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Abstract

In this paper, we study a class of singular integrals along surfaces on product

domains with kernels in L(logL)2(Sn−1 × Sm−1). We formulate a general theorem

concerning the Lp boundedness of these operators. As a consequence of this theorem

we establish Lp estimates of several classes of operators whose Lp boundedness in

the one parameter setting is known. The condition L(logL)2(Sn−1×Sm−1) is known

to be an optimal size condition.

1. Introduction

Let Rd (d = n,m ≥ 2) be the d-dimensional Euclidean space and Sd−1 be the
unit sphere in Rd equipped with the normalized Lebesgue measure dσd. Let Ω ∈
L1(Sn−1 × Sm−1) be such that

Ω(tx, sy) = Ω(x, y) for any t, s > 0; (1.1)

∫
Sn−1

Ω (u, ·)dσn (u) =
∫

Sm−1
Ω (·, v) dσm (v) = 0. (1.2)

Consider the classical singular integral operator on product domains TΩ given by

(TΩf)(x, y) = p.v.
∫

Rn×Rm

f(x − u, y − v) |u|−n |v|−m Ω (u, v) dudv (1.3)
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The Lp boundedness of the operator TΩ, under various conditions on Ω, has been in-
vestigated by many authors ([1], [8], [12], [13]). For example, R. Fefferman and E. Stein
proved in ([13]) that TΩ is bounded on Lp(Rn+m) for 1 < p <∞ if Ω satisfies certain Lip-
schitz conditions. Subsequently in ([8]) Duoandikoetxea established the Lp (1 < p <∞)
boundedness of TΩ under the weaker condition that Ω ∈ Lq(Sn−1 × Sm−1) with q > 1.

Motivated by Calderón-Zygmund’s result in the one parameter setting ([7]), Al-
Salman, Al-Qassem, and Pan ([5]) studied the operator TΩ under the condition that
Ω ∈ L(logL)2(Sn−1 × Sm−1), i.e.,

∫
Sn−1×Sm−1

|Ω(u, v)| (log 2 + |Ω(u, v)|)2dσn (u) dσm (v) <∞. (1.4)

They proved that TΩ is bounded on Lp (1 < p <∞) provided that Ω satisfies (1.1)-(1.2)
and (1.4). Moreover, they showed that the condition Ω ∈ L(logL)2(Sn−1 × Sm−1) is

nearly optimal in the sense that the exponent 2 in L(logL)2 can not be replaced by any
smaller numbers.

In this paper, we study the Lp boundedness of a class of singular integrals along
surfaces with kernels satisfying (1.4). Namely, for suitable mappings φ1, φ2 : R+ → R,
consider the operator

(TΩ,φ1,φ2f)(x, y) = p.v.
∫

Rn×Rm

f(x − φ1(|u|)u′, y − φ2(|v|)v′) |u|−n |v|−m Ω (u, v) dudv.

(1.5)

It is clear that if φ1(u) = u and φ2(v) = v, then TΩ,φ1,φ2 = TΩ.
Also, we shall consider the corresponding truncated singular integral operator (TΩ,φ1,φ2)∗

given by

(TΩ,φ1 ,φ2 )∗(f)(x, y) = sup
ε>0,δ>0

�����
Z
|u|>ε,|v|>δ

f(x− φ1(|u|)u′, y − φ2(|v|)v′) |u|−n |v|−mΩ (u, v) dudv

����� .

Our main purpose in this paper is presenting sufficient conditions on the functions
φ1and φ2 such that the corresponding operators TΩ,φ1,φ2 and (TΩ,φ1,φ2)∗ are bounded on
Lp for all 1 < p <∞ provided that Ω ∈ L(logL)2(Sn−1 × Sm−1).

Our main result is the following theorem.
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Theorem 1.1. Let d1 = n and d2 = m. If φ1and φ2 are real valued functions defined
on R+ that satisfy the property that for each κ ∈ N, there exists a lacunary sequence

{a(l)
j,κ : j ∈ Z} with infj∈Z

a
(l)
j+1,κ

a
(l)
j,κ

≥ 2
κ

such that

Il(j, κ, λ) =

∣∣∣∣∣
∫ 2κ(j+1)

2κj
e−iλφl(r)r−1dr

∣∣∣∣∣ ≤ κC ∣∣∣a(l)
j,κλ

∣∣∣−ε ; (1.6)

Jl(j, κ, λ) =

∣∣∣∣∣
∫ 2κ(j+1)

2κj
{e−iλφl(r) − 1}r−1dr

∣∣∣∣∣ ≤ κC ∣∣∣a(l)
j+1,κλ

∣∣∣ε (1.7)

for all j ∈ Z, λ ∈ R, κ ∈ N, and l = 1, 2.

Then the operators TΩ,φ1,φ2 and (TΩ,φ1,φ2)∗ are bounded on Lp(Rn ×Rm) for p ∈
(1,∞) provided that Ω ∈ L(logL)2(Sn−1× Sm−1) and satisfies (1.1)-(1.2). Here, C is a

constant independent of the essential variables and 0 < ε << 1.

It can be easily seen that the assumptions (1.6)–(1.7) given in Theorem 1.1 are satisfied
by many functions. For showing the strength and generality of Theorem 1.1, we present
in Section 3 of this paper several classes of operators whose Lp boundedness follows by
applying this theorem.

Throughout this paper the letter C stands for a constant that may vary at each
occurrence, but it is independent of the essential variables.

2. Proof of Main Theorem

We start this section by recalling the following result in ([3]):

Lemma 2.1 ([3]). Suppose that d ≥ 1 and {µk : k ∈ Z} is a family of Borel measures
with µk ≥ 0 and ‖µk‖ = 1 such that

(i)|µ̂k(ξ)| ≤ |akL(ξ)|−β ,
(ii) |µ̂k(ξ) − 1| ≤ |ak+1L(ξ)|, where {ak} is a lacunary sequence that has the property that
infk∈Z ak+1/ak > 1 and L is a linear transformation from Rn into Rd.

Then the maximal function Mf(x) = supk∈Z |µk ∗ f(x)| is bounded on Lp ∀ 1 < p <

∞ with bound independent of the linear transformation L.

As a consequence of this lemma, we immediately obtain the following result.
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Corollary 2.2. Let {aj : j ∈ Z} be a lacunary sequence with infj∈Z aj+1/aj > 1.
Suppose also that φ : R→ R+ is a function that satisfy (1.6)–(1.7) in Theorem 1.1, with

a
(l)
j,κ replaced by aj. For z′ ∈ Sn−1 let Mφ,z′ be the maximal function defined on Rn by

Mφ,z′ (f)(x) = sup
j∈Z

∫ 2j+1

2j
|f(x − φ(r)z′)| r−1dr.

Then

‖Mφ,z′ (f)‖p ≤ C ‖f‖p

for all 1 < p <∞ and f ∈ Lp(Rn), where C is a constant independent of z′.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 We shall follow similar ideas as in [1], [5], [6]. We start by
decomposing the operator TΩ,φ1,φ2 . For κ ∈ N, let

Eκ = {(x′, y′) ∈ Sn−1× Sm−1 : 2
κ ≤ |Ω (x′, y′)| < 2κ+1},

and

E0 = {(x′, y′) ∈ Sn−1 × Sm−1 : |Ω (x′, y′)| ≤ 2}.

We let D be the set of all κ ∈ N that satisfy∫∫
Eκ

|Ω(u, v)|dσn (u) dσm (v) ≥ 2−3κ.

Define the sequence of functions {Ω
κ

: κ ∈ D∪ {0}} by

Ω0(x, y) = ΩχE0
(x, y) +

∑
κ/∈D

ΩχEκ
(x, y) −

∫
Sn−1

ΩχE0
(u, y)dσ(u)

−
∫

Sm−1

ΩχE0
(x, v)dσ(v) −

∑
κ/∈D

[
∫

Sn−1

ΩχEκ(u, y)dσ(u)

+
∫

Sm−1

Ωχ
Eκ

(x, v)dσ(v)] +
∫∫

Sn−1×Sm−1
Ωχ

E0
(u, v)dσ(u)dσ(v)

+
∑
κ/∈D

∫∫
Sn−1×Sm−1

ΩχEκ
(u, v)dσ(u)dσ(v)
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Ωκ(x, y) = (
∥∥ΩχEκ

∥∥
1
)−1{ΩχEκ

(x, y)−
∫

Sn−1

ΩχEκ
(u, y)dσ(u)

−
∫

Sm−1

ΩχEκ
(x, v)dσ(v) +

∫∫
Sn−1×Sm−1

ΩχEκ
(u, v)dσ(u)dσ(v)}.

It is straightforward to see the following:∫
Sn−1

Ωκ (u, ·)dσn (u) =
∫

Sm−1
Ωκ (·, v)dσm (v) = 0, (2.1)

‖Ωκ‖1 ≤ C, ‖Ωκ‖∞ ≤ C24(κ+1), ||Ω0||2 ≤ C, (2.2)

Ω(x, y) =
∑

κ∈D∪{0}
θκΩκ(x, y), (2.3)

∑
κ∈D∪{0}

(κ+ 1)2θκ ≤ C ‖Ω‖L(logL)2(Sn−1×Sκ−1) . (2.4)

Here, θ
κ

=
∥∥Ωχ

Eκ

∥∥
1

for κ ∈ D and θ0 = 1.

Now, for κ ∈ D∪{0}, we let TΩκ ,φ1,φ2be the operator defined by (1.5) with Ω replaced
by Ωκ . Therefore, by (2.3) we have the following decomposition for the operator TΩ,φ1,φ2 :

TΩ,φ1,φ2f(x, y) =
∑

κ∈D∪{0}
θκTΩκ ,φ1,φ2f(x, y). (2.5)

By (2.4), (2.5), and Minkowski’s inequality, it suffices to show that∥∥TΩκ ,φ1,φ2f
∥∥
p
≤ (κ+ 1)2C ‖f‖p (2.6)

for all κ and p ∈ (1,∞).

To prove (2.6), we argue as follows:

For j, k ∈ Z, let σ
κ

j,k be the measure defined by∫
fdσ

κ

j,k =
∫
A(j,k,κ)

f(x − φ1(|u|)u′, y − φ2(|v|)v′) |u|−n |v|−m Ωκ (u, v) dudv, (2.7)

where

A(j, k, κ) =
n

(x, y) ∈ Rn ×Rm : 2k(κ+1) ≤ |u| < 2(k+1)(κ+1) and 2j(κ+1) ≤ |v| < 2(j+1)(κ+1)
o

.
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Let (σ
κ

)∗ be the maximal function

(σ
κ

)∗ (f) = sup
k,j∈Z

∣∣∣∣∣∣σκj,k∣∣∣ ∗ f∣∣∣ .
Now, we have the following:

∥∥∥σκj,k∥∥∥ ≤ C(κ+ 1)2; (2.8)

∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ C(κ+ 1)2

∣∣∣a(1)
j,κ+1ξ

∣∣∣− δ
κ+1

∣∣∣a(2)
k,κ+1η

∣∣∣− β
κ+1

(2.9)∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ C(κ+ 1)2

∣∣∣a(1)
j+1,κ+1ξ

∣∣∣ δ
κ+1

∣∣∣a(2)
k+1,κ+1η

∣∣∣ β
κ+1

(2.10)

∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ C(κ+ 1)2

∣∣∣a(1)
j+1,κ+1ξ

∣∣∣ δ
κ+1

∣∣∣a(2)
k,κ+1η

∣∣∣− β
κ+1

(2.11)∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ C(κ+ 1)2

∣∣∣a(1)
j,κ+1ξ

∣∣∣− δ
κ+1

∣∣∣a(2)
k+1,κ+1η

∣∣∣ β
κ+1

. (2.12)

Clearly (2.8) holds. To see (2.9), notice that by polar coordinates we have∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ 24(κ+1)

∫∫
Sn−1×Sm−1

I1(j, κ+ 1, ξ · u′)I2(k, κ+ 1, η · v′)dσ(u)dσ(v), (2.13)

where Il is given by (1.6) in the statement of the theorem. Therefore, by assumption, we
get

I1(j, κ+ 1, ξ · u′) ≤ (κ + 1)C
∣∣∣a(1)
j,κ+1ξ · u′

∣∣∣−ε1

(2.14)

I2(k, κ+ 1, η · v′) ≤ (κ + 1)C
∣∣∣a(2)
k,κ+1η · v′

∣∣∣−ε2

. (2.15)

Thus by (2.13) and (2.14)–(2.15), we obtain∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ (κ + 1)224(κ+1)C

∣∣∣a(1)
j,κ+1ξ

∣∣∣−ε1
∣∣∣a(2)
k,κ+1η

∣∣∣−ε2

. (2.16)

Therefore, by interpolation between (2.8) and (2.17), the inequality (2.9) follows.
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Next, we show (2.11). By polar coordinates and using the cancelation property of
Ω
κ

(u, ·), we get∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ 24(κ+1)

∫∫
Sn−1×Sm−1

J1(j, κ+ 1, ξ · u′)I2(k, κ+ 1, η · v′)dσ(u)dσ(v), (2.17)

where Jl is given by (1.7) in the statement of the theorem. Thus, we have∣∣∣σ̂κj,k(ξ, η)
∣∣∣ ≤ (κ + 1)224(κ+1)C

∣∣∣a(1)
j+1,κ+1ξ

∣∣∣ε1
∣∣∣a(2)
k,κ+1η

∣∣∣−ε2

. (2.18)

Therefore, (2.11) follows by (2.18) and an interpolation argument similar to that led to
(2.9). The proofs of (2.10) and (2.12) can be obtained similarly with minor modification.
We omit the details.

Now, we show that ∥∥∥(σ
κ

)∗ (f)
∥∥∥
p
≤ (κ+ 1)2C ‖f‖p (2.19)

for all 1 < p <∞. To see this notice that

(σ
κ

)∗ (f) (x, y) ≤ (κ + 1)2

∫∫
Sn−1×Sm−1

|Ω
κ
(u′, v′)|M1

φ1,u′ ◦M2
φ2,v′f(x, y)dσ(u)dσ(v),

(2.20)

where M1
φ1,u′f(x, y) = Mφ1,u′f(·, y)(x), M2

φ2,v′f(x, y) = Mφ2,v′f(x, ·)(y), and ◦ denotes
the composition of operators. Thus, by (2.20), Hölder’s inequality, the estimate ‖Ωκ‖1 ≤
C, the estimates (1.6)–(1.7) (for κ = 1), and Corollary 2.2, we immediately obtain (2.19).

Now, by (2.8)–(2.12), (2.19), and adapting the same argument in the one parameter
setting in ([6], [9]) (see also Theorem 11 in [1]), we can easily obtain (2.6). We omit the
details.

Finally, the boundedness of (TΩ,φ1,φ2)∗ follows by (2.3)–(2.4), (2.8)–(2.12), and similar
argument as in the one parameter setting in ([6], [10]) (see also, [1]). 2

3. Applications

As we mentioned in the introduction section, this section is devoted for presenting
examples on operators whose Lp boundedness can be obtained by applying Theorem 1.1.
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We should point out here that all results presented here have been extensively investigated
in the one parameter setting by many authors ([2], [4], [11], among others).

We start by the following interesting result:

Corollary 3.1. If φ1and φ2 are convex increasing functions with φ1(0) = φ2(0) = 0,
then the corresponding operators TΩ,φ1,φ2 and (TΩ,φ1,φ2)∗ are bounded on Lp(Rn×Rm)
for p ∈ (1,∞) provided that Ω ∈ L(logL)2(Sn−1 × Sm−1).

Proof. We only need to verify the assumptions of Theorem 1.1, i.e., the estimates

(1.6) and (1.7). For κ ∈ N and j ∈ Z, let a(1)
j,κ = φ1(2κj) and a

(2)
j,κ = φ2(2κj). Then

since φ1and φ2 are convex increasing functions with φ1(0) = φ2(0) = 0, it follows

that {a(1)
j,κ : j ∈ Z} and {a(2)

j,κ : j ∈ Z} are lacunary sequences with infj∈Z
a

(1)
j+1,κ

a
(1)
j,κ

and

infj∈Z
a

(2)
j+1,κ

a
(2)
j,κ

≥ 2
κ

.

Now, we show that (1.6) and (1.7) hold. To see (1.6) notice that d
dr

(φl(2κjr)) =

2κjφ′l(2
κjr) ≥ φl(2κjr) ≥ a(l)

j,κ for r ≥ 1. Thus by integration by parts, we get

Il(j, κ, λ) =

∣∣∣∣∣
∫ 2κ

1

e−iλφl(2
κjr)r−1dr

∣∣∣∣∣ ≤ ∣∣∣a(l)
j,κλ

∣∣∣−1

(3.1)

when combined with the estimate Il(j, κ, λ) ≤ κ implies (1.6) for any 0 < ε < 1.
The proof (1.7) is clear. In fact, one only needs to observe that

Jl(j, κ, λ) ≤
∫ 2κ(j+1)

2κj
|λφl(r)| r−1dr ≤ κ

∣∣∣a(l)
j+1,κλ

∣∣∣ .
Hence the result follows by an application of Theorem 1.1. This completes the proof.

Corollary 3.2. If φ1and φ2 are of the form t
α

(α 6= 0), then the corresponding operators
TΩ,φ1,φ2 and (TΩ,φ1,φ2)∗ are bounded on Lp(Rn × Rm) for p ∈ (1,∞) provided that
Ω ∈ L(logL)2(Sn−1 × Sm−1).

This result has the following generalization:

Corollary 3.3. Suppose that φl, l = 1, 2 satisfy

|φl(t)| ≤ C1,lt
dl , |φ′′l (t)| ≤ C2,lt

dl−2, (3.2)
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C3,lt
dl−1 ≤ |φ′l(t)| ≤ C4,lt

dl−1 (3.3)

for some dl 6= 0 and t ∈ (0, ∞), where C1,l, C2,l, C3,l, and C4,l are positive constants
independent of t.

Then the corresponding operators TΩ,φ1,φ2 and (TΩ,φ1,φ2)∗ are bounded on Lp(Rn ×
Rm) for p ∈ (1,∞) provided that Ω ∈ L(logL)2(Sn−1 × Sm−1).

Proof. For κ ∈ N, let {a(1)
j,κ : j ∈ Z} and {a(2)

j,κ : j ∈ Z} be the lacunary sequences

given by a(l)
j,κ = 2κdlj , l = 1, 2.

Now it is easy to see that under the conditions (3.2)–(3.3), the estimates (1.6)–(1.7)
hold trivially. In fact, (1.7) follows by the first inequality in (3.2). On the other hand,
(1.6) follows by (3.2)–(3.3) and an integration by parts. For the details see pages 525-526
in ([2]). Hence the result follows by Theorem 1.1.

By arguing inductively using Theorem 1.1, we can also obtain the following:

Corollary 3.4. If φ1 and φ2 are real valued polynomials, then the corresponding
operators TΩ,φ1,φ2 and (TΩ,φ1,φ2)∗ are bounded on Lp(Rn×Rm) for p ∈ (1,∞) provided
that Ω ∈ L(logL)2(Sn−1 × Sm−1).

We should mention here that the result of Corollary 3.4 still holds if φ1and φ2 are
allowed to be generalized polynomials ( For more details see[4]).

Final Remark. By minor modifications of the argument in this paper, one can
easily notice that the operators discussed here can be allowed to be rough in the radial
direction. More specifically, we are able to consider operators of the form

(TΩ,φ1 ,φ2 ,hf)(x, y) = p.v.

Z
Rn×Rm

f(x− φ1(|u|)u′, y − φ2(|v|)v′) |u|−n |v|−m h(|u| , |v|)Ω (u, v) dudv,

where h : R+×R+ → R is a measurable function that satisfies

sup
R1,R2>0

[
(R1R2)−1

∫ R1

0

∫ R2

0

|h (t, s)|
γ

dtds

] 1
γ

<∞ (3.4)

for some γ > 1. The only difference here between the results for TΩ,φ1,φ2,h and those

for TΩ,φ1,φ2 is that the interval of p for which the later is bounded on Lp is
∣∣∣ 1p − 1

2

∣∣∣ <
min

{
1
2 ,

1
γ′

}
. For more information on operators of this form, we refer the reader to

consult [1], [2], [6], [9], [10].
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