On Linear the Homeomorphism Between Function Spaces $C_{p}(X)$ and $C_{p, A}(X) \times C_{p}(A)$

Sabri Birlik

Abstract

In this paper, we investigate a linear homeomorphism between function spaces $C_{p}(X)$ and $C_{p, A}(X) \times C_{p}(A)$, where X is a normal space and A is a neighborhood retraction of X.

Key Words: Function Spaces; linear homeomorphism, pointwise topology.

1. Introduction

In [2] Jan Baars and J. D. Groot derived an isomorphical classification of the spaces $C_{p}(X)$, where X denotes any compact zero-dimensional space. In [6] J. Van Mill derived a isomorphical classification of the spaces $C_{p}(X)$, where X denotes any metrizable space. It has been proved in [6] that for metrizable spaces, there always exist an extender which is both linear and continuous.

First we fix some notation and give some definitions.
For a space X, we define $C(X)$ to be the set real-valued continuous functions on X, and $C(X)$ is vector space with the natural addition and scalar multiplication. For a covering \mathcal{K} of X, we define a topology on $C(X)$ by taking the family of all sets

$$
\langle f, \mathrm{~K}, \delta\rangle=\{g \in C(X):|f(x)-g(x)|<\delta, \text { for every } x \in \mathrm{~K}\},
$$

where $f \in C(X), \mathrm{K} \in \mathcal{K}$ and $\delta>0$, as a subbase.
If \mathcal{K} consists of all finite subsets of X, we denote $C(X)$ endowed with this topology

BíRLiK

by $C_{p}(X)$. The topology on $C_{p}(X)$ is called the pointwise convergence topology. It is well known or easy to prove that $C_{p}(X)$ is a topological vector space.

Let X be a space and $A \subset X$ closed. By $C_{p, A}(X)$, we denote the subspace of $C_{p}(X)$ of all functions vanishing on A. That is,

$$
C_{p, A}(X)=\left\{f \in C_{p}(X): f(A)=0\right\}
$$

If A is singleton, say $\{a\}$, then we denote $C_{p, A}(X)$ simply by $C_{p, a}(X)$. Let X / A be the quotient space obtained from X by identifying A to a single point, say $\infty C_{p, \infty}(X / A)$ is the space of $C_{p}(X / A)$ of all function vanishing at ∞. That is,

$$
C_{p, \infty}(X / A)=\left\{f \in C_{p}(X / A): f(\infty)=0\right\}
$$

Let the constant function with value 0 be denoted by $\underline{0}$.

Definition 1 Let X be a space with subspace A. We say that A is a retract of X provided that there is a continuous function $r: X \rightarrow A$ such that r restricted to A is the identity on A. Such a function r is called a retraction.

Lemma 1 [6] Let X be a Hausdorff space with subspace A. If A is a retract of X then A is a closed subset of X.
Proof. Let (X, τ) be a Hausdorff space and $r: X \rightarrow A$ be a retraction. We want to show that A is closed in X. Take any point x_{0} in $X \backslash A$. Then $r\left(x_{0}\right)=a \in A$. Since r is a retraction it comes to be $x_{0} \neq a$ and since X is a Hausdorff space, there are two open subsets $U \in \tau \quad\left(x_{0} \in U\right)$ and $V \in \tau \quad(a \in V)$ such that $U \cap V=\varnothing$. That A is a subspace of X makes $A \cap V$ open in $\left(A, \tau_{A}\right)$, and so long as r is a continuous function, $r^{-1}(A \cap V)$ is open in (X, τ) and $x_{0} \in r^{-1}(A \cap V)$. Let $W=U \cap r^{-1}(A \cap V)$. The set W is open in $(X, \tau), x_{0} \in W$ and $W \cap V=\varnothing$. Since r is a retraction, $r(W) \subset V$. So for every $x \in W$, we get $r(x) \neq x$ and thus we have $W \subset X \backslash A$. Thus $X \backslash A$ is open in (X, τ) and A is closed in X.

Remark 1. The statement of Lemma 1 is not necessarily true if X is not Hausdorff. For instance, the subset Z_{e} of all even integers of the cofinite topology defined on Z is an example of a non-closed retract under the continuous function $f: Z \rightarrow Z_{e}$ where $f(2 k-1)=2 k=f(2 k)$ for each $k \in Z$. Notice that $f^{-1}(F)$ is finite whenever $F \subseteq Z_{e}$

BíRLiK

is finite and thus f is continuous and furthermore cofinite topology determines a T_{1} topological space on Z which is not T_{2} (Hausdorff).

We say that A is a neighborhood retract of X provided that there exists a neighborhood U of A in X such that A is a retract of U.

Now we prove theorem 1 which will be used in the proof of the theorem 2.

Theorem 1 Let X be a normal space and A be a neighborhood retract of X. Then there is a continuous linear and one to one function $\Phi: C_{p}(A) \rightarrow C_{p}(X)$ such that for each $f \in C(A),\left.\Phi(f)\right|_{A}=f$.

Proof. Let U, including A, be an open subset of X and $r: U \rightarrow A$ be a retraction. Since X is a normal space, for an open subset W of X,

$$
A \subseteq W \subseteq c l W \subseteq U
$$

A is closed in U because A is a retract of U. Then A is a closed subset of $c l W$ and also a closed subset of X. Hence A and $X \backslash W$ are two disjoint closed subset of X. Then for a continuous function

$$
f_{0}: X \rightarrow[0,1]
$$

we get $f_{0}(A)=\{1\}$ and $f_{0}(X \backslash W)=\{0\}$. Define

$$
\Phi(f)(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x \in X \backslash W \\
f_{0}(x) f(r(x)) & \text { if } & x \in W
\end{array}\right\}
$$

for $f \in C_{p}(A)$. We want to show that $\Phi(f) \in C_{p}(X)$. In other words,

$$
\Phi(f): X \rightarrow \mathbb{R}
$$

is continuous. If $x=a \in A$ then

$$
\Phi(f)(a)=f_{0}(a) f(r(a))=1 f(a)=f(a)
$$

From this, we get $\left.\Phi(f)\right|_{A}=f . \quad \Phi(f)$ is continuous on W as $\Phi(f)(x)=f_{0}(x) f(r(x))$ and W is open. Now take $x \in X \backslash W$. We claim that $\Phi(f)$ is continuous at $X \backslash W$.

BíRLik

We prove this latter claim via the following two cases.
Case 1. Let $x \in c l W \backslash W$ and let $\left(x_{\mu}\right)_{\mu \in \Gamma}$, which convergences to element, x be a net. We want to show that

$$
\left(\Phi(f)\left(x_{\mu}\right)\right)_{\mu \in \Gamma} \rightarrow \Phi(f)(x),
$$

since x is an element of U and U is open; a tail of this net will be in U. For this reason, without lose of generality, we can assume that all the elements of this net are in U. As $x_{\mu} \rightarrow x$ and $r: U \rightarrow A$ are continuous,

$$
\left(r\left(x_{\mu}\right)\right)_{\mu \in \Gamma} \rightarrow r(x)
$$

in A. Furthermore,

$$
\left(f\left(r\left(x_{\mu}\right)\right)\right)_{\mu \in \Gamma} \rightarrow f(r(x))
$$

due to the continuity of $f: A \rightarrow \mathbb{R}$. Since $x \in X \backslash W, \Phi(f)(x)=0$ and $f_{0}(x)=0$. Then we get

$$
\left(f_{0}\left(x_{\mu}\right)\right)_{\mu \in \Gamma} \rightarrow 0 .
$$

On the other hand,

$$
\Phi(f)\left(x_{\mu}\right)=\left\{\begin{array}{ccc}
0 & \text { if } & x_{\mu} \in U \backslash W \\
f_{0}\left(x_{\mu}\right) f\left(r\left(x_{\mu}\right)\right) & \text { if } & x_{\mu} \in W
\end{array}\right\} .
$$

In every case, $\Phi(f)\left(x_{\mu}\right)=f_{0}\left(x_{\mu}\right) f\left(r\left(x_{\mu}\right)\right)$. Then it is seen that

$$
\left(\Phi(f)\left(x_{\mu}\right)\right)_{\mu \in \Gamma} \rightarrow \Phi(f)(x)=0 .
$$

Case 2. Let $x \in X \backslash c l W$. Since $X \backslash c l W$ is open, $\Phi(f)=\underline{0}$ is continuous on $X \backslash c l W$. We show that Φ is a linear. Let $f, g \in C_{p}(A), \alpha, \beta \in \mathbb{R}$

$$
\begin{aligned}
\Phi(\alpha f+\beta g)(x)= & \left\{\begin{array}{ccc}
\alpha 0+\beta 0=0 & \text { if } & x \in X \backslash W \\
f_{0}(x)(\alpha f+\beta g)(r(x)) & \text { if } & x \in W
\end{array}\right\} \\
= & \left\{\begin{array}{ccc}
\alpha 0 & \text { if } & x \in X \backslash W \\
f_{0}(x)(\alpha f)(r(x)) & \text { if } & x \in W
\end{array}\right\} \\
& +\left\{\begin{array}{ccc}
\beta 0 & \text { if } & x \in X \backslash W \\
f_{0}(x)(\beta g)(r(x)) & \text { if } & x \in W
\end{array}\right\} \\
= & \alpha \Phi(f)(x)+\beta \Phi(g)(x)
\end{aligned}
$$

Birlik

Thus Φ is linear. Now let us show that $\Phi: C_{p}(A) \rightarrow C_{p}(X)$ is continuous. Since Φ is linear, $C_{p}(A)$ and $C_{p}(X)$ are topological vector spaces, it is sufficient to prove that Φ is continuous at $\underline{0}$.

$$
\left\langle\underline{0},\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, \varepsilon\right\rangle=\bigcap_{i=0}^{n}\left\langle\underline{0},\left\{x_{i}\right\}, \varepsilon\right\rangle .
$$

Let us choose $x_{0} \in X$ and consider the open set

$$
\left\langle\underline{0},\left\{x_{0}\right\}, \varepsilon\right\rangle=\left\{f \in C_{p}(X):\left|f\left(x_{0}\right)\right|<\varepsilon\right\}=T
$$

We want to show that

$$
\Phi(\langle\underline{0},\{a\}, \delta\rangle)=\Phi\left(\left\{g \in C_{p}(A):|g(a)|<\delta\right\}\right) \subseteq T
$$

for $a \in A$ and $\delta>0$. Let us assume that $a \in A$ and $g \in\langle\underline{0},\{a\}, \delta\rangle$. Then

$$
\Phi(g)\left(x_{0}\right)=\left\{\begin{array}{ccc}
0 & \text { if } & x_{0} \in X \backslash W \\
f_{0}\left(x_{0}\right) g\left(r\left(x_{0}\right)\right) & \text { if } & x_{0} \in W
\end{array}\right\}
$$

If $x_{0} \in W$, then take $a=r\left(x_{0}\right)$ and $0<\delta=\varepsilon /\left(f_{0}\left(x_{0}\right)+1\right)$. Then we have a and $\delta>0$.
Because,

$$
\left|\Phi(g)\left(x_{0}\right)\right|=\left|f_{0}\left(x_{0}\right)\right||g(a)|<f\left(x_{0}\right) /\left(f\left(x_{0}\right)+1\right)<1
$$

Hence, $\Phi(g) \in T$. If $x_{0} \in X \backslash W$ then $\left|\Phi(g)\left(x_{0}\right)\right|=0<1$ for any a which is chosen from A. This implies $\Phi(g) \in T$. Therefore since $\Phi(g) \in T$ for $g \in\langle\underline{0},\{a\}, \delta\rangle, \Phi$ is continuous on each two cases. Φ is one to one, it is seen by definition of Φ easily.

We now come to the following important theorem.

Theorem 2 Let X be a normal space and let A be a neighborhood retract of X. Then

$$
C_{p}(X) \approx C_{p, A}(X) \times C_{p}(A) .
$$

Proof. Define $G: C_{p}(X) \rightarrow C_{p}(A)$ by $G(f)=\left.f\right|_{A}$. Notice that G is a continuous linear function. For $f \in C_{p}(X), f \in C_{p, A}(X)$, if and only if $G(f)=\underline{0}$. By theorem 1 , there is a continuous linear function $\Phi: C_{p}(A) \rightarrow C_{p}(X)$ such that for each $f \in C_{p}(A)$, $\left.\Phi(f)\right|_{A}=f$. Notice that $G \circ \Phi=i d_{C_{p}(A)}$.

Now define $\theta: C_{p}(X) \rightarrow C_{p, A}(X) \times C_{p}(A)$ by

$$
\theta(f)=(f-(\Phi \circ G)(f), G(f))
$$

BíRLiK

We have to prove that θ is well-defined. Take an arbitrary $f \in C_{p}(X)$. It is obvious that $G(f) \in C_{p}(A)$ and that $f-(\Phi \circ G)(f) \in C_{p}(X)$. Furthermore,

$$
G(f-(\Phi \circ G)(f))=G(f)-(G \circ \Phi \circ G)(f)=G(f)-G(f)=\underline{0}
$$

so $f-(\Phi \circ G)(f) \in C_{p, A}(X)$. That θ is continuous and linear is a triviality. We show that θ is a linear homeomorphism. For that, define

$$
\Gamma: C_{p, A}(X) \times C_{p}(A) \rightarrow C_{p}(X)
$$

By $\Gamma(f, h)=f+\Phi(h)$ it is trivial that Γ is well defined, continuous and linear. Furthermore, as is easily seen, $\Gamma \circ \theta=i d_{C_{p}(X)}$ and we show that $\theta \circ \Gamma=i d_{C_{p, A}(X) \times C_{p}(A)}$. Take $f \in C_{p, A}(X)$ and $h \in C_{p}(A)$. Notice that $G(f)=\underline{0}$ hence by linearity of Φ. $(\Phi \circ G)(f)=\Phi(\underline{0})=\underline{0}$, so

$$
\begin{aligned}
(\theta \circ \Gamma)(f, h) & =\theta(f+\Phi(h))=(f+\Phi(h)-(\Phi \circ G)(f+\Phi(h)), G(f+\Phi(h))) \\
& =(f+\Phi(h)-\underline{0}-\Phi(h), \underline{0}+h) \\
& =(f, h)
\end{aligned}
$$

Hence $\theta \circ \Gamma=i d_{C_{p, A}(X) \times C_{p}(A)}$, i.e., θ is a linear homeomorphism.

Lemma 2 Let X be a normal space and A be a neighborhood retract of X. Then

$$
C_{p, A}(X) \approx C_{p, \infty}(X / A)
$$

Proof. Let $p: X \rightarrow X / A$ be the quotient map between X and X / A. For every function $f \in C_{p, A}(X)$ there is a unique function $g \in C_{p, \infty}(X / A)$ such that $g \circ p=f$. If we now define $\theta: C_{p, A}(X) \rightarrow C_{p, \infty}(X / A)$ by $\theta(f)=g$, then θ is a well-defined linear bijection. Since for $f \in C_{p, A}(X), y_{1}, \ldots, y_{n} \in X / A, \delta>0$ and $x_{i} \in p^{-1}\left(y_{i}\right),(i \leq n)$ it is easily seen that

$$
\theta\left(\left\langle f,\left\{x_{1}, \ldots, x_{n}\right\}, \delta\right\rangle\right)=\left\langle\theta(f),\left\{y_{1}, \ldots, y_{n}\right\}, \delta\right\rangle
$$

and it follows that θ is linear homeomorphism.

From the last lemma and theorem 2, we have the useful following corollary.

BirLik

Corollary 1 Let X be a normal space and let A be a neighborhood retract of X. Then

$$
C_{p}(X) \approx C_{p, \infty}(X / A) \times C_{p, A}(X)
$$

Proof. By lemma 2 and theorem 2

$$
C_{p}(X) \approx C_{p, \infty}(X / A) \times C_{p, A}(X)
$$

References

[1] Arhangelskii, A.V.: On Linear Homeomorphsims of Function Spaces,Soviet Math. Dokl. 25 (1982) 852-855.
[2] Baars, J., De Groot, J.: An Isomorphical Classification of Function Spaces of ZeroDimensional Locally Compact Separable Metric Spaces, Comm. Math. Univ. Carolinae, 29 (1988), 577-595.
[3] Baars, J., De Groot, J.: On Topological and Linear Equivalence of Certain Function Spaces, CWI Tract, vol 86, Center for Mathematics and Computer Science, Amsterdam (1992).
[4] Baars, J., De Groot, J., Van Mill, J., Pelant, J.: An Example of -Equivalent Spaces Which are not -Equivalent, Proc. Amer. Math. Soc. 119(1993), 963-969.
[5] Gillman, L., JERISON, M.: Rings of Continuous Functions, Van Nostrand, Princeton, N.J. 1966.
[6] Van Lill, J.: The Infinite-Dimensional Topology of Function Spaces, vol 64, North-Holland Mathematica Library, 2002.

Sabri BİRLİK

Department of Mathematics,
Faculty of Arts and Sciences,
Gaziantep University,
27310, Gaziantep-TURKEY
e-mail: birlik@gantep.edu.tr

