Turk J Math 29 (2005) , 287 – 290. © TÜBİTAK

On Banach Lattice Algebras

Ayşe Uyar

Abstract

In this study, without using the assumption $a^{-1} > 0$, it is shown that E is lattice - and algebra - isometric isomorphic to the reals **R** whenever E is a Banach lattice f-algebra with unit e, ||e|| = 1, in which for every a > 0 the inverse a^{-1} exists. Subsequently, an alternative proof to a result of Huijsmans is given for Banach lattice algebras.

Key Words: Algebra, inverse, lattice.

1. Introduction

Recall that the (real) vector lattice E is called a (real) lattice ordered algebra if E is also an associative algebra with the property that $a, b \in E_+$ implies $ab \in E_+$. We shall assume that E has a unit element e > 0. The lattice ordered algebra E is called an f-algebra whenever $a \wedge b = 0, c \in E_+$ implies $ac \wedge b = ca \wedge b = 0$. If the lattice ordered algebra E is Archimedean and uniformly complete we endow the complexification of E with the canonical absolute value; i.e., if $a = a_1 + ia_2$ with a_1 and a_2 real, then $|a| = \sup \{(cos\Theta)a_1 + (sin\Theta)a_2 : 0 \le \Theta \le 2\pi\}$. The complexification is now called a complex lattice ordered algebra. For details on complex f-algebras we refer to [2].

Any lattice ordered algebra E which is at the same time a Banach lattice is called a Banach lattice algebra whenever $||ab|| \leq ||a|| ||b||$ holds for all $a, b \in E_+$. In addition, if E is an f-algebra then it is called Banach lattice f-algebra. Obviously, E is then

287

AMS Mathematics Subject Classification: 46B42 (06F25 16K40)

UYAR

a (real) Banach algebra. As above, it is assumed that E has a unit element e > 0. The complexification of E, $E_{\mathbf{C}}$, equipped with the canonical norm ||a|| = ||a|||, is called a complex Banach lattice algebra and is also a Banach algebra. As customary, the spectrum of an element $a \in E$ is taken with respect to the complexification and is denoted by Sp(a).

For the basic theory of vector lattices (Riesz spaces) and Banach lattices and for unexplained terminology we refer to [1], [8], [9], [10].

2. Main Results

Theorem 2.1. Let E be a Banach lattice f-algebra with unit e, ||e|| = 1, in which for every a > 0 the inverse a^{-1} exists. Then E is lattice- and algebra-isometric isomorphic to **R**.

Proof. Let $a \in E$. Then there exist $\xi, \eta \in \mathbf{R}$ with $\xi + i\eta \in Sp(a)$, by theorem 13.7 in [3]. Since E is an f-algebra, $(\xi - a)^2 + \eta^2 \ge 0$ and $(\xi - a)^2 + \eta^2$ is not invertible, by theorem 13.8 in [3]. By hypothesis, $(\xi - a)^2 + \eta^2 = 0$ and so $(\xi - a)^2 = 0$. From theorem 142.5 in [10], $a = \xi e$. Since e > 0, for each $a \in E$ there exists a unique $\xi \in \mathbf{R}$ such that $a = \xi e$ and also $|a| = |\xi| e$. The mapping $T : E \to \mathbf{R}$ defined by $T(a) = \xi$ is the desired lattice isomorphism. Since E and \mathbf{R} are Archimedean f-algebras with unit element e and 1 respectively and $T : E \to \mathbf{R}$ is a lattice isomorphism which satisfies T(e) = 1, corollary 5.5 of [4] yields that T is also an algebra isomorphism. Furthermore, $||T(a)|| = |\xi| = ||\xi e|| = ||a||$. Therefore E is lattice- and algebra-isometric isomorphic to \mathbf{R} .

Remark. Note that the proof is also obtained by Gelfand-Mazur theorem. Take $a + ib \neq 0$ $a, b \in E$. By assumption, $w = a^2 + b^2 > 0$ and so $w^{-1} \in E$. Then $(a+ib)(w^{-1}a-iw^{-1}b) = (w^{-1}a-iw^{-1}b)(a+ib) = e$ holds in $E_{\mathbf{C}}$, since E is commutative. From Gelfand-Mazur theorem, $E_{\mathbf{C}}$ is isomorphic to \mathbf{C} [3]. Therefore, for each $a \in E$ there exists a unique $\xi \in \mathbf{R}$ such that $a = \xi e$. As above, E is lattice- and algebra-isometric isomorphic to \mathbf{R} .

Let E be an Archimedean lattice ordered algebra with unit element e > 0. The principal ideal and band generated by e in E are denoted by I_e and B_e , respectively. It is shown in [7] that B_e is an Archimedean f-algebra with unit e and is a full subalgebra of E. The proof of this result is easier for Banach lattice algebras. It is stated next.

288

UYAR

Theorem 2.2. Let E be a Banach lattice algebra with unit element e > 0. Then I_e is full subalgebra of E, that is, each $a \in I_e$ invertible in E has its inverse in I_e .

Proof. It is shown in [5] that $E = I_e \oplus I_e^d$ and $I_e = B_e$. A simple argument shows that I_e is an Archimedean *f*-algebra with unit *e*. Assume that $a \in I_e$ is invertible in *E*. Then there exist $u \in I_e, v \in I_e^d$ such that $a^{-1} = u + v$. Therefore, au + av = e holds. Since $av = e - au, av \in I_e$. Furthermore, $|av| \leq |a| |v|$ holds in *E*. We obtain that $av \in I_e^d$ and so av = 0. This implies that v = 0, i.e., $a^{-1} \in I_e$.

Let *E* be a Banach lattice. Recall that the *e*-uniform norm of an element $a \in I_e$ is defined by $||a||_e = inf(\lambda > 0 : |a| \le \lambda e)$. It is well known that $(I_e, ||.||_e)$ is a Banach lattice [1].

Corollary 2.3. Let *E* be a Banach lattice algebra with unit element e > 0 in which for every a > 0 the inverse a^{-1} exists. Then $(I_e, \|.\|_e)$ is lattice- and algebra-isometric isomorphic to **R**.

Proof. By hypothesis and theorem 2.2, $(I_e, \|.\|_e)$ is a Banach lattice *f*-algebra with unit $e, \|e\|_e = 1$, in which for every a > 0 the inverse a^{-1} exists. From theorem 2.1, $(I_e, \|.\|_e)$ is lattice– and algebra– isometric isomorphic to **R**

Theorem 2.4. Let E be an Archimedean lattice ordered algebra with unit element e > 0in which for every w > e has a positive inverse. Then $I_e^d = \{0\}$. If, in addition, E is a Banach lattice algebra then $E = I_e$.

Proof. Take $a \in I_e^d$. The inequality $e \leq e + |a|$ yields $0 < (e + |a|)^{-1} \leq e$ and so $0 \leq (e + |a|)^{-1} |a| (e + |a|)^{-1} \leq |a|$. On the other hand, $|a| \leq e + |a|$ yields $|a| \leq (e + |a|)^2$ and so $0 \leq (e + |a|)^{-1} |a| (e + |a|)^{-1} \leq e$. Therefore $(e + |a|)^{-1} |a| (e + |a|)^{-1} = 0$ and so a = 0. Hence $I_e^d = \{0\}$. Let now E be a Banach lattice algebra. Since $E = I_e \oplus I_e^d$, we obtain that $E = I_e$ [5]. The proof of the theorem is now complete.

Following result is first obtained by C. B. Huijsmans in [6] for Archimedean lattice ordered algebras.

Corollary 2.5. Let E be a Banach lattice algebra with unit element e > 0 in which every positive element has a positive inverse. Then E is lattice– and algebra– isometric isomorphic to \mathbf{R} with respect to e-uniform norm.

Proof. It immediately follows from corollary 2.3 and theorem 2.4. \Box

289

UYAR

References

- [1] Aliprantis, C.D. and Burkinshaw, O., Positive Operators, Academic Press, London, 1985
- [2] Beukers, F., Huijsmans, C.B., Pagter, B., Unital embedding and complexification of falgebras, Math. Z., 183, 131-144, 1983.
- [3] Bonsall, F.F. and Duncan, J., Complete normed algebras, Springer, Berlin, 1973.
- [4] Huijsmans, C.B. and Pagter, B., Subalgebras and Riesz subspaces of an f-algebra, Proc. Lond. Math. Soc., 48, 3, 161-174, 1984.
- [5] Huijsmans, C.B., Elements with unit spectrum in a Banach lattice algebra, Proceedings A, 91,1, 43-51,1988.
- [6] Huijsmans, C.B., Lattice-ordered division algebras, Proc. R. Ir Acad. Vol 92 A, 2, 239-241,1992.
- [7] Lavric, B., A note on unital Archimedean Riesz algebras, An. Ştiint. Unv. Al. I. Cuza Iaşi Sect I a Mat., 39, 4, 397-400, 1993.
- [8] Luxemburg, W.A.J. and Zaanen, A.C., Riesz spaces I, North Holland, Amsterdam, 1971.
- [9] Schaefer, H.H., Banach lattice and positive operators, Springer, Berlin, 1974.
- [10] Zaanen, A.C., Riesz Spaces II, North Holland, Amsterdam, 1983.

Received 08.04.2004

Ayşe UYAR Department of Math Education Gazi University 06500, Teknikokullar, Ankara-TURKEY e-mail: ayseu@gazi.edu.tr