|\Phi\|_{\infty} \sum_{j=2}^{\infty}\left\{2^{m \beta j} \int_{2^{m j}<|y|<2^{m(j+1)}}\left|\Omega\left(y^{\prime}\right)\right||y|^{-n}|f(x-\mathcal{P}(y))| d y\right\} \\
& \leq\|\Phi\|_{\infty} m\left\{\sum_{j=2}^{\infty} 2^{m \beta j}\right\} \mu_{\Omega, \mathcal{P}} f(x) .
\end{aligned}
$$

Therefore, Since $\beta<0$, we immediately obtain

$$
\begin{equation*}
M_{\mathcal{P}, \Phi, \Omega}^{(1)}(f)(x) \leq\|\Phi\|_{\infty} \frac{2^{\beta} m}{1-2^{\beta}} \mu_{\Omega, \mathcal{P}} f(x) . \tag{2.4}
\end{equation*}
$$

Hence, (2.1) for $i=1$ follows from (2.4) and Lemma 2.1. Similarly, one can obtain (2.1) for $i=2$. We omit the details. This ends the proof.

The following lemma will play an important role in the proof of our result.
Lemma 2.4 Suppose that $\Omega \in L^{\infty}\left(\mathbf{S}^{n-1}\right)$ is a homogeneous function of degree zero on \mathbf{R}^{n} that satisfies $\|\Omega\|_{L^{1}} \leq 1$ and $\|\Omega\|_{L^{\infty}} \leq 2^{m}$ for some $m \geq 1$. Suppose also that $\mathcal{P}(y)=\left(P_{1}, \ldots, P_{d}\right)$ is a polynomial mapping and Φ is a homogeneous function that satisfies (1.5)-(1.6) with either the index $\beta \neq 0$ is not a positive integer or β is a positive integer larger than $\max \left\{\operatorname{deg}\left(P_{j}\right): 1 \leq j \leq d\right\}$. Let $\psi_{k, m}$ be a smooth function on \mathbf{R} that

AL-SALMAN

satisfies $0 \leq \psi_{k, m} \leq 1, \operatorname{supp}\left(\psi_{k, m}\right) \subseteq\left[2^{-m(k+1)}, 2^{-m(k-1)}\right]$, and $\left|\frac{d \psi_{k, m}}{d u}(u)\right| \leq C u^{-1}$ with constant C independent of m and k. Then

$$
J_{k}(\Phi, \xi, \Omega)=\left|\int_{\mathbf{S}^{n-1}} \Omega\left(y^{\prime}\right) \int_{0}^{\infty} e^{i\left\{t^{\beta} \Phi\left(y^{\prime}\right)-\mathcal{P}\left(t y^{\prime}\right) \cdot \xi\right\}} \frac{\psi_{k, m}(t) d t d \sigma}{t}\right| \leq m C 2^{\beta \alpha(k+1)}
$$

for some constants $0<\alpha<1$ and $C>0$ which are independent of m, k, and the coefficients of P_{1}, \ldots, P_{d}.

Proof. By the properties of $\psi_{k, m}$, and the fact that $\|\Omega\|_{L^{1}} \leq 1$, we have

$$
\begin{equation*}
J_{k}(\Phi, \xi, \Omega) \leq 2 m \ln 2 \tag{2.5}
\end{equation*}
$$

On the other hand, since $\|\Omega\|_{L^{\infty}} \leq 2^{m}$, we have

$$
\begin{equation*}
J_{k}(\Phi, \xi, \Omega) \leq 2^{m} \int_{\mathbf{S}^{n-1}}\left|\int_{0}^{\infty} e^{i\left\{t^{\beta} \Phi\left(y^{\prime}\right)-\mathcal{P}\left(t y^{\prime}\right) \cdot \xi\right\}} \frac{\psi_{k, m}(t)}{t} d t\right| d \sigma\left(y^{\prime}\right) \tag{2.6}
\end{equation*}
$$

Next, let

$$
\begin{equation*}
I_{k}(\Phi, \xi)=\left|\int_{0}^{\infty} e^{i\left\{t^{\beta} \Phi\left(y^{\prime}\right)-\mathcal{P}\left(t y^{\prime}\right) \cdot \xi\right\}} \frac{\psi_{k, m}(t)}{t} d t\right| . \tag{2.7}
\end{equation*}
$$

Then by the support property of $\psi_{k, m},(2.7)$ reduces to

$$
\begin{equation*}
I_{k}(\Phi, \xi)=\left|\int_{1}^{2^{2 m}} e^{i\left\{\left(a_{k, m} t\right)^{\beta} \Phi\left(y^{\prime}\right)-\mathcal{P}\left(a_{k, m} t y^{\prime}\right) \cdot \xi\right\}} \frac{\psi_{k, m}\left(a_{k, m} t\right)}{t} d t\right| \tag{2.8}
\end{equation*}
$$

where we set $a_{k, m}=2^{-m(k+1)}$.
Now, notice that

$$
\frac{\left|\frac{d^{l+1}}{d t^{l+1}}\left(\left(a_{k, m} t\right)^{\beta} \Phi\left(y^{\prime}\right)-\mathcal{P}\left(a_{k, m} t y^{\prime}\right) \cdot \xi\right)\right|}{-\beta(1-\beta) \ldots(l-\beta)\left(a_{k, m}\right)^{\beta}\left|2^{2 m(\beta-l-1)} \Phi\left(y^{\prime}\right)\right|} \geq 1
$$

for all $1 \leq t \leq 2^{2 m}$, where l is the degree of \mathcal{P}. Thus by Lemma 2.2, we have

$$
\begin{equation*}
\left|\int_{1}^{u} e^{i\left\{t^{\beta} a_{k, m} \Phi\left(y^{\prime}\right)-\mathcal{P}\left(a_{k, m} t y^{\prime}\right) \cdot \xi\right\}} d t\right| \leq 2^{2 m \frac{(l+1-\beta)}{l+1}} C\left|\left(a_{k, m}\right)^{\beta} \Phi\left(y^{\prime}\right)\right|^{-\frac{1}{l+1}}, \tag{2.9}
\end{equation*}
$$

AL-SALMAN

for all $1<u \leq 2^{2 m}$ where C is a constant independent of m. Therefore, by (2.8), (2.9), and integration by parts, we obtain

$$
\begin{equation*}
I_{k}(\Phi, \xi) \leq 2^{2 m \frac{(l+1-\beta)}{l+1}} C\left|\left(a_{k, m}\right)^{\beta} \Phi\left(y^{\prime}\right)\right|^{-\frac{1}{l+1}} C(k, m), \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
C(k, m)=\frac{\psi_{k, m}\left(a_{k, m} 2^{2 m}\right)}{2^{2 m}}+\int_{1}^{2^{2 m}}\left|\frac{\left(a_{k, m} t \psi_{k, m}^{\prime}\left(a_{k, m} t\right)-\psi_{k, m}\left(a_{k, m} t\right)\right.}{t^{2}}\right| \tag{2.11}
\end{equation*}
$$

By the properties of $\psi_{k, m}$, we immediately obtain

$$
\begin{equation*}
C(k, m) \leq \frac{1}{2^{2 m}}-\frac{2}{2^{2 m}}+2=1-\frac{1}{2^{2 m}} \leq 1 \tag{2.12}
\end{equation*}
$$

Thus, by (2.10) and (2.12), we get

$$
\begin{equation*}
I_{k}(\Phi, \xi) \leq 2^{2 m \frac{(l+1-\beta)}{l+1}} C\left|\left(a_{k, m}\right)^{\beta} \Phi\left(y^{\prime}\right)\right|^{-\frac{1}{l+1}} \tag{2.13}
\end{equation*}
$$

which when interpolated with the trivial estimate $I_{k}(\Phi, \xi) \leq 2 m \ln 2$, imply that

$$
\begin{equation*}
I_{k}(\Phi, \xi) \leq m C\left|\left(a_{k, m}\right)^{\beta} \Phi\left(y^{\prime}\right)\right|^{-\frac{\delta}{l+1}} \tag{2.14}
\end{equation*}
$$

By (2.14), (2.6), and (1.6), we obtain

$$
\begin{equation*}
J_{k}(\Phi, \xi, \Omega) \leq m C 2^{m}\left|\left(a_{k, m}\right)^{\beta}\right|^{-\frac{\delta}{t+1}} \tag{2.15}
\end{equation*}
$$

Now, by an interpolation between (2.5) and (2.15), we get the desired result. This completes the proof.

Lemma 2.5 Let $k \geq 0, m \geq 1$, and $\delta<0$. Suppose that $\left\{\sigma_{m, k-j}: j \leq 1\right\}$ is a sequence of Borel measures on \mathbf{R}^{n} such that
(i) $\sup _{\xi \in \mathbf{R}^{n}}\left|\hat{\sigma}_{m, k-j}(\xi)\right| \leq m C 2^{\delta(k-j)}$;
(ii) The corresponding maximal function

$$
M_{m, k}(f)(x)=\sup _{j<1}\left|\sigma_{m, k-j} * f(x)\right|
$$

AL-SALMAN

satisfies

$$
\begin{equation*}
\left\|M_{m, k}(f)(x)\right\|_{p} \leq m C\|f\|_{p} \tag{2.16}
\end{equation*}
$$

for all $1<p<\infty$.
Then, for $1<p<\infty$ there exist positive constants α_{p} and C which are independent of k and m such that

$$
\left\|M_{m, k}(f)(x)\right\|_{p} \leq m C 2^{\delta \alpha_{p} k}\|f\|_{p}
$$

Proof. We start by observing that

$$
M_{m, k}(f)(x) \leq \sum_{j=-\infty}^{1}\left|\sigma_{m, k-j} * f(x)\right|
$$

Therefore, by (i) and Plancherel's theorem, we have

$$
\begin{align*}
\left\|M_{m, k}(f)\right\|_{2} & \leq \sum_{j=-\infty}^{1}\left\|\sigma_{m, k-j} * f\right\|_{2} \leq\|f\|_{2} \sum_{j=-\infty}^{1}\left\|\sigma_{m, k-j}\right\|_{\infty} \\
& \leq m C 2^{\delta k}\left(\sum_{j=-\infty}^{1} 2^{-\delta j}\right)\|f\|_{2} \leq m C 2^{\delta k}\|f\|_{2} \tag{2.17}
\end{align*}
$$

Hence, by interpolation between (2.15) and (2.17), we get the desired result. This completes the proof.

We end this section with the following lemma.
Lemma 2.6 Suppose that $h \in L^{\infty}\left(\mathbf{R}^{+}\right)$and $\mathcal{P}=\left(P_{1}, \ldots, P_{d}\right)$ is a polynomial mapping from \mathbf{R}^{n} into \mathbf{R}^{d}. Suppose also that $\Omega \in L^{\infty}\left(\mathbf{S}^{n-1}\right)$ is a homogeneous function of degree zero on \mathbf{R}^{n} that satisfies (1.1) with $\|\Omega\|_{L^{1}} \leq 1$ and $\|\Omega\|_{L^{\infty}} \leq 2^{m}$ for some $m \geq 1$. Then the operator

$$
S_{\mathcal{P}, \Omega, h}^{*}(f)(x)=\left.\sup _{\varepsilon>0}\left|\int_{|y|>\varepsilon} f(x-\mathcal{P}(y)) \Omega\left(y^{\prime}\right) h(|y|)\right| y\right|^{-n} d y \mid
$$

satisfies

$$
\left\|S_{\mathcal{P}, \Omega, h}^{*}(f)\right\|_{p} \leq m\|h\|_{\infty} C_{p}\|f\|_{p}
$$

AL-SALMAN

for all $1<p<\infty$ with constant C_{p} independent of m, h, Ω, and the coefficients of P_{1}, \ldots, P_{d}.

It should be pointed out that Lemma 2.6 was proved in (see [8], Theorem 1.2 therein) under the assumption that Ω is in the Hardy space $H^{1}\left(\mathbf{S}^{n-1}\right)$. But, in our case, it is essential to determine the dependence of the L^{p} bounds on the parameter m. However, the latter can be obtained by following similar argument as in the proof of Theorem 1.1 in [2]. We omit the details.

3. Proof of Main Result

Proof of Theorem B. Assume that $\Omega \in L \log L\left(\mathbf{S}^{n-1}\right)$ and satisfies (1.1). Let Φ, β, and $\mathcal{P}(y)=\left(P_{1}, \ldots, P_{d}\right)$ be as in the statement of Theorem B. We start by decomposing the function Ω as follows.

For $m \in \mathbf{N}$, let \mathbf{E}_{m} be the set of points $y^{\prime} \in \mathbf{S}^{n-1}$ which satisfy $2^{m} \leq\left|\Omega\left(y^{\prime}\right)\right|<2^{m+1}$. Also, we let \mathbf{E}_{0} be the set of all those points $y^{\prime} \in \mathbf{S}^{n-1}$ which satisfy $\left|\Omega\left(y^{\prime}\right)\right|<2$. For $m \in \mathbf{N} \cup\{0\}$, set $b_{m}=\Omega \chi_{\mathbf{E}_{m}}$ and $\theta_{m}=\left\|b_{m}\right\|_{1}$. Set

$$
\mathbf{D}=\left\{m \in \mathbf{N}: \theta_{m} \geq 2^{-3 m}\right\}
$$

For $m \in \mathbf{D}$, define the function A_{m} on \mathbf{S}^{n-1} by

$$
A_{m}\left(y^{\prime}\right)=\left(\theta_{m}\right)^{-1}\left\{b_{m}\left(y^{\prime}\right)-\int_{\mathbf{S}^{n-1}} b_{m}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)\right\}
$$

We also define G on \mathbf{S}^{n-1} by

$$
G\left(y^{\prime}\right)=b_{0}\left(y^{\prime}\right)+\sum_{m \notin \mathbf{D}} b_{m}\left(y^{\prime}\right)-\int_{\mathbf{S}^{n-1}} b_{0}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)-\sum_{m \notin \mathbf{D}} \int_{\mathbf{S}^{n-1}} b_{m}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right) .
$$

AL-SALMAN

Then, it is straightforward to show that the following hold:

$$
\begin{align*}
\int_{\mathbf{S}^{n-1}} A_{m}\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right) & =0, \text { and } \int_{\mathbf{S}^{n-1}} G\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0 \tag{3.1}\\
\left\|A_{m}\right\|_{1} & \leq C,\left\|A_{m}\right\|_{\infty} \leq C 2^{4(m+1)} \tag{3.2}\\
\Omega\left(y^{\prime}\right) & =G\left(y^{\prime}\right)+\sum_{m \in \mathbf{D}} \theta_{m} A_{m}\left(y^{\prime}\right) \tag{3.3}\\
G & \in L^{2}\left(\mathbf{S}^{n-1}\right) \tag{3.4}\\
\sum_{m \in \mathbf{D}} m \theta_{m} & \leq C\|\Omega\|_{L(\log L)\left(\mathbf{S}^{n-1}\right)} \tag{3.5}
\end{align*}
$$

Thus by (3.3), we have

$$
\begin{equation*}
T_{\mathcal{P}, \Phi, \Omega}^{*} f(x) \leq T_{\mathcal{P}, \Phi, G}^{*} f(x)+\sum_{m \in \mathbf{D}} \theta_{m} T_{\mathcal{P}, \Phi, A_{m}}^{*} f(x) . \tag{3.6}
\end{equation*}
$$

Since $G \in L^{2}\left(\mathbf{S}^{n-1}\right)$, it follows from Theorem A that

$$
\begin{equation*}
\left\|T_{\mathcal{P}, \Phi, G}^{*} f\right\|_{p} \leq C\|f\|_{p} \tag{3.7}
\end{equation*}
$$

for all $1<p<\infty$. Therefore by (3.6), (3.7), and (3.5), it suffices to show that

$$
\begin{equation*}
\left\|T_{\mathcal{P}, \Phi, A_{m}}^{*} f\right\|_{p} \leq m C\|f\|_{p} \tag{3.8}
\end{equation*}
$$

for all $1<p<\infty$ and $m \in \mathbf{D}$ with constant C independent of m.
First, let us show that (3.8) and (3.7) will imply the theorem. Given $1<p<\infty$. Then by (3.6), (3.7), and (3.8), we have

$$
\begin{aligned}
\left\|T_{\mathcal{P}, \Phi, \Omega}^{*} f\right\|_{p} & \leq\left\|T_{\mathcal{P}, \Phi, G}^{*} f\right\|_{p}+\sum_{m \in \mathbf{D}} \theta_{m}\left\|T_{\mathcal{P}, \Phi, A_{m}}^{*} f\right\|_{p} \\
& \leq C\left\{1+\sum_{m \in \mathbf{D}} m \theta_{m}\right\}\|f\|_{p} \leq C\|f\|_{p}
\end{aligned}
$$

where the last inequality follows by (3.5).
Now, we turn to the proof of (3.8). By an elementary procedure, choose a collection of \mathcal{C}^{∞} functions $\left\{\psi_{k, m}\right\}_{k \in \mathbf{Z}}$ on $(0, \infty)$ with the properties:

$$
\begin{aligned}
\operatorname{supp}\left(\psi_{k, m}\right) & \subseteq\left[2^{-m(k+1)}, 2^{-m(k-1)}\right], 0 \leq \psi_{k, m} \leq 1, \sum_{k \in \mathbf{Z}} \psi_{k, m}(u)=1 \\
\left|\frac{d^{s} \psi_{k, m}}{d u^{s}}(u)\right| & \leq C_{s} u^{-s}
\end{aligned}
$$

AL-SALMAN

with constants C_{s} independent of m (see [2] for more details).
Now, as in [10], we have two cases. The fist case is when $\beta<0$ and the second case is when β is a positive integer larger than $\max \left\{\operatorname{deg}\left(P_{j}\right): 1 \leq j \leq d\right\}$. We shall only prove the case for $\beta<0$. The proof for the other case follows by minor modifications.

Assume that $\beta<0$. Let

$$
\begin{aligned}
\eta(y) & =\sum_{k=-\infty}^{-1} \psi_{k, m}(|y|) \\
K_{m, \infty}(y) & =A_{m}\left(y^{\prime}\right) \eta(y) \\
K_{m, 0}(y) & =\sum_{k=0}^{\infty} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) .
\end{aligned}
$$

Then, it is clear that

$$
\begin{align*}
\operatorname{supp}\left(K_{m, \infty}\right) & \subset\left\{y \in \mathbf{R}^{n}:|y| \geq 1\right\} \tag{3.9}\\
K_{m, \infty}(y) & =A_{m}\left(y^{\prime}\right) \text { for all }|y|>2^{2 m} \tag{3.10}\\
\operatorname{supp}\left(K_{m, 0}\right) & \subset\left\{y \in \mathbf{R}^{n}:|y| \leq 2^{m}\right\} \tag{3.11}
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
T_{\mathcal{P}, \Phi, A_{m}}^{*} f(x) \leq T_{\mathcal{P}, \Phi, K_{m, \infty}}^{*}(f)(x)+T_{\mathcal{P}, \Phi, K_{m, 0}}^{*}(f)(x) \tag{3.12}
\end{equation*}
$$

Now, by (3.9) and (3.10), we can decompose the factor $e^{i \Phi(y)}|y|^{-n} K_{m, \infty}(y)$ as follows:

$$
\begin{align*}
e^{i \Phi(y)}|y|^{-n} K_{m, \infty}(y)= & |y|^{-n} A_{m}\left(y^{\prime}\right) \chi_{\left\{|y|>2^{2 m}\right\}}+ \\
& \left(e^{i \Phi(y)}-1\right)|y|^{-n} A_{m}\left(y^{\prime}\right) \chi_{\left\{|y|>2^{2 m}\right\}}+ \\
& e^{i \Phi(y)}|y|^{-n} K_{m, \infty}(y) \chi_{\left\{1 \leq|y|<2^{2 m}\right\}} . \tag{3.13}
\end{align*}
$$

This immediately implies that

$$
T_{\mathcal{P}, \Phi, K_{m, \infty}}^{*}(f)(x) \leq S_{\mathcal{P}, A_{m}, h_{m}}^{*}(f)(x)+M_{\mathcal{P}, \Phi, A_{m}}^{(1)}(f)(x)+M_{\mathcal{P}, \Phi, \Omega}^{(0)}(f)(x),
$$

where $h_{m}=\chi_{\left\{|y|>2^{2 m}\right\}}, M_{\mathcal{P}, \Phi, \Omega}^{(0)}, M_{\mathcal{P}, \Phi, A_{m}}^{(1)}$, and $S_{\mathcal{P}, A_{m}, h_{m}}^{*}$ are the operators given in Lemma 2.3 and Lemma 2.6. Thus, by Lemma 2.3 and Lemma 2.6, we obtain

$$
\begin{equation*}
\left\|T_{\mathcal{P}, \Phi, K_{m, \infty}}^{*}(f)\right\|_{p} \leq m C\|f\|_{p} \tag{3.14}
\end{equation*}
$$

AL-SALMAN

for all $1<p<\infty$.
Next, by (3.11), we have

$$
\begin{equation*}
T_{\mathcal{P}, \Phi, K_{m, 0}}^{*}(f)(x)=\left.\sup _{0<\varepsilon<2^{m}}\left|\sum_{k=0}^{\infty} \int_{|y|>\varepsilon} e^{i \Phi(y)}\right| y\right|^{-n} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y \mid \tag{3.15}
\end{equation*}
$$

Now, $0<\varepsilon<2^{m}$, choose $j \leq 1$ such that $2^{m(j-1)} \leq \varepsilon<2^{m j}$. Therefore,

$$
\begin{equation*}
\left.\left|\sum_{k=0}^{\infty} \int_{|y|>\varepsilon} e^{i \Phi(y)}\right| y\right|^{-n} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y \mid \leq I_{1}(f)(x)+I_{2}(f)(x), \tag{3.16}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}(f)(x)=\left.\left|\sum_{k=0_{2^{m j}} \leq|y|<2^{m}}^{\infty} e^{i \Phi(y)}\right| y\right|^{-n} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y \mid \\
& I_{2}(f)(x)=\left.\left|\sum_{k=0}^{\infty} \int_{\varepsilon<|y|<2^{m j}} e^{i \Phi(y)}\right| y\right|^{-n} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y \mid
\end{aligned}
$$

It is clear that

$$
\begin{align*}
I_{2}(f)(x) & \leq \sum_{k=\max \{0,-1-j\}_{2^{m(j-1)}} \leq|y|<2^{m j}}^{k=2-j} \int|y|^{-n}\left|A_{m}\left(y^{\prime}\right)\right||f(x-\mathcal{P}(y))| d y \\
& \leq 3 m \mu_{A_{m}, \mathcal{P}} f(x), \tag{3.17}
\end{align*}
$$

where $\mu_{A_{m}, \mathcal{P}} f(x)$ is the operator given in Lemma 2.1 with Ω is replaced by A_{m}

AL-SALMAN

On the other hand, by the support property of $\psi_{k, m}$ we have

$$
\begin{align*}
I_{1}(f)(x) & =\left|\sum_{k=0}^{1-j} \int_{2^{m j} \leq|y|<2^{m}} e^{i \Phi(y)} \frac{A_{m}\left(y^{\prime}\right)}{|y|^{n}} \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y\right| \\
& \leq\left|\sum_{k=0}^{1-j} \int_{\mathbf{R}^{n}} e^{i \Phi(y)} \frac{A_{m}\left(y^{\prime}\right)}{|y|^{n}} \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y\right|+ \\
& \left|\sum_{k=-j}^{1-j} \int_{|y|<2^{m j}} e^{i \Phi(y)} \frac{A_{m}\left(y^{\prime}\right)}{|y|^{n}} \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y\right| \\
& \leq\left|\sum_{k=0}^{1-j} \int_{\mathbf{R}^{n}} e^{i \Phi(y)} \frac{A_{m}\left(y^{\prime}\right)}{|y|^{n}} \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y\right|+2 m \mu_{A_{m}, \mathcal{P}} f(x) \tag{3.18}
\end{align*}
$$

Therefore by (3.15)-(3.18), we

$$
\begin{equation*}
T_{\mathcal{P}, \Phi, K_{m, 0}}^{*}(f)(x) \leq G(f)(x)+5 m \mu_{A_{m}, \mathcal{P}} f(x), \tag{3.19}
\end{equation*}
$$

where

$$
G(f)(x)=\left.\sup _{j<1}\left|\sum_{k=0}^{1-j} \int_{\mathbf{R}^{n}} e^{i \Phi(y)}\right| y\right|^{-n} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) f(x-\mathcal{P}(y)) d y \mid .
$$

Let $\sigma_{m, k}$ be the measure defined by

$$
\begin{equation*}
\int f d \sigma_{m, k}=\int e^{i \Phi(y)}|y|^{-n} A_{m}\left(y^{\prime}\right) \psi_{k, m}(|y|) f(\mathcal{P}(y)) d y \tag{3.20}
\end{equation*}
$$

Then

$$
\begin{equation*}
G(f)(x)=\sup _{j<1}\left|\sum_{k=0}^{1-j} \sigma_{m, k} * f(x)\right| \leq \sum_{k=0}^{\infty} M_{m, k}(f)(x) \tag{3.21}
\end{equation*}
$$

where $M_{m, k}$ is the operator given in Lemma 2.5.
Thus, by (3.21), Lemma 2.1, Lemma 2.4, and Lemma 2.5, we have

$$
\begin{equation*}
\|G(f)\|_{p} \leq m C\|f\|_{p} \tag{3.22}
\end{equation*}
$$

272

AL-SALMAN

for all $1<p<\infty$; which when combined with (3.19) and Lemma 2.1, we obtain

$$
\begin{equation*}
\left\|T_{\mathcal{P}, \Phi, K_{m, 0}}^{*}(f)\right\|_{p} \leq m C\|f\|_{p} \tag{3.23}
\end{equation*}
$$

for all $1<p<\infty$. Hence, (3.8) follows by (3.12), (3.13), and (3.23). This completes the proof.

References

[1] Al-Salman, A.: Rough oscillatory singular integral operators of non-convolution type, J. Math. Anal. Appl. 299 (2004) 72-88.
[2] Al-Salman, A., Pan, Y.: Singular integrals with rough kernels in $L \log ^{+} L\left(\mathbf{S}^{n-1}\right)$, J. London. Math. Soc. (2) 66 (2002) 153-174.
[3] Al-Salman, A., Al-Jarrah, A.: Rough Oscillatory Singular Integral Operators-II, Turkish. J. Math. 27 (4) (2003), 565-579.
[4] Calderón, A. P., Zygmund, A.: On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.
[5] Calderón, A. P., Zygmund, A.: On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[6] Chen, L.: On a singular integral, Studia Math. 85 (1987), 61-72.
[7] Duoandikoetxea, J., Rubio de Francia, J. L.: Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561.
[8] Fan, D., Pan, Y.: Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math., 119 (1997), 799-839.
[9] Fan, D., Guo, K., and Pan, Y.: Singular integrals along submanifolds of finite type, Mich. Math. J. 45 (1998), 135-142.
[10] Fan, D., Yang, D.: Certain maximal oscillatory singular integrals, Hiroshima Math. J., 28 (1998), 169-182.
[11] Fefferman, R.: A note on singular integrals, Proc. Amer. Math. Soc 74 (1979), 266-270.
[12] Jiang, Y. and Lu, S. Z.: Oscillatory singular integrals with rough kernels, in "Harmonic Analysis in China, Mathematics and Its Applications", Vol. 327, 135-145, Kluwer Academic Publishers, 1995.

AL-SALMAN

[13] Lu, S. Z. and Zhang, Y.: Criterion on L^{p}-boundedness for a class of oscillatory singular integrals with rough kernels, Rev. Math. Iberoamericana 8 (1992), 201-219.
[14] Ricci, F. and Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, Jour. Func. Anal. 73 (1987), 179-194.
[15] Ricci, F. and Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals II: Singular kernels supported on submanifolds, Jour. Func. Anal. 78 (1988), 56-84.
[16] Stein, E. M.: Problems in harmonic analysis related to curvature and oscillatory Integrals, Proc. Inter. Cong. Math., Berkeley (1986), 196-221.
[17] Stein, E. M.: Singular integrals and differentiability properties of functions, Princeton University Press, Princeton NJ, 1970.
[18] Stein, E. M.: Harmonic Analysis: Real-Variable Mathods, Orthogonality and Oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.
[19] Stein, E. M. and Wainger, S.: Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 26 (1978),1239-1295.

```
Ahmad AL-SALMAN
                                    Received 19.01.2004
Department of Mathematics
Yarmouk University
Irbid-JORDAN
e-mail: alsalman@yu.edu.jo
```


[^0]: 2000 Mathematics Subject Classification: Primary 42B20; Secondary 42B15, 42B25

