On Banach Lattice Algebras

Ayşe Uyar

Abstract

In this study, without using the assumption $a^{-1}>0$, it is shown that E is lattice - and algebra - isometric isomorphic to the reals \mathbf{R} whenever E is a Banach lattice f-algebra with unit $e,\|e\|=1$, in which for every $a>0$ the inverse a^{-1} exists. Subsequently, an alternative proof to a result of Huijsmans is given for Banach lattice algebras.

Key Words: Algebra, inverse, lattice.

1. Introduction

Recall that the (real) vector lattice E is called a (real) lattice ordered algebra if E is also an associative algebra with the property that $a, b \in E_{+}$implies $a b \in E_{+}$. We shall assume that E has a unit element $e>0$. The lattice ordered algebra E is called an f-algebra whenever $a \wedge b=0, c \in E_{+}$implies $a c \wedge b=c a \wedge b=0$. If the lattice ordered algebra E is Archimedean and uniformly complete we endow the complexification of E with the canonical absolute value; i.e., if $a=a_{1}+i a_{2}$ with a_{1} and a_{2} real, then $|a|=\sup \left\{(\cos \Theta) a_{1}+(\sin \Theta) a_{2}: 0 \leq \Theta \leq 2 \pi\right\}$. The complexification is now called a complex lattice ordered algebra. For details on complex f-algebras we refer to [2].

Any lattice ordered algebra E which is at the same time a Banach lattice is called a Banach lattice algebra whenever $\|a b\| \leq\|a\|\|b\|$ holds for all $a, b \in E_{+}$. In addition, if E is an f-algebra then it is called Banach lattice f-algebra. Obviously, E is then

[^0]a (real) Banach algebra. As above, it is assumed that E has a unit element $e>0$. The complexification of $E, E_{\mathbf{C}}$, equipped with the canonical norm $\|a\|=\||a|\|$, is called a complex Banach lattice algebra and is also a Banach algebra. As customary, the spectrum of an element $a \in E$ is taken with respect to the complexification and is denoted by $S p(a)$.

For the basic theory of vector lattices (Riesz spaces) and Banach lattices and for unexplained terminology we refer to [1], [8], [9], [10].

2. Main Results

Theorem 2.1. Let E be a Banach lattice f-algebra with unit $e,\|e\|=1$, in which for every $a>0$ the inverse a^{-1} exists. Then E is lattice-and algebra-isometric isomorphic to \mathbf{R}.

Proof. Let $a \in E$. Then there exist $\xi, \eta \in \mathbf{R}$ with $\xi+i \eta \in S p(a)$, by theorem 13.7 in [3]. Since E is an f-algebra, $(\xi-a)^{2}+\eta^{2} \geq 0$ and $(\xi-a)^{2}+\eta^{2}$ is not invertible, by theorem 13.8 in [3]. By hypothesis, $(\xi-a)^{2}+\eta^{2}=0$ and so $(\xi-a)^{2}=0$. From theorem 142.5 in [10], $a=\xi e$. Since $e>0$, for each $a \in E$ there exists a unique $\xi \in \mathbf{R}$ such that $a=\xi e$ and also $|a|=|\xi| e$. The mapping $T: E \rightarrow \mathbf{R}$ defined by $T(a)=\xi$ is the desired lattice isomorphism. Since E and \mathbf{R} are Archimedean f-algebras with unit element e and 1 respectively and $T: E \rightarrow \mathbf{R}$ is a lattice isomorphism which satisfies $T(e)=1$, corollary 5.5 of [4] yields that T is also an algebra isomorphism. Furthermore, $\|T(a)\|=|\xi|=\|\xi e\|=\|a\|$. Therefore E is lattice- and algebra-isometric isomorphic to R.

Remark. Note that the proof is also obtained by Gelfand-Mazur theorem. Take $a+i b \neq 0 a, b \in E$. By assumption, $w=a^{2}+b^{2}>0$ and so $w^{-1} \in E$. Then $(a+i b)\left(w^{-1} a-i w^{-1} b\right)=\left(w^{-1} a-i w^{-1} b\right)(a+i b)=e$ holds in $E_{\mathbf{C}}$, since E is commutative. From Gelfand-Mazur theorem, $E_{\mathbf{C}}$ is isomorphic to \mathbf{C} [3]. Therefore, for each $a \in E$ there exists a unique $\xi \in \mathbf{R}$ such that $a=\xi e$. As above, E is lattice- and algebra-isometric isomorphic to \mathbf{R}.

Let E be an Archimedean lattice ordered algebra with unit element $e>0$. The principal ideal and band generated by e in E are denoted by I_{e} and B_{e}, respectively. It is shown in [7] that B_{e} is an Archimedean f-algebra with unit e and is a full subalgebra of E. The proof of this result is easier for Banach lattice algebras. It is stated next.

Theorem 2.2. Let E be a Banach lattice algebra with unit element $e>0$. Then I_{e} is full subalgebra of E, that is, each $a \in I_{e}$ invertible in E has its inverse in I_{e}.

Proof. It is shown in [5] that $E=I_{e} \oplus I_{e}^{d}$ and $I_{e}=B_{e}$. A simple argument shows that I_{e} is an Archimedean f-algebra with unit e. Assume that $a \in I_{e}$ is invertible in E. Then there exist $u \in I_{e}, v \in I_{e}^{d}$ such that $a^{-1}=u+v$. Therefore, $a u+a v=e$ holds. Since $a v=e-a u, a v \in I_{e}$. Furthermore, $|a v| \leq|a||v|$ holds in E. We obtain that $a v \in I_{e}^{d}$ and so $a v=0$. This implies that $v=0$, i.e., $a^{-1} \in I_{e}$.

Let E be a Banach lattice. Recall that the e-uniform norm of an element $a \in I_{e}$ is defined by $\|a\|_{e}=\inf (\lambda>0:|a| \leq \lambda e)$. It is well known that $\left(I_{e},\|\cdot\|_{e}\right)$ is a Banach lattice [1].

Corollary 2.3. Let E be a Banach lattice algebra with unit element $e>0$ in which for every $a>0$ the inverse a^{-1} exists. Then $\left(I_{e},\|\cdot\|_{e}\right)$ is lattice- and algebra-isometric isomorphic to \mathbf{R}.

Proof. By hypothesis and theorem 2.2, $\left(I_{e},\|\cdot\|_{e}\right)$ is a Banach lattice f-algebra with unit $e,\|e\|_{e}=1$, in which for every $a>0$ the inverse a^{-1} exists. From theorem 2.1, $\left(I_{e},\|\cdot\|_{e}\right)$ is lattice- and algebra- isometric isomorphic to \mathbf{R}

Theorem 2.4. Let E be an Archimedean lattice ordered algebra with unit element $e>0$ in which for every $w>e$ has a positive inverse. Then $I_{e}^{d}=\{0\}$. If, in addition, E is a Banach lattice algebra then $E=I_{e}$.

Proof. Take $a \in I_{e}^{d}$. The inequality $e \leq e+|a|$ yields $0<(e+|a|)^{-1} \leq e$ and so $0 \leq(e+|a|)^{-1}|a|(e+|a|)^{-1} \leq|a|$. On the other hand, $|a| \leq e+|a|$ yields $|a| \leq(e+|a|)^{2}$ and so $0 \leq(e+|a|)^{-1}|a|(e+|a|)^{-1} \leq e$. Therefore $(e+|a|)^{-1}|a|(e+|a|)^{-1}=0$ and so $a=0$. Hence $I_{e}^{d}=\{0\}$. Let now E be a Banach lattice algebra. Since $E=I_{e} \oplus I_{e}^{d}$, we obtain that $E=I_{e}[5]$. The proof of the theorem is now complete.

Following result is first obtained by C. B. Huijsmans in [6] for Archimedean lattice ordered algebras.

Corollary 2.5. Let E be a Banach lattice algebra with unit element $e>0$ in which every positive element has a positive inverse. Then E is lattice- and algebra- isometric isomorphic to \mathbf{R} with respect to e-uniform norm.

Proof. It immediately follows from corollary 2.3 and theorem 2.4.

References

[1] Aliprantis, C.D. and Burkinshaw, O., Positive Operators, Academic Press, London, 1985
[2] Beukers, F., Huijsmans, C.B., Pagter, B., Unital embedding and complexification of falgebras, Math. Z., 183, 131-144, 1983.
[3] Bonsall, F.F. and Duncan, J., Complete normed algebras, Springer, Berlin, 1973.
[4] Huijsmans, C.B. and Pagter, B., Subalgebras and Riesz subspaces of an f-algebra, Proc. Lond. Math. Soc., 48, 3, 161-174, 1984.
[5] Huijsmans, C.B., Elements with unit spectrum in a Banach lattice algebra, Proceedings A, 91,1, 43-51,1988.
[6] Huijsmans, C.B., Lattice-ordered division algebras, Proc. R. Ir Acad. Vol 92 A, 2, 239241,1992.
[7] Lavric, B., A note on unital Archimedean Riesz algebras, An. Ştiint. Unv. Al. I. Cuza Iaşi Sect I a Mat., 39, 4, 397-400, 1993.
[8] Luxemburg, W.A.J. and Zaanen, A.C., Riesz spaces I, North Holland, Amsterdam, 1971.
[9] Schaefer, H.H., Banach lattice and positive operators, Springer, Berlin, 1974.
[10] Zaanen, A.C., Riesz Spaces II, North Holland, Amsterdam, 1983.

Ayşe UYAR
Received 08.04.2004
Department of Math Education
Gazi University
06500, Teknikokullar, Ankara-TURKEY
e-mail: ayseu@gazi.edu.tr

[^0]: AMS Mathematics Subject Classification: 46B42 (06F25 16K40)

