On Linear the Homeomorphism Between Function Spaces $C_p(X)$ and $C_{p,A}(X) \times C_p(A)$

Sabri Birlik

Abstract

In this paper, we investigate a linear homeomorphism between function spaces $C_p(X)$ and $C_{p,A}(X) \times C_p(A)$, where X is a normal space and A is a neighborhood retraction of X.

Key Words: Function Spaces; linear homeomorphism, pointwise topology.

1. Introduction

In [2] Jan Baars and J. D. Groot derived an isomorphical classification of the spaces $C_p(X)$, where X denotes any compact zero-dimensional space. In [6] J. Van Mill derived a isomorphical classification of the spaces $C_p(X)$, where X denotes any metrizable space. It has been proved in [6] that for metrizable spaces, there always exist an extender which is both linear and continuous.

First we fix some notation and give some definitions.

For a space X, we define C(X) to be the set real-valued continuous functions on X, and C(X) is vector space with the natural addition and scalar multiplication. For a covering \mathcal{K} of X, we define a topology on C(X) by taking the family of all sets

 $\langle f, \mathbf{K}, \delta \rangle = \{g \in C(X) : |f(x) - g(x)| < \delta, \text{ for every } x \in \mathbf{K}\},\$

where $f \in C(X)$, $K \in \mathcal{K}$ and $\delta > 0$, as a subbase.

If \mathcal{K} consists of all finite subsets of X, we denote C(X) endowed with this topology

by $C_p(X)$. The topology on $C_p(X)$ is called the pointwise convergence topology. It is well known or easy to prove that $C_p(X)$ is a topological vector space.

Let X be a space and $A \subset X$ closed. By $C_{p,A}(X)$, we denote the subspace of $C_p(X)$ of all functions vanishing on A. That is,

$$C_{p,A}(X) = \{ f \in C_p(X) : f(A) = 0 \}.$$

If A is singleton, say $\{a\}$, then we denote $C_{p,A}(X)$ simply by $C_{p,a}(X)$. Let X/A be the quotient space obtained from X by identifying A to a single point, say ∞ . $C_{p,\infty}(X/A)$ is the space of $C_p(X/A)$ of all function vanishing at ∞ . That is,

$$C_{p,\infty}(X/A) = \{ f \in C_p(X/A) : f(\infty) = 0 \}$$

Let the constant function with value 0 be denoted by $\underline{0}$.

Definition 1 Let X be a space with subspace A. We say that A is a retract of X provided that there is a continuous function $r: X \to A$ such that r restricted to A is the identity on A. Such a function r is called a retraction.

Lemma 1 [6] Let X be a Hausdorff space with subspace A. If A is a retract of X then A is a closed subset of X.

Proof. Let (X, τ) be a Hausdorff space and $r: X \to A$ be a retraction. We want to show that A is closed in X. Take any point x_0 in $X \setminus A$. Then $r(x_0) = a \in A$. Since r is a retraction it comes to be $x_0 \neq a$ and since X is a Hausdorff space, there are two open subsets $U \in \tau$ $(x_0 \in U)$ and $V \in \tau$ $(a \in V)$ such that $U \cap V = \emptyset$. That A is a subspace of X makes $A \cap V$ open in (A, τ_A) , and so long as r is a continuous function, $r^{-1}(A \cap V)$ is open in (X, τ) and $x_0 \in r^{-1}(A \cap V)$. Let $W = U \cap r^{-1}(A \cap V)$. The set W is open in $(X, \tau), x_0 \in W$ and $W \cap V = \emptyset$. Since r is a retraction, $r(W) \subset V$. So for every $x \in W$, we get $r(x) \neq x$ and thus we have $W \subset X \setminus A$. Thus $X \setminus A$ is open in (X, τ) and A is closed in X.

Remark 1. The statement of Lemma 1 is not necessarily true if X is not Hausdorff. For instance, the subset Z_e of all even integers of the cofinite topology defined on Z is an example of a non-closed retract under the continuous function $f : Z \to Z_e$ where f(2k-1) = 2k = f(2k) for each $k \in Z$. Notice that $f^{-1}(F)$ is finite whenever $F \subseteq Z_e$

is finite and thus f is continuous and furthermore cofinite topology determines $a T_1$ topological space on Z which is not T_2 (Hausdorff).

We say that A is a neighborhood retract of X provided that there exists a neighborhood U of A in X such that A is a retract of U.

Now we prove theorem 1 which will be used in the proof of the theorem 2.

Theorem 1 Let X be a normal space and A be a neighborhood retract of X. Then there is a continuous linear and one to one function $\Phi : C_p(A) \to C_p(X)$ such that for each $f \in C(A), \Phi(f)|_A = f.$

Proof. Let U, including A, be an open subset of X and $r: U \to A$ be a retraction. Since X is a normal space, for an open subset W of X,

$$A \subseteq W \subseteq clW \subseteq U$$

A is closed in U because A is a retract of U. Then A is a closed subset of clW and also a closed subset of X. Hence A and $X \setminus W$ are two disjoint closed subset of X. Then for a continuous function

$$f_0: X \to [0,1]$$

we get $f_0(A) = \{1\}$ and $f_0(X \setminus W) = \{0\}$. Define

$$\Phi(f)(x) = \left\{ \begin{array}{ccc} 0 & \text{if} & x \in X \backslash W \\ f_0(x) f(r(x)) & \text{if} & x \in W \end{array} \right\}$$

for $f \in C_p(A)$. We want to show that $\Phi(f) \in C_p(X)$. In other words,

$$\Phi\left(f\right):X\to\mathbb{R}$$

is continuous. If $x = a \in A$ then

$$\Phi(f)(a) = f_0(a) f(r(a)) = 1f(a) = f(a).$$

From this, we get $\Phi(f)|_A = f$. $\Phi(f)$ is continuous on W as $\Phi(f)(x) = f_0(x) f(r(x))$ and W is open. Now take $x \in X \setminus W$. We claim that $\Phi(f)$ is continuous at $X \setminus W$. \Box

We prove this latter claim via the following two cases.

Case 1. Let $x \in clW \setminus W$ and let $(x_{\mu})_{\mu \in \Gamma}$, which convergences to element, x be a net. We want to show that

$$\left(\Phi\left(f\right)\left(x_{\mu}\right)\right)_{\mu\in\Gamma}\to\Phi\left(f\right)\left(x\right),$$

since x is an element of U and U is open; a tail of this net will be in U. For this reason, without lose of generality, we can assume that all the elements of this net are in U. As $x_{\mu} \to x$ and $r: U \to A$ are continuous,

$$(r(x_{\mu}))_{\mu\in\Gamma} \to r(x)$$

in A. Furthermore,

$$\left(f\left(r\left(x_{\mu}\right)\right)\right)_{\mu\in\Gamma}\to f\left(r\left(x\right)\right)$$

due to the continuity of $f : A \to \mathbb{R}$. Since $x \in X \setminus W$, $\Phi(f)(x) = 0$ and $f_0(x) = 0$. Then we get

$$\left(f_0\left(x_{\mu}\right)\right)_{\mu\in\Gamma}\to 0.$$

On the other hand,

$$\Phi(f)(x_{\mu}) = \left\{ \begin{array}{ccc} 0 & \text{if } x_{\mu} \in U \backslash W \\ f_0(x_{\mu}) f(r(x_{\mu})) & \text{if } x_{\mu} \in W \end{array} \right\}.$$

In every case, $\Phi(f)(x_{\mu}) = f_0(x_{\mu}) f(r(x_{\mu}))$. Then it is seen that

$$\left(\Phi\left(f\right)\left(x_{\mu}\right)\right)_{\mu\in\Gamma}\to\Phi\left(f\right)\left(x\right)=0.$$

Case 2. Let $x \in X \setminus clW$. Since $X \setminus clW$ is open, $\Phi(f) = \underline{0}$ is continuous on $X \setminus clW$. We show that Φ is a linear. Let $f, g \in C_p(A), \alpha, \beta \in \mathbb{R}$

$$\Phi (\alpha f + \beta g) (x) = \left\{ \begin{array}{ccc} \alpha 0 + \beta 0 = 0 & \text{if} \quad x \in X \backslash W \\ f_0 (x) (\alpha f + \beta g) (r (x)) & \text{if} \quad x \in W \end{array} \right\}$$
$$= \left\{ \begin{array}{ccc} \alpha 0 & \text{if} \quad x \in X \backslash W \\ f_0 (x) (\alpha f) (r (x)) & \text{if} \quad x \in W \end{array} \right\}$$
$$+ \left\{ \begin{array}{ccc} \beta 0 & \text{if} \quad x \in X \backslash W \\ f_0 (x) (\beta g) (r (x)) & \text{if} \quad x \in W \end{array} \right\}$$
$$= \alpha \Phi (f) (x) + \beta \Phi (g) (x)$$

Thus Φ is linear. Now let us show that $\Phi : C_p(A) \to C_p(X)$ is continuous. Since Φ is linear, $C_p(A)$ and $C_p(X)$ are topological vector spaces, it is sufficient to prove that Φ is continuous at $\underline{0}$.

$$\langle \underline{0}, \{x_0, x_1, \dots, x_n\}, \varepsilon \rangle = \bigcap_{i=0}^n \langle \underline{0}, \{x_i\}, \varepsilon \rangle.$$

Let us choose $x_0 \in X$ and consider the open set

$$\left\langle \underline{0},\left\{ x_{0}
ight\} ,\varepsilon
ight
angle =\left\{ f\in C_{p}\left(X
ight) :\left| f\left(x_{0}
ight)
ight|$$

We want to show that

$$\Phi\left(\left\langle\underline{0},\left\{a\right\},\delta\right\rangle\right)=\Phi\left(\left\{g\in C_{p}\left(A\right):\left|g\left(a\right)\right|<\delta\right\}\right)\subseteq T$$

for $a \in A$ and $\delta > 0$. Let us assume that $a \in A$ and $g \in (0, \{a\}, \delta)$. Then

$$\Phi(g)(x_0) = \left\{ \begin{array}{ccc} 0 & \text{if } x_0 \in X \backslash W \\ f_0(x_0) g(r(x_0)) & \text{if } x_0 \in W \end{array} \right\}$$

If $x_0 \in W$, then take $a = r(x_0)$ and $0 < \delta = \varepsilon / (f_0(x_0) + 1)$. Then we have a and $\delta > 0$. Because,

$$|\Phi(g)(x_0)| = |f_0(x_0)| |g(a)| < f(x_0) / (f(x_0) + 1) < 1.$$

Hence, $\Phi(g) \in T$. If $x_0 \in X \setminus W$ then $|\Phi(g)(x_0)| = 0 < 1$ for any a which is chosen from A. This implies $\Phi(g) \in T$. Therefore since $\Phi(g) \in T$ for $g \in \langle 0, \{a\}, \delta \rangle$, Φ is continuous on each two cases. Φ is one to one, it is seen by definition of Φ easily.

We now come to the following important theorem.

Theorem 2 Let X be a normal space and let A be a neighborhood retract of X. Then

$$C_p(X) \approx C_{p,A}(X) \times C_p(A)$$

Proof. Define $G : C_p(X) \to C_p(A)$ by $G(f) = f|_A$. Notice that G is a continuous linear function. For $f \in C_p(X)$, $f \in C_{p,A}(X)$, if and only if G(f) = 0. By theorem 1, there is a continuous linear function $\Phi : C_p(A) \to C_p(X)$ such that for each $f \in C_p(A)$, $\Phi(f)|_A = f$. Notice that $G \circ \Phi = id_{C_p(A)}$.

Now define $\theta : C_p(X) \to C_{p,A}(X) \times C_p(A)$ by

$$\theta\left(f\right) = \left(f - \left(\Phi \circ G\right)\left(f\right), G\left(f\right)\right).$$

We have to prove that θ is well-defined. Take an arbitrary $f \in C_p(X)$. It is obvious that $G(f) \in C_p(A)$ and that $f - (\Phi \circ G)(f) \in C_p(X)$. Furthermore,

$$G\left(f - \left(\Phi \circ G\right)(f)\right) = G\left(f\right) - \left(G \circ \Phi \circ G\right)(f) = G\left(f\right) - G\left(f\right) = \underline{0}$$

so $f - (\Phi \circ G)(f) \in C_{p,A}(X)$. That θ is continuous and linear is a triviality. We show that θ is a linear homeomorphism. For that, define

$$\Gamma: C_{p,A}\left(X\right) \times C_p\left(A\right) \to C_p\left(X\right)$$

By $\Gamma(f,h) = f + \Phi(h)$ it is trivial that Γ is well defined, continuous and linear. Furthermore, as is easily seen, $\Gamma \circ \theta = id_{C_p(X)}$ and we show that $\theta \circ \Gamma = id_{C_{p,A}(X) \times C_p(A)}$. Take $f \in C_{p,A}(X)$ and $h \in C_p(A)$. Notice that G(f) = 0 hence by linearity of Φ . $(\Phi \circ G)(f) = \Phi(0) = 0$, so

$$\begin{aligned} (\theta \circ \Gamma) (f,h) &= \theta (f + \Phi (h)) = (f + \Phi (h) - (\Phi \circ G) (f + \Phi (h)), G (f + \Phi (h))) \\ &= (f + \Phi (h) - \underline{0} - \Phi (h), \underline{0} + h) \\ &= (f,h). \end{aligned}$$

Hence $\theta \circ \Gamma = id_{C_{p,A}(X) \times C_p(A)}$, i.e., θ is a linear homeomorphism.

Lemma 2 Let X be a normal space and A be a neighborhood retract of X. Then

$$C_{p,A}(X) \approx C_{p,\infty}(X/A)$$
.

Proof. Let $p: X \to X/A$ be the quotient map between X and X/A. For every function $f \in C_{p,A}(X)$ there is a unique function $g \in C_{p,\infty}(X/A)$ such that $g \circ p = f$. If we now define $\theta: C_{p,A}(X) \to C_{p,\infty}(X/A)$ by $\theta(f) = g$, then θ is a well-defined linear bijection. Since for $f \in C_{p,A}(X)$, $y_1, \ldots, y_n \in X/A$, $\delta > 0$ and $x_i \in p^{-1}(y_i)$, $(i \leq n)$ it is easily seen that

$$\theta\left(\left\langle f, \left\{x_1, ..., x_n\right\}, \delta\right\rangle\right) = \left\langle\theta\left(f\right), \left\{y_1, ..., y_n\right\}, \delta\right\rangle,$$

and it follows that θ is linear homeomorphism.

From the last lemma and theorem 2, we have the useful following corollary.

Corollary 1 Let X be a normal space and let A be a neighborhood retract of X. Then

$$C_{p}(X) \approx C_{p,\infty}(X/A) \times C_{p,A}(X)$$
.

Proof. By lemma 2 and theorem 2

$$C_{p}(X) \approx C_{p,\infty}(X/A) \times C_{p,A}(X)$$
.

References

- Arhangelskii, A.V.: On Linear Homeomorphisms of Function Spaces, Soviet Math. Dokl. 25 (1982) 852-855.
- [2] Baars, J., De Groot, J.: An Isomorphical Classification of Function Spaces of Zero-Dimensional Locally Compact Separable Metric Spaces, Comm. Math. Univ. Carolinae, 29 (1988), 577-595.
- [3] Baars, J., De Groot, J.: On Topological and Linear Equivalence of Certain Function Spaces, CWI Tract, vol 86, Center for Mathematics and Computer Science, Amsterdam (1992).
- [4] Baars, J., De Groot, J., Van Mill, J., Pelant, J.: An Example of -Equivalent Spaces Which are not -Equivalent, Proc. Amer. Math. Soc. 119(1993), 963-969.
- [5] Gillman, L., JERISON, M.: Rings of Continuous Functions, Van Nostrand, Princeton, N.J. 1966.
- [6] Van Lill, J.: The Infinite-Dimensional Topology of Function Spaces, vol 64, North-Holland Mathematica Library, 2002.

Sabri BİRLİK Department of Mathematics, Faculty of Arts and Sciences, Gaziantep University, 27310, Gaziantep-TURKEY e-mail: birlik@gantep.edu.tr

297

Received 08.04.2004