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Maximal Oscillatory Singular Integrals with Kernels

in L logL(Sn−1)

Ahmad Al-Salman

Abstract

In this paper, we study the Lp mapping properties of a certain class of maximal

oscillatory singular integral operators. We establish the Lp boundedness of our

operators provided that their kernels belong to the natural space L log+L(Sn−1).

Our result substantially improves a previously known result. Moreover, the approach

developed in this paper can be applied to handle more general maximal oscillatory

singular integral operators.

Key Words: Oscillatory singular integrals, Rough kernels, Maximal functions.

1. Introduction and statement of Results

Let Rn, n ≥ 2 be the n-dimensional Euclidean space and Sn−1 be the unit sphere in
Rn equipped with the normalized Lebesgue measure dσ. For nonzero y ∈ Rn, we shall
let y′ = |y|−1

y. Let Ω ∈ L1(Sn−1) be a homogeneous function of degree zero on Rn

which satisfies the cancelation property∫
Sn−1

Ω(y′)dσ(y′) = 0. (1.1)

For suitable mappings P(y) : Rn → Rd and Φ : Rn → R, define the oscillatory singular
integral operator TP,Φ,Ω and the maximal oscillatory singular integral operator T ∗P,Φ,Ω
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(initially for C∞0 functions on Rd) by

TP,Φ,Ω(f)(x) =
∫

Rn

eiΦ(y)f(x− P(y))Ω(y′) |y|−n dy (1.2)

T ∗P,Φ,Ω(f)(x) = sup
ε>0

∣∣∣T εP,Φ,Ω(f)(x)
∣∣∣ , (1.3)

where

T
ε

P,Φ,Ω(f)(x) =
∫
|y|>ε

eiΦ(y)f(x − P(y))Ω(y′) |y|−n dy.

It is clear that if Φ(y) = 0 and P(y) = y, then the operators TP,Φ,Ω and T ∗P,Φ,Ω are the
classical Calderón-Zygmund singular integral operator and the maximal singular integral
operator respectively. When Φ(y) = 0 and P(y) = y, we shall simply let TΩ = TP,Φ,Ω and
T ∗Ω = T ∗P,Φ,Ω. In their fundamental work on singular integrals, Calderón and Zygmund
established the Lp boundedness of the operators TΩ and T ∗Ω for 1 < p < ∞ under the
condition that Ω ∈ L log+ L(Sn−1), i.e.∫

Sn−1

∣∣∣Ω(y
′
)
∣∣∣ log+

∣∣∣Ω(y
′
)
∣∣∣ dσ(y

′
) <∞. (1.4)

The condition in the form that Ω ∈ L log+ L(Sn−1) turns out to be the most desirable
size condition for the Lp boundedness of TΩ to hold. In fact, Calderón and Zygmund
([4], [5]) showed that TΩ may fail to be bounded on Lp for any p if the condition
Ω ∈ L log+ L(Sn−1) is replaced by any condition Ω ∈ L(log+ L)1−ε(Sn−1), ε > 0. It
is worth pointing out that the space L logL(Sn−1) contains the space Lq(Sn−1) (for any
q > 1) properly.

When Φ(y) = 0, the Lp boundedness properties of the operators (1.2)-(1.3) are well
understood ([16], [18]; see also [2], [8], among others). However, for general mappings Φ
and P, the problem regarding the Lp boundedness of the corresponding operators TP,Φ,Ω

and T ∗P,Φ,Ω is still under investigation ([1], [3], [12], [13], [14], [15]).
It should be pointed out that the boundedness of the operators T ∗P,Φ,Ω imply the

boundedness of the corresponding operators TP,Φ,Ω. In fact, establishing the a-priori
bound

∥∥T ∗P,Φ,Ωf
∥∥
p
≤ C ‖f‖p with constant C independent of f ∈ Lp, implies that for

any f ∈ Lp, T εP,Φ,Ω(f) converges (to TP,Φ,Ω(f)) almost everywhere as ε→ 0+. Hence, the
boundedness of TP,Φ,Ω follows by an application of Fatou’s lemma. For the significance
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of studying maximal operators of the form (1.3), we advice the reader to consult ([16],
[17], [18], [19], among others).

In this paper, we focus our attention on studying the Lp mapping properties of a class
of the maximal operators T ∗P,Φ,Ω. More specifically, in [10], Fan and Yang studied the
operators T ∗P,Φ,Ω under the conditions that P(y) = (P1, . . . , Pd) where each Pj is a real
valued polynomial and Φ is a homogeneous function that satisfies

Φ(ty′) = t
β

Φ(y′) for t > 0, (1.5)

Φ(y′) ∈ L∞(Sn−1), and
∫

Sn−1

∣∣∣Φ(y
′
)
∣∣∣−δ dσ(y′) <∞, (1.6)

for some δ > 0 and for some β 6= 0. Fan and Yang proved the following theorem.

Theorem A ([10]). Suppose that Ω is a homogeneous function of degree zero on Rn

that satisfies (1.1) and that Ω ∈ Lq(Sn−1) for some q > 1. Suppose also that P(y) =
(P1, . . . , Pd) is a polynomial mapping. If Φ is a homogeneous function that satisfies
(1.5)-(1.6) with either the index β 6= 0 is not a positive integer or β is a positive integer
larger than max{deg(Pj) : 1 ≤ j ≤ d}, then the operator T ∗P,Φ,Ω is bounded on Lp for
all 1 < p < ∞. Moreover, the operator norm is independent of the coefficients of the
polynomial mappings {Pj : 1 ≤ j ≤ d}.

Since, by Calderón-Zygmund’s result discussed above, the natural condition to impose
on the function Ω is that Ω ∈ L log+ L(Sn−1), the following question naturally arises.

Question. Suppose that Ω is a homogeneous function of degree zero on Rn that satisfies
(1.1). Suppose also that P, Φ, and T ∗P,Φ,Ω are as in Theorem A. Does the result of

Theorem A still hold if the condition Ω ∈ Lq(Sn−1) for some q > 1 is replaced by the
weakest and more natural condition Ω ∈ L log+ L(Sn−1)?

In this paper, we shall answer this question in the affirmative. In fact, we have the
following theorem.

Theorem B Suppose that Ω is a homogeneous function of degree zero on Rn that
satisfies (1.1) and that Ω ∈ L log+ L(Sn−1). Suppose also that P(y) = (P1, . . . , Pd)
is a polynomial mapping. If Φ is a homogeneous function that satisfies (1.5)–(1.6) with
either the index β 6= 0 is not a positive integer or β is a positive integer larger than
max{deg(Pj) : 1 ≤ j ≤ d}, then the operator T ∗P,Φ,Ω is bounded on Lp for all 1 < p <∞.
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Moreover, the operator norm is independent of the coefficients of the polynomial mappings
{Pj : 1 ≤ j ≤ d}.

Throughout this paper the letter C will denote a constant that may vary at each
occurrence, but it is independent of the essential variables. For a set A, we let χA denote
the characteristic function of A.

Finally, the author would like to thank the referee for his/her valuable remarks.

2. Some Lemmas

We shall begin by recalling the following result in [9]:

Lemma 2.1 ([9]). Let P = (P1, ..., Pd) be a polynomial mapping from Rn into Rd.

Suppose Ω ∈ L1(Sn−1) and

µΩ,Pf(x) = sup
j∈Z

∫
2j≤|y|<2(j+1)

|f(x −P(y))| |y|−n
∣∣∣Ω(y

′
)
∣∣∣ dy.

Then for 1 < p ≤ ∞ there exists a constant Cp > 0 independent of Ω, and the coefficients
of P1, ..., Pd such that

‖µΩ,Pf‖p ≤ Cp ‖Ω‖L1(Sn−1) ‖f‖p

for every f ∈ Lp(Rd).

The following lemma will be useful in handling the needed oscillatory integrals:

Lemma 2.2 (van der Corput [18]). Suppose φ is real-valued and smooth in (a, b), and
that

∣∣φ(k)(t)
∣∣ ≥ 1 for all t ∈ (a, b). Then the inequality

∣∣∣∣∣
∫ b

a

e−iλφ(t)ψ(t)dt

∣∣∣∣∣ ≤ Ck |λ|− 1
k

holds when:

(i) k ≥ 2, or
(ii) k = 1 and φ

′
is monotonic.

The bound Ck is independent of a, b, φ, and λ.
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We now prove the following lemma.

Lemma 2.3 Let P = (P1, ..., Pd) be a polynomial mapping from Rn into Rd. Suppose
m ∈ N, Ω ∈ L1(Sn−1), and Φ ∈ L∞(Sn−1) is a homogeneous function of degree β 6= 0.
Let

D(1,m) = {y ∈ Rn : |y| > 22m},
D(2,m) = {y ∈ Rn : |y| < 22m},

and

D(0,m) = {y ∈ Rn : 1 ≤ |y| < 22m}.

Let M (0)
P,Φ,Ω, M (1)

P,Φ,Ω, and M
(2)
P,Φ,Ω be the operators given by

M
(0)
P,Φ,Ω(f)(x) = sup

ε>0

∣∣∣∣∣
∫
|y|>ε

eiΦ(y)f(x −P(y)) |y|−n Ω(y
′
)χD(0,m)

∣∣∣∣∣ dy
and

M
(i)
P,Φ,Ω(f)(x) = sup

ε>0

∣∣∣∣∣
∫
|y|>ε

(eiΦ(y) − 1)f(x −P(y)) |y|−n Ω(y
′
)χD(i,m)

∣∣∣∣∣ dy,
for i = 1, 2. Then for all 1 < p < ∞ there exists a constant Cp > 0 independent of Ω
and m such that

∥∥∥M (i)
P,Φ,Ω(f)

∥∥∥
p
≤ m ‖Ω‖L1(Sn−1) Cp ‖f‖p (2.1)

for i = 0, 1, 2 with β < 0 for i = 1 and β > 0 for i = 2.

Proof. We start by proving (2.1) for i = 0. Notice that

M
(0)
P,Φ,Ω(f)(x) ≤

∫
1≤|y|<22m

∣∣∣Ω(y
′
)
∣∣∣ |y|−n |f(x − P(y))| dy

=
2m−1∑
l=0

{
∫

2l≤|y|<2l+1

∣∣∣Ω(y
′
)
∣∣∣ |y|−n |f(x − P(y))| dy}

≤
2m−1∑
l=0

µΩ,Pf(x) = 2mµΩ,Pf(x), (2.2)

263



AL-SALMAN

where µΩ,Pf is the operator given in Lemma 2.1. Hence (2.1) for i = 0 follows by (2.2)
and Lemma 2.1.

Now, we prove (2.1) for i = 1. First, observe that

M
(1)
P,Φ,Ω(f)(x) ≤

∫
|y|>22m

|Φ(y)|
∣∣∣Ω(y

′
)
∣∣∣ |y|−n |f(x −P(y))| dy

≤
∫
|y|>22m

|Φ(y′)|
∣∣∣Ω(y

′
)
∣∣∣ |y|−n+β |f(x − P(y))| dy. (2.3)

Thus, by (2.3) and the assumption that Φ ∈ L∞(Sn−1), we have

M
(1)
P,Φ,Ω(f)(x) ≤ ‖Φ‖∞

∫
|y|>22m

∣∣∣Ω(y
′
)
∣∣∣ |y|−n+β |f(x − P(y))| dy

= ‖Φ‖∞
∞∑
j=2

∫
2mj<|y|<2m(j+1)

∣∣∣Ω(y
′
)
∣∣∣ |y|−n+β |f(x −P(y))| dy

≤ ‖Φ‖∞
∞∑
j=2

{2mβj
∫

2mj<|y|<2m(j+1)

∣∣∣Ω(y
′
)
∣∣∣ |y|−n |f(x −P(y))| dy}

≤ ‖Φ‖∞m{
∞∑
j=2

2mβj}µΩ,Pf(x).

Therefore, Since β < 0, we immediately obtain

M
(1)
P,Φ,Ω(f)(x) ≤ ‖Φ‖∞

2
β

m

1− 2β
µΩ,Pf(x). (2.4)

Hence, (2.1) for i = 1 follows from (2.4) and Lemma 2.1. Similarly, one can obtain (2.1)
for i = 2. We omit the details. This ends the proof. 2

The following lemma will play an important role in the proof of our result.

Lemma 2.4 Suppose that Ω ∈ L∞(Sn−1) is a homogeneous function of degree zero
on Rnthat satisfies ‖Ω‖L1 ≤ 1 and ‖Ω‖L∞ ≤ 2m for some m ≥ 1. Suppose also that
P(y) = (P1, . . . , Pd) is a polynomial mapping and Φ is a homogeneous function that
satisfies (1.5)-(1.6) with either the index β 6= 0 is not a positive integer or β is a positive
integer larger than max{deg(Pj) : 1 ≤ j ≤ d}. Let ψk,m be a smooth function on R that
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satisfies 0 ≤ ψk,m ≤ 1, supp(ψk,m) ⊆ [2−m(k+1), 2−m(k−1)], and
∣∣∣dψk,mdu

(u)
∣∣∣ ≤ Cu−1 with

constant C independent of m and k. Then

Jk(Φ, ξ,Ω) =

∣∣∣∣∣∣
∫

Sn−1

Ω(y′)

∞∫
0

ei{t
β

Φ(y′)−P(ty′)·ξ}ψk,m(t)dtdσ
t

∣∣∣∣∣∣ ≤mC2βα(k+1)

for some constants 0 < α < 1 and C > 0 which are independent of m, k, and the
coefficients of P1, ..., Pd.

Proof. By the properties of ψk,m, and the fact that ‖Ω‖L1 ≤ 1, we have

Jk(Φ, ξ,Ω) ≤ 2m ln 2. (2.5)

On the other hand, since ‖Ω‖L∞ ≤ 2m, we have

Jk(Φ, ξ,Ω) ≤ 2m
∫

Sn−1

∣∣∣∣∣∣
∞∫

0

ei{t
β

Φ(y′)−P(ty′)·ξ}ψk,m(t)
t

dt

∣∣∣∣∣∣dσ(y′). (2.6)

Next, let

Ik(Φ, ξ) =

∣∣∣∣∣∣
∞∫

0

ei{t
β

Φ(y′)−P(ty′)·ξ}ψk,m(t)
t

dt

∣∣∣∣∣∣ . (2.7)

Then by the support property of ψk,m, (2.7) reduces to

Ik(Φ, ξ) =

∣∣∣∣∣∣∣
22m∫
1

ei{(ak,mt)
β

Φ(y′)−P(ak,mty
′)·ξ}ψk,m(ak,mt)

t
dt

∣∣∣∣∣∣∣ , (2.8)

where we set ak,m = 2−m(k+1).
Now, notice that ∣∣∣ dl+1

dtl+1 ((ak,mt)
β

Φ(y′)−P(ak,mty′) · ξ)
∣∣∣

−β(1 − β)...(l− β)(ak,m)β
∣∣22m(β−l−1)Φ(y′)

∣∣ ≥ 1

for all 1 ≤ t ≤ 22m, where l is the degree of P. Thus by Lemma 2.2, we have∣∣∣∣∣∣
u∫

1

ei{t
β
ak,mΦ(y′)−P(ak,mty

′)·ξ}dt

∣∣∣∣∣∣ ≤ 22m
(l+1−β)
l+1 C

∣∣∣(ak,m)
β

Φ(y′)
∣∣∣− 1

l+1
, (2.9)
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for all 1 < u ≤ 22m where C is a constant independent of m. Therefore, by (2.8), (2.9),
and integration by parts, we obtain

Ik(Φ, ξ) ≤ 22m
(l+1−β)
l+1 C

∣∣∣(ak,m)
β

Φ(y′)
∣∣∣− 1

l+1
C(k,m), (2.10)

where

C(k,m) =
ψk,m(ak,m22m)

22m
+

22m∫
1

∣∣∣∣ (ak,mtψ′k,m(ak,mt)− ψk,m(ak,mt)
t2

∣∣∣∣ . (2.11)

By the properties of ψk,m, we immediately obtain

C(k,m) ≤ 1
22m
− 2

22m
+ 2 = 1− 1

22m
≤ 1. (2.12)

Thus, by (2.10) and (2.12), we get

Ik(Φ, ξ) ≤ 22m
(l+1−β)
l+1 C

∣∣∣(ak,m)
β

Φ(y′)
∣∣∣− 1

l+1
; (2.13)

which when interpolated with the trivial estimate Ik(Φ, ξ) ≤ 2m ln 2, imply that

Ik(Φ, ξ) ≤ mC
∣∣∣(ak,m)

β

Φ(y′)
∣∣∣− δ

l+1
. (2.14)

By (2.14), (2.6), and (1.6), we obtain

Jk(Φ, ξ,Ω) ≤ mC2m
∣∣∣(ak,m)

β
∣∣∣− δ

l+1
. (2.15)

Now, by an interpolation between (2.5) and (2.15), we get the desired result. This
completes the proof. 2

Lemma 2.5 Let k ≥ 0, m ≥ 1, and δ < 0. Suppose that {σm,k−j : j ≤ 1} is a sequence
of Borel measures on Rn such that

(i) sup
ξ∈Rn

|σ̂m,k−j(ξ)| ≤ mC2δ(k−j);

(ii) The corresponding maximal function

Mm,k(f)(x) = sup
j<1
|σm,k−j ∗ f(x)|
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satisfies

‖Mm,k(f)(x)‖p ≤ mC ‖f‖p (2.16)

for all 1 < p <∞.
Then, for 1 < p < ∞ there exist positive constants αp and C which are independent

of k and m such that

‖Mm,k(f)(x)‖p ≤ mC2δαpk ‖f‖p .

Proof. We start by observing that

Mm,k(f)(x) ≤
1∑

j=−∞
|σm,k−j ∗ f(x)| .

Therefore, by (i) and Plancherel’s theorem, we have

‖Mm,k(f)‖2 ≤
1∑

j=−∞
‖σm,k−j ∗ f‖2 ≤ ‖f‖2

1∑
j=−∞

‖σm,k−j‖∞

≤ mC2δk(
1∑

j=−∞
2−δj) ‖f‖2 ≤ mC2δk ‖f‖2 . (2.17)

Hence, by interpolation between (2.15) and (2.17), we get the desired result. This
completes the proof.

We end this section with the following lemma.

Lemma 2.6 Suppose that h ∈ L∞(R+) and P = (P1, ..., Pd) is a polynomial mapping
from Rn into Rd. Suppose also that Ω ∈ L∞(Sn−1) is a homogeneous function of degree
zero on Rnthat satisfies (1.1) with ‖Ω‖L1 ≤ 1 and ‖Ω‖L∞ ≤ 2m for some m ≥ 1. Then
the operator

S∗P,Ω,h(f)(x) = sup
ε>0

∣∣∣∣∣
∫
|y|>ε

f(x − P(y))Ω(y′)h(|y|) |y|−n dy
∣∣∣∣∣

satisfies ∥∥S∗P,Ω,h(f)
∥∥
p
≤m ‖h‖∞Cp ‖f‖p

267



AL-SALMAN

for all 1 < p < ∞ with constant Cp independent of m, h,Ω, and the coefficients of
P1, ..., Pd.

It should be pointed out that Lemma 2.6 was proved in (see [8], Theorem 1.2 therein)
under the assumption that Ω is in the Hardy space H1(Sn−1). But, in our case, it is
essential to determine the dependence of the Lp bounds on the parameter m. However,
the latter can be obtained by following similar argument as in the proof of Theorem 1.1
in [2]. We omit the details.

3. Proof of Main Result

Proof of Theorem B. Assume that Ω ∈ L logL(Sn−1) and satisfies (1.1). Let Φ, β,
and P(y) = (P1, . . . , Pd) be as in the statement of Theorem B. We start by decomposing
the function Ω as follows.

For m ∈ N, let E
m

be the set of points y′ ∈ Sn−1 which satisfy 2m ≤ |Ω (y′)| < 2m+1.
Also, we let E0 be the set of all those points y′ ∈ Sn−1which satisfy |Ω (y′)| < 2. For
m ∈ N ∪ {0}, set bm = ΩχEm

and θm = ‖bm‖1 . Set

D =
{
m ∈ N : θm ≥ 2−3m

}
.

For m ∈ D, define the function Am on Sn−1 by

Am(y′) = (θm )−1{bm(y′)−
∫

Sn−1
bm(y′)dσ(y′)}.

We also define G on Sn−1 by

G(y′) = b0(y′) +
∑
m/∈D

bm(y′)−
∫

Sn−1
b0(y′)dσ(y′) −

∑
m/∈D

∫
Sn−1

bm(y′)dσ(y′).
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Then, it is straightforward to show that the following hold:∫
Sn−1

A
m

(y′)dσ(y′) = 0, and
∫

Sn−1
G(y′)dσ(y′) = 0; (3.1)

‖Am‖1 ≤ C, ‖Am‖∞ ≤ C24(m+1), (3.2)

Ω(y′) = G(y′) +
∑
m∈D

θ
m
Am(y′); (3.3)

G ∈ L2(Sn−1); (3.4)∑
m∈D

mθm ≤ C ‖Ω‖L(logL)(Sn−1) . (3.5)

Thus by (3.3), we have

T ∗P,Φ,Ωf(x) ≤ T ∗P,Φ,Gf(x) +
∑
m∈D

θmT
∗
P,Φ,Amf(x). (3.6)

Since G ∈ L2(Sn−1), it follows from Theorem A that∥∥T ∗P,Φ,Gf
∥∥
p
≤ C ‖f‖p (3.7)

for all 1 < p <∞. Therefore by (3.6), (3.7), and (3.5), it suffices to show that∥∥T ∗P,Φ,Amf
∥∥
p
≤ mC ‖f‖p (3.8)

for all 1 < p <∞ and m ∈ D with constant C independent of m.
First, let us show that (3.8) and (3.7) will imply the theorem. Given 1 < p < ∞.

Then by (3.6), (3.7), and (3.8), we have∥∥T ∗P,Φ,Ωf
∥∥
p
≤

∥∥T ∗P,Φ,Gf
∥∥
p

+
∑
m∈D

θm
∥∥T ∗P,Φ,Amf

∥∥
p

≤ C{1 +
∑
m∈D

mθ
m
} ‖f‖p ≤ C ‖f‖p ,

where the last inequality follows by (3.5).
Now, we turn to the proof of (3.8). By an elementary procedure, choose a collection

of C∞ functions {ψk,m}k∈Z on (0,∞) with the properties:

supp(ψk,m) ⊆ [2−m(k+1), 2−m(k−1)], 0 ≤ ψk,m ≤ 1,
∑
k∈Z

ψk,m(u) = 1,

∣∣∣∣dsψk,mdus
(u)
∣∣∣∣ ≤ Csu

−s
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with constants Cs independent of m (see [2] for more details).
Now, as in [10], we have two cases. The fist case is when β < 0 and the second case is

when β is a positive integer larger than max{deg(Pj) : 1 ≤ j ≤ d}. We shall only prove
the case for β < 0. The proof for the other case follows by minor modifications.

Assume that β < 0. Let

η(y) =
−1∑

k=−∞
ψk,m(|y|);

Km,∞(y) = Am(y′)η(y);

Km,0(y) =
∞∑
k=0

Am(y′)ψk,m(|y|).

Then, it is clear that

supp(Km,∞) ⊂ {y ∈ Rn : |y| ≥ 1}; (3.9)

Km,∞(y) = Am(y′) for all |y| > 22m; (3.10)

supp(Km,0) ⊂ {y ∈ Rn : |y| ≤ 2m}. (3.11)

Therefore, we have

T ∗P,Φ,Amf(x) ≤ T ∗P,Φ,Km,∞(f)(x) + T ∗P,Φ,Km,0(f)(x). (3.12)

Now, by (3.9) and (3.10), we can decompose the factor eiΦ(y) |y|−nKm,∞(y) as follows:

eiΦ(y) |y|−nKm,∞(y) = |y|−n Am(y′)χ{|y|>22m} +

(eiΦ(y) − 1) |y|−nAm(y′)χ{|y|>22m} +

eiΦ(y) |y|−nKm,∞(y)χ{1≤|y|<22m}. (3.13)

This immediately implies that

T ∗P,Φ,Km,∞(f)(x) ≤ S∗P,Am,hm(f)(x) +M
(1)
P,Φ,Am(f)(x) +M

(0)
P,Φ,Ω(f)(x),

where hm = χ{|y|>22m}, M
(0)
P,Φ,Ω,M

(1)
P,Φ,Am, and S∗P,Am,hm

are the operators given in
Lemma 2.3 and Lemma 2.6. Thus, by Lemma 2.3 and Lemma 2.6, we obtain∥∥∥T ∗P,Φ,Km,∞(f)

∥∥∥
p
≤ mC ‖f‖p (3.14)
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for all 1 < p <∞.

Next, by (3.11), we have

T ∗P,Φ,Km,0(f)(x) = sup
0<ε<2m

∣∣∣∣∣∣∣
∞∑
k=0

∫
|y|>ε

eiΦ(y) |y|−nAm(y′)ψk,m(|y|)f(x − P(y))dy

∣∣∣∣∣∣∣ . (3.15)

Now, 0 < ε < 2m, choose j ≤ 1 such that 2m(j−1) ≤ ε < 2mj . Therefore,

∣∣∣∣∣∣∣
∞∑
k=0

∫
|y|>ε

eiΦ(y) |y|−n Am(y′)ψk,m(|y|)f(x −P(y))dy

∣∣∣∣∣∣∣ ≤ I1(f)(x) + I2(f)(x), (3.16)

where

I1(f)(x) =

∣∣∣∣∣∣∣
∞∑
k=0

∫
2mj≤|y|<2m

eiΦ(y) |y|−n Am(y′)ψk,m(|y|)f(x −P(y))dy

∣∣∣∣∣∣∣ ;

I2(f)(x) =

∣∣∣∣∣∣∣
∞∑
k=0

∫
ε<|y|<2mj

eiΦ(y) |y|−nAm(y′)ψk,m(|y|)f(x −P(y))dy

∣∣∣∣∣∣∣ .

It is clear that

I2(f)(x) ≤
k=2−j∑

k=max{0,−1−j}

∫
2m(j−1)≤|y|<2mj

|y|−n |Am(y′)| |f(x −P(y))| dy

≤ 3mµAm,Pf(x), (3.17)

where µAm,Pf(x) is the operator given in Lemma 2.1 with Ω is replaced by Am
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On the other hand, by the support property of ψk,m we have

I1(f)(x) =

∣∣∣∣∣∣∣
1−j∑
k=0

∫
2mj≤|y|<2m

eiΦ(y)Am(y′)
|y|n ψk,m(|y|)f(x −P(y))dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1−j∑
k=0

∫
Rn

eiΦ(y)Am(y′)
|y|n ψk,m(|y|)f(x −P(y))dy

∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
1−j∑
k=−j

∫
|y|<2mj

eiΦ(y)Am(y′)
|y|n ψk,m(|y|)f(x − P(y))dy

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1−j∑
k=0

∫
Rn

eiΦ(y)Am(y′)
|y|n ψk,m(|y|)f(x −P(y))dy

∣∣∣∣∣∣ + 2mµAm,Pf(x).

(3.18)

Therefore by (3.15)–(3.18), we

T ∗P,Φ,Km,0(f)(x) ≤ G(f)(x) + 5mµAm,Pf(x), (3.19)

where

G(f)(x) = sup
j<1

∣∣∣∣∣∣
1−j∑
k=0

∫
Rn

eiΦ(y) |y|−nAm(y′)ψk,m(|y|)f(x − P(y))dy

∣∣∣∣∣∣ .

Let σm,k be the measure defined by∫
fdσm,k =

∫
eiΦ(y) |y|−nAm(y′)ψk,m(|y|)f(P(y))dy. (3.20)

Then

G(f)(x) = sup
j<1

∣∣∣∣∣
1−j∑
k=0

σm,k ∗ f(x)

∣∣∣∣∣ ≤
∞∑
k=0

Mm,k(f)(x), (3.21)

where Mm,k is the operator given in Lemma 2.5.
Thus, by (3.21), Lemma 2.1, Lemma 2.4, and Lemma 2.5, we have

‖G(f)‖p ≤mC ‖f‖p (3.22)
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for all 1 < p <∞; which when combined with (3.19) and Lemma 2.1, we obtain∥∥∥T ∗P,Φ,Km,0(f)
∥∥∥
p
≤mC ‖f‖p (3.23)

for all 1 < p <∞. Hence, (3.8) follows by (3.12), (3.13), and (3.23). This completes the
proof. 2
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