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On Linear the Homeomorphism Between Function

Spaces Cp (X) and Cp,A (X)× Cp (A)

Sabri Birlik

Abstract

In this paper, we investigate a linear homeomorphism between function spaces

Cp (X) and Cp,A (X)×Cp (A), where X is a normal space and A is a neighborhood

retraction of X.
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1. Introduction

In [2] Jan Baars and J. D. Groot derived an isomorphical classification of the spaces
Cp (X) , where X denotes any compact zero-dimensional space. In [6] J. Van Mill derived
a isomorphical classification of the spaces Cp (X), where X denotes any metrizable space.
It has been proved in [6] that for metrizable spaces, there always exist an extender which
is both linear and continuous.

First we fix some notation and give some definitions.

For a space X, we define C (X) to be the set real-valued continuous functions on X,
and C (X) is vector space with the natural addition and scalar multiplication. For a
covering K of X, we define a topology on C (X) by taking the family of all sets

〈f,K, δ〉 = {g ∈ C (X) : |f (x)− g (x)| < δ, for every x ∈ K} ,

where f ∈ C (X), K∈ K and δ > 0, as a subbase.
If K consists of all finite subsets of X, we denote C (X) endowed with this topology
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by Cp (X). The topology on Cp (X) is called the pointwise convergence topology. It is
well known or easy to prove that Cp (X) is a topological vector space.

Let X be a space and A ⊂ X closed. By Cp,A (X), we denote the subspace of Cp (X)
of all functions vanishing on A. That is,

Cp,A (X) = {f ∈ Cp (X) : f (A) = 0} .

If A is singleton, say {a} ,then we denote Cp,A (X) simply by Cp,a (X) . Let X/A be the
quotient space obtained from X by identifying A to a single point, say ∞. Cp,∞ (X/A)
is the space of Cp (X/A) of all function vanishing at ∞. That is,

Cp,∞ (X/A) = {f ∈ Cp (X/A) : f (∞) = 0}

Let the constant function with value 0 be denoted by 0
¯
.

Definition 1 Let X be a space with subspace A. We say that A is a retract of X provided
that there is a continuous function r : X → A such that r restricted to A is the identity
on A. Such a function r is called a retraction.

Lemma 1 [6] Let X be a Hausdorff space with subspace A. If A is a retract of X then
A is a closed subset of X.

Proof. Let (X, τ ) be a Hausdorff space and r : X → A be a retraction. We want
to show that A is closed in X. Take any point x0 in X\A. Then r (x0) = a ∈ A. Since
r is a retraction it comes to be x0 6= a and since X is a Hausdorff space, there are two
open subsets U ∈ τ (x0 ∈ U) and V ∈ τ (a ∈ V ) such that U ∩ V = ∅. That A is a
subspace of X makes A ∩ V open in (A, τA), and so long as r is a continuous function,
r−1 (A ∩ V ) is open in (X, τ ) and x0 ∈ r−1 (A ∩ V ). Let W = U ∩ r−1 (A ∩ V ). The set
W is open in (X, τ ), x0 ∈W and W ∩ V = ∅. Since r is a retraction, r (W ) ⊂ V . So for
every x ∈W, we get r (x) 6= x and thus we have W ⊂ X\A. Thus X\A is open in (X, τ )
and A is closed in X. 2

Remark 1. The statement of Lemma 1 is not necessarily true if X is not Hausdorff.
For instance, the subset Ze of all even integers of the cofinite topology defined on Z is
an example of a non-closed retract under the continuous function f : Z → Ze where
f (2k − 1) = 2k = f (2k) for each k ∈ Z. Notice that f−1 (F ) is finite whenever F ⊆ Ze
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is finite and thus f is continuous and furthermore cofinite topology determines a T1

topological space on Z which is not T2 (Hausdorff).

We say that A is a neighborhood retract of X provided that there exists a neighbor-
hood U of A in X such that A is a retract of U.

Now we prove theorem 1 which will be used in the proof of the theorem 2.

Theorem 1 Let X be a normal space and A be a neighborhood retract of X. Then there
is a continuous linear and one to one function Φ : Cp (A) → Cp (X) such that for each
f ∈ C (A), Φ (f) |A = f.

Proof. Let U , including A, be an open subset of X and r : U → A be a retraction.
Since X is a normal space, for an open subset W of X,

A ⊆W ⊆ clW ⊆ U

A is closed in U because A is a retract of U . Then A is a closed subset of clW and also
a closed subset of X. Hence A and X\W are two disjoint closed subset of X. Then for
a continuous function

f0 : X → [0, 1]

we get f0 (A) = {1} and f0 (X\W ) = {0} . Define

Φ (f) (x) =

{
0 if x ∈ X\W

f0 (x) f (r (x)) if x ∈W

}

for f ∈ Cp (A) . We want to show that Φ (f) ∈ Cp (X) . In other words,

Φ (f) : X → R

is continuous. If x = a ∈ A then

Φ (f) (a) = f0 (a) f (r (a)) = 1f (a) = f (a) .

From this, we get Φ (f) |A = f . Φ (f) is continuous on W as Φ (f) (x) = f0 (x) f (r (x))
and W is open. Now take x ∈ X\W. We claim that Φ (f) is continuous at X\W . 2
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We prove this latter claim via the following two cases.
Case 1. Let x ∈ clW\W and let (xµ)µ∈Γ , which convergences to element, x be a net.

We want to show that

(Φ (f) (xµ))µ∈Γ → Φ (f) (x) ,

since x is an element of U and U is open; a tail of this net will be in U. For this reason,
without lose of generality, we can assume that all the elements of this net are in U. As
xµ → x and r : U → A are continuous,

(r (xµ))µ∈Γ → r (x)

in A. Furthermore,

(f (r (xµ)))µ∈Γ → f (r (x))

due to the continuity of f : A→ R. Since x ∈ X\W , Φ (f) (x) = 0 and f0 (x) = 0. Then
we get

(f0 (xµ))µ∈Γ → 0.

On the other hand,

Φ (f) (xµ) =

{
0 if xµ ∈ U\W

f0 (xµ) f (r (xµ)) if xµ ∈W

}
.

In every case, Φ (f) (xµ) = f0 (xµ) f (r (xµ)). Then it is seen that

(Φ (f) (xµ))µ∈Γ → Φ (f) (x) = 0.

Case 2. Let x ∈ X\clW . Since X\clW is open, Φ (f) =0
¯

is continuous on X\clW .
We show that Φ is a linear. Let f, g ∈ Cp (A), α, β ∈ R

Φ (αf + βg) (x) =

{
α0 + β0 = 0 if x ∈ X\W

f0 (x) (αf + βg) (r (x)) if x ∈W

}

=

{
α0 if x ∈ X\W

f0 (x) (αf) (r (x)) if x ∈W

}

+

{
β0 if x ∈ X\W

f0 (x) (βg) (r (x)) if x ∈ W

}
= αΦ (f) (x) + βΦ (g) (x)
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BİRLİK

Thus Φ is linear. Now let us show that Φ : Cp (A) → Cp (X) is continuous. Since Φ is
linear, Cp (A) and Cp (X) are topological vector spaces, it is sufficient to prove that Φ is
continuous at 0

¯
.

〈0
¯
, {x0,x1, ..., xn} , ε〉 =

n∩
i=0
〈0
¯
, {xi} , ε〉 .

Let us choose x0 ∈ X and consider the open set

〈0
¯
, {x0} , ε〉 = {f ∈ Cp (X) : |f (x0)| < ε} = T

We want to show that

Φ (〈0
¯
, {a} , δ〉) = Φ ({g ∈ Cp (A) : |g (a)| < δ}) ⊆ T

for a ∈ A and δ > 0. Let us assume that a ∈ A and g ∈ 〈0
¯
, {a} , δ〉. Then

Φ (g) (x0) =

{
0 if x0 ∈ X\W

f0 (x0) g (r (x0)) if x0 ∈W
,

}

If x0 ∈ W , then take a = r (x0) and 0 < δ = ε/ (f0 (x0) + 1) . Then we have a and δ > 0.
Because,

|Φ (g) (x0)| = |f0 (x0)| |g (a)| < f (x0) / (f (x0) + 1) < 1.

Hence, Φ (g) ∈ T . If x0 ∈ X\W then |Φ (g) (x0)| = 0 < 1 for any a which is chosen from
A. This implies Φ (g) ∈ T . Therefore since Φ (g) ∈ T for g ∈ 〈0

¯
, {a} , δ〉, Φ is continuous

on each two cases. Φ is one to one, it is seen by definition of Φ easily.
We now come to the following important theorem.

Theorem 2 Let X be a normal space and let A be a neighborhood retract of X. Then

Cp (X) ≈ Cp,A (X) × Cp (A) .

Proof. Define G : Cp (X) → Cp (A) by G (f) = f |A. Notice that G is a continuous
linear function. For f ∈ Cp (X) , f ∈ Cp,A (X), if and only if G (f) = 0

¯
. By theorem 1,

there is a continuous linear function Φ : Cp (A)→ Cp (X) such that for each f ∈ Cp (A) ,
Φ (f) |A = f. Notice that G ◦ Φ = idCp(A).

Now define θ : Cp (X) → Cp,A (X) ×Cp (A) by

θ (f) = (f − (Φ ◦G) (f) , G (f)) .
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We have to prove that θ is well-defined. Take an arbitrary f ∈ Cp (X). It is obvious that
G (f) ∈ Cp (A) and that f − (Φ ◦G) (f) ∈ Cp (X). Furthermore,

G (f − (Φ ◦G) (f)) = G (f) − (G ◦ Φ ◦G) (f) = G (f) −G (f) = 0
¯

so f − (Φ ◦G) (f) ∈ Cp,A (X) . That θ is continuous and linear is a triviality. We show
that θ is a linear homeomorphism. For that, define

Γ : Cp,A (X) ×Cp (A)→ Cp (X)

By Γ (f, h) = f + Φ (h) it is trivial that Γ is well defined, continuous and linear. Fur-
thermore, as is easily seen, Γ ◦ θ = idCp(X) and we show that θ ◦ Γ = idCp,A(X)×Cp(A).
Take f ∈ Cp,A (X) and h ∈ Cp (A). Notice that G (f) = 0

¯
hence by linearity of Φ.

(Φ ◦G) (f) = Φ (0
¯
) = 0

¯
, so

(θ ◦ Γ) (f, h) = θ (f + Φ (h)) = (f + Φ (h)− (Φ ◦G) (f + Φ (h)) , G (f + Φ (h)))

= (f + Φ (h)− 0
¯
−Φ (h) , 0

¯
+ h)

= (f, h) .

Hence θ ◦ Γ = idCp,A(X)×Cp(A), i.e.,θ is a linear homeomorphism. 2

Lemma 2 Let X be a normal space and A be a neighborhood retract of X. Then

Cp,A (X) ≈ Cp,∞ (X/A) .

Proof. Let p : X → X/A be the quotient map between X and X/A. For every function
f ∈ Cp,A (X) there is a unique function g ∈ Cp,∞ (X/A) such that g ◦ p = f . If we now
define θ : Cp,A (X) → Cp,∞ (X/A) by θ (f) = g, then θ is a well-defined linear bijection.
Since for f ∈ Cp,A (X) , y1, ..., yn ∈ X/A, δ > 0 and xi ∈ p−1 (yi) , (i ≤ n) it is easily seen
that

θ (〈f, {x1, ..., xn} , δ〉) = 〈θ (f) , {y1, ..., yn} , δ〉 ,

and it follows that θ is linear homeomorphism. 2

From the last lemma and theorem 2, we have the useful following corollary.
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Corollary 1 Let X be a normal space and let A be a neighborhood retract of X. Then

Cp (X) ≈ Cp,∞ (X/A)×Cp,A (X) .

Proof. By lemma 2 and theorem 2

Cp (X) ≈ Cp,∞ (X/A)×Cp,A (X) .
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