
Turk J Math

29 (2005) , 299 – 314.

c© TÜBİTAK

On Space of Parabolic Potentials Associated with the

Singular Heat Operator

Sinem Sezer, Ilham A. Aliev

Abstract

Anisotropic spaces Lαp,γ of parabolic Bessel potentials, associated with the sin-

gular heat operator I−∆γ + ∂
∂t
, where ∆γ =

nP

k=1

∂2

∂x2
k

+ 2γ
xn
. ∂
∂xn

, are introduced, and

making use of special wavelet-type transform, a characterization of these spaces is

obtained.

Key Words: Generalized translation, Fourier-Bessel transform, parabolic poten-

tial, wavelet transform.

1. Introduction

The classical Jones-Sampson parabolic Bessel potentials Hαf , (α > 0) are defined in
the Fourier terms by

F [Hαf ] (x, t) = (1 + |x|2 + it)−
α
2 F [f ] (x, t) , (1.1)

where x ∈ Rn , t ∈ R1 ; F is the Fourier transform. These potentials are interpreted as

negative (fractional) powers of the heat operator I + ∆ + ∂
∂t . Here, ∆ =

n∑
k=1

∂2

∂x2
k

is the

Laplacean and I is an identity operator. Parabolic potentials were introduced by B. F.
Jones [8] and C. H. Sampson [13] and studied in [5, 6, 7, 10]. The space of parabolic
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Bessel potentials

Lαp = {f : f = Hαϕ , ϕ ∈ Lp(Rn+1)} , 1 < p <∞ (1.2)

were introduced by C. H. Sampson [13], studied by R. Bagby [5], V. R. Gopala Rao [7],
S. Chanillo [6] and generalized by Nogin and Rubin [10].

Singular parabolic equations were studied by many authors (see, e.g. [4] and references
therein). The relevant singular parabolic potentials, associated with the singular heat

operator, I − ∆γ + ∂
∂t

, where ∆γ =
n∑
k=1

∂2

∂x2
k

+ 2γ
xn
· ∂
∂xn

, (γ > 0) were introduced and

studied by I. A. Aliev [3]. These potentials are defined in terms of the Fourier-Bessel
transform Fγ by

Fγ
[
Hαγ f

]
(x, t) = (1 + |x|2 + it)−

α
2 Fγ [f ] (x, t) , (x ∈ Rn+ , t ∈ R1 , α > 0). (1.3)

The wavelet approach to these potentials was studied by I. A. Aliev and B. Rubin [1,
2]. In this paper we introduce the spaces of singular parabolic potentials

Lαp,γ = {f : f = Hαγϕ , ϕ ∈ Lp( Rn+ × R1; x2γ
n dxdt )} (1.4)

and give the “wavelet-type” characterization of these spaces. In subsequent publications
we plan to give some applications of our results to singular heat equations.

2. Preliminaries

Let Rn+ = {x ∈ Rn : x = (x1, x2, . . . , xn−1, xn), xn > 0};
Rn+×R1 =

{
(x, t) : x ∈ Rn+ , t ∈ R1

}
; and let S+ = S(Rn+×R1) be the class of Schwartz

test functions onRn+×R1, which are even with respect to xn. The Fourier-Bessel transform
of f(x, t) and its inverse are defined by

(Fγf)(y, τ) =
∫

Rn+×R1

f(x, t)e−i(x
′·y′+tτ)jγ− 1

2
(xnyn)dν(x)dt, (2.1)

(F−1
γ f)(y, τ) = c(n, γ)(Fγf)(−y1 , . . . ,−yn−1, yn,−τ ), (2.2)

where x′ · y′ = x1y1 + · · ·+ xn−1yn−1; dν(x) = x2γ
n dx = x2γ

n dx1 . . . dxn, γ > 0; jλ(z) =
2λΓ(λ + 1)z−λJλ(z) is the normalized Bessel function such that jλ(0) = 1 (see [9, 1, 3]);

and c(n, γ) =
[
(2π)n22γ−1Γ2(γ + 1

2 )
]−1.
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We need the following weighted Lp−spaces:

Lp,γ ≡ Lp(Rn+ × R1, dν(x)dt) =
{
f : ‖f‖p,γ =

( ∫
Rn+×R1

|f(x, t)|pdν(x)dt
)1
p

<∞
}

1 ≤ p < ∞. (In the case p = ∞, we identify Lp,γ with C0-the corresponding space of
continuous functions vanishing at infinity).

For x ∈ Rn+ , y ∈ Rn+ and t, τ ∈ R1, the generalized translation of f : Rn+ ×R1 → C is
defined by

T y,τf(x, t) =
Γ(γ + 1

2)
Γ(γ)Γ(1

2 )

π∫
0

f(x′ − y′;
√
x2
n − 2xnyn cosβ + y2

n; t− τ ) sin2γ−1 βdβ (2.3)

(cf. [9, 1, 3]). Here we actually deal with the ordinary translation in x′ and t, and with
the generalized translation in xn. It is known that for 1 ≤ p <∞,

‖T y,τf‖
p,γ
≤ ‖f‖p,γ , (∀(y, τ) ∈ Rn+ × R1); (2.4)

‖T y,τf − f‖
p,γ
→ 0 as |y| + |τ | → 0. (2.5)

The generalized convolution associated with the generalized translation (2.3) is defined
as

(f ~ g)(x, t) =
∫

Rn+×R1

g(y, τ) (T y,τf(x, t)) dν(y)dτ. (2.6)

It is known that (see, e.g. [9, 1]) Fγ(f ~ g) = Fγ(f)Fγ (g) , (f, g ∈ L1,γ), and

‖f ~ g‖r,γ ≤ ‖f‖p,γ · ‖g‖q,γ , 1 ≤ p, q, r ≤ ∞ ,
1
p

+
1
q

=
1
r

+ 1. (2.7)

We need below the generalized Gauss-Weierstrass kernel:

Wγ(y, s) = c(n, γ)(2s)−
(n+2γ)

2 exp(−|y|2/4s) , y ∈ Rn+ , s > 0; (2.8)

c(n, γ) being defined as in (2.2) (see [14] for n = 1 and [1, 3] for any n ≥ 1).
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Lemma 2.1 (see [1]):

1)Fγ,y→x (Wγ(y, s)) (x) = exp(−s|x|2), (∀s > 0); (2.9)

Fγ,y→x being the Fourier-Bessel transform in y ∈ Rn+ .

2)Wγ(λ
1
2 y, λs) = λ−γ−

n
2 Wγ(y, s), (∀y ∈ Rn+, s > 0, λ > 0); (2.10)

in particular, Wγ(λ
1
2 y, λ) = λ−γ−

n
2 Wγ(y, 1).

3)
∫
Rn+

Wγ(y, s)dν(y) = 1, (∀s > 0). (2.11)

The generalized parabolic potentialsHαγ f, initially defined by (1.3), can be represented
as an integral operator [1, 3]

(Hαγ f)(x, t) =
1

Γ(α/2)

∫
Rn+×R1

τ
α
2−1e−τWγ(y, τ) (T y,τf(x, t)) dν(y)dτ, (2.12)

which is clear in terms of Fourier-Bessel transform. Here and on, we suppose thatWγ(y, τ)
is extended by zero to τ ≤ 0.

By setting hα(x, t) = 1
Γ(α/2)

t
α
2 −1
+ e−tWγ(x, t) with t

α
2 −1
+ = t

α
2 −1 if t > 0 and t

α
2 −1
+ = 0

if t ≤ 0 , we have (Hαγ f)(x, t) = (hα ~ f)(x, t).

From Young’s inequality (2.7), and the fact that ‖hα‖1,γ = 1, it follows that

‖Hαγ f‖p,γ ≤ ‖f‖p,γ , 1 ≤ p ≤ ∞. (2.13)

Definition 2.2 The spaces of singular parabolic potentials is defined by

Lαp,γ =
{
f : Rn+ ×R1 → C

∣∣ f = Hαγϕ, ϕ ∈ Lp,γ
}
, 1 ≤ p <∞

with the norm ‖f‖Lαp,γ = ‖ϕ‖p,γ .

Now, as in [1, p. 6], we define a special wavelet-type transform needed in Section 3.

Definition 2.3 Let µ be a finite (signed) Borel measure on R1 such that supp µ ⊂ [0,∞)
and µ (R1) = 0. Let the generalized Gauss-Weierstrass kernel Wγ(y, τ) be extended by zero
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to τ ≤ 0. The generalized anisotropic and weighted wavelet transform of f : Rn+×R1 → C
is defined by

(Vµf) (x, t; η) =
∫

Rn+×R1

(
T
√
ηy,ητf(x, t)

)
Wγ(y, τ)e−ητdν(y)dµ(τ )

=
∫

Rn+×[0,∞)

(
T
√
ηy,ητf(x, t)

)
Wγ(y, τ)e−ητdν(y)dµ(τ ), (η > 0). (2.14)

Remark 2.4 Using (2.10) and changing variables, we have

(Vµf) (x, t; η) =
∫

Rn+×[0,∞)

(
T
√
ητy,ητf(x, t)

)
Wγ(y, 1)e−ητ dν(y)dµ(τ ). (2.15)

Remark 2.5 The Minkowski inequality with (2.4) and (2.11) yields that for any fixed
η > 0

‖ (Vµf) (·, ·; η)‖p,γ ≤ ‖µ‖.‖f‖p,γ with ‖µ‖ ≡ |µ|(R1) <∞.

The next lemma shows that the potentials Hαγ f can be represented via the wavelet-

type transform (2.14). From now on, the notation
b∫
a

g(t)dµ(t) designates
∫

[a,b)

g(t)dµ(t).

If lim
t→a+

g(t) = ∞, then it is assumed that µ({0}) = 0 and therefore
b∫
a

g(t)dµ(t) =∫
(a,b)

g(t)dµ(t).

Lemma 2.6 Let f ∈ Lp,γ , 1 ≤ p ≤ ∞ (where L∞,γ = C0-the class of continuous
functions vanishing at infinity). Further let µ be a (signed) Borel measure supported by
[0,∞), such that

∞∫
0

τ−
α
2 d|µ|(τ ) <∞ and c(α, µ) def=

∞∫
0

τ−
α
2 dµ(τ ) 6= 0, (α > 0) . (2.16)

Then

(Hαγ f)(x, t) =
1

Γ(α/2)c(α, µ)

∞∫
0

η
α
2 −1 (Vµf) (x, t; η)dη . (2.17)
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Proof. From (2.16) it follows that µ({0}) = 0. By making use (2.15) and Fubini’s
theorem, we have

∞∫
0

η
α
2 −1 (Vµf) (x, t; η)dη

=

∞∫
Rn+×(0,∞)

Wγ(y, 1)

 ∞∫
0

T
√
ητy,ητf(x, t)e−ητη

α
2−1dη

 dν(y)dµ(τ )

(
we put η =

s

τ
, dη =

ds

τ
; y =

1√
s
u, dν(y) =

(
1√
s

)n+2γ

dν(u)

)

=
∫

Rn+×(0,∞)

s−
n
2−γ Wγ(

1√
s
u, 1) (Tu,sf(x, t)) s

α
2 −1e−sdν(u)ds

∞∫
0

τ−
α
2 dµ(τ )

= c(α, µ)
∫

Rn+×(0,∞)

s−
n
2−γ Wγ(

1√
s
u, 1) (Tu,sf(x, t)) s

α
2 −1e−sdν(u)ds

(2.10)
= c(α, µ)

∫
Rn+×R1

Wγ(u, s) (Tu,sf(x, t)) s
α
2 −1e−sdν(u)ds

(2.12)
= Γ(

α

2
)c(α, µ)(Hαγf)(x, t).

2

We need in Section 3 the following lemmas.

Lemma 2.7 ([11], p. 8) Let λ > 0 and µ be a finite Borel measure on R1 such that supp
µ ⊂ [0,∞), and

a)
∞∫
0

sjdµ(s) = 0, j = 0, 1, . . . , [λ] ( [λ] is the integer part of λ ) ,

b)
∞∫
0

sβd|µ|(s) <∞ for some β > λ.
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Denote by

(
Iλ+1µ

)
(s) =

1
Γ(λ + 1)

s∫
0

(s− t)λdµ(t) (2.18)

the Riemann-Liouville fractional integral of the measure µ. Then

(
Iλ+1µ

)
(s) =

{
O(sλ) , s→ 0
O(s−δ) , s→∞

}
, (2.19)

where δ = min{β − λ, 1 + [λ]− λ}, (δ ∈ (0, 1]). Moreover,

d(λ, µ)
def≡

∞∫
0

(
Iλ+1µ

)
(s)

ds

s
=


Γ(−λ)

∞∫
0

sλdµ(s) , if λ /∈ N
(−1)λ+1

λ!

∞∫
0

sλ log s dµ(s) , if λ ∈ N

 . (2.20)

Lemma 2.8 ([1], p. 13) Let the wavelet-type transform Vµ and generalized parabolic
potential operators Hαγ be defined as (2.14) and (2.12), respectively. Then for any g ∈
Lp,γ , 1 < p <∞,

Vµ
(
Hαγ g

)
(x, t; η) = (g ~ h

α
2
η )(x, t), (2.21)

where

h
α
2
η (x, t) = e−tWγ(x, t)η

α
2 −1

(
I
α
2 µ
)

(t/η), (2.22)

and

(I
α
2 µ)(t) =

1
Γ(α2 )

t∫
0

(t− τ )
α
2 −1dµ(τ )

is the Riemann-Liouville fractional integral of order α
2

and of measure µ.

Lemma 2.9 Let λα(t) = 1
t (I

α
2 +1µ)(t) and I

α
2 +1µ be the Riemann-Liouville fractional

integral of order α
2 + 1 of measure µ. Let further d(α2 , µ) be defined as in (2.20). Denote

ψε(x, t) =
1

d(α2 , µ)
Wγ(x, t)

1
ε
λα(

t

ε
), (ε > 0; t > 0, x ∈ Rn+).
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Then ∫
Rn+×(0,∞)

ψε(x, t)dν(x)dt = 1, ∀ε > 0. (2.23)

Proof. Owing to (2.11) and (2.20), by Fubini’s theorem it follows that

∫
Rn+×(0,∞)

ψε(x, t)dν(x)dt =
1

d(α2 , µ)

∞∫
0

λα(t)
( ∫
Rn+

Wγ(x, tε)dν(x)
)
dt

=
1

d(α2 , µ)

∞∫
0

λα(t)dt = 1.

2

3. “Wavelet-type” characterization of the spaces Lαp,γ

The main result of the paper is the following.

Theorem 3.1 Let α > 0, γ > 0, 1 < p < ∞ and µ be a finite (signed) Borel measure
on R1 such that supp µ ∈ [0,∞) and

∞∫
0

tjdµ(t) = 0, j = 0, 1, . . . , [
α

2
], ( [

α

2
] is the integer part of

α

2
); (3.1)

∞∫
0

tβd|µ|(t) <∞ for some β > α/2. (3.2)

Then

Lαp,γ =

f ∈ Lp,γ : sup
ε>0

∥∥∥∥∥∥
∞∫
ε

(Vµf)(x, t; η)
η1+α

2
dη

∥∥∥∥∥∥
p,γ

<∞

 .
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Proof. Here and on, the abbreviation 〈f , w〉 will denote the value of distribution f

at a test function w ∈ S+. If f is a regular distribution (e.g. f ∈ Lp,γ), then

〈f , w〉 =
∫

Rn+×R1

f(x, t)w(x, t)dν(x)dt.

The parabolic potentials Hαγ f , (α > 0) of distribution f are interpreted as a

distribution defined by duality: 〈Hαγ f , w〉 = 〈f , H̃αγw〉, where H̃αγw = UHαγUw,
(Uw)(x, t) = w(−x,−t); (w is even with respect to xn).

For good f the above equality is the consequence of the identity

〈u~ ϕ , w〉 = 〈u , ϕ ~ w〉, ϕ, w ∈ S+ , (3.3)

where ϕ (x, t) ≡ (Uϕ)(x, t) = ϕ(−x,−t).
For arbitrary f ∈ Lp,γ , (1 < p <∞) the result follows by density.
To prove the theorem it suffices to show the equivalence

f = Hαγ g ⇐⇒ sup
ε>0

∥∥∥∥∥∥
∞∫
ε

(Vµf)(x, t; η)
dη

η1+α
2

∥∥∥∥∥∥
p,γ

<∞, (3.4)

for some g ∈ Lp,γ .
Let f = Hαγ g, g ∈ Lp,γ . It follows from (2.13) that f ∈ Lp,γ , and therefore the

wavelet-type transform Vµf is well defined (see Remark 2.5). Denote

(Dα
ε f)(x, t) =

1
d(α2 , µ)

∞∫
ε

(Vµf)(x, t; η)
dη

η1+α
2
, (ε > 0).

Assuming f = Hαγ g, g ∈ Lp,γ , we first show that

(Dα
ε f)(x, t) = e−t ψε(x, t)~ g, (3.5)

where

ψε(x, t) =
1

d(α2 , µ)
Wγ(x, t)

1
ε
λα(

t

ε
), (3.6)

λα(t) = 1
t (I

α
2 +1µ)(t), I

α
2 +1µ is the Riemann-Liouville fractional integral of µ (see (2.18)),

and Wγ(x, t) is extended by zero to t ≤ 0.
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Using Lemma 2.8 we have

d(
α

2
, µ)(Dα

ε f)(x, t) =

∞∫
ε

(Vµf)(x, t; η)
dη

η1+α
2

(2.21)
=

∞∫
ε

(g ~ h
α
2
η )(x, t)

dη

η1+α
2

=

∞∫
ε

dη

η1+α
2

∫
Rn+×R1

e−τ Wγ(y, τ)η
α
2 −1

(
I
α
2 µ
)

(
τ

η
)
(
T x,tg(y, τ)

)
dν(y)dτ

(we use Fubini’s theorem and the convention Wγ(y, τ) = 0 for τ ≤ 0)

=
∫

Rn+×(0,∞)

(
T x,tg(y, τ)

)
φε(y, τ)dν(y)dτ.

Here,

φε(y, τ) =

∞∫
ε

1
η1+α

2
e−τ Wγ(y, τ) η

α
2−1

(
I
α
2 µ
)

(
τ

η
)dη

=
1

Γ(α
2
)
e−τ Wγ(y, τ)

∞∫
ε

dη

η1+α
2
η
α
2 −1

τ
η∫

0

(
τ

η
− ρ
)α

2 −1

dµ(ρ)

=
1

Γ(α2 )
e−τ Wγ(y, τ)

∞∫
ε

dη

η1+α
2

∞∫
0

(τ − ηρ)
α
2 −1
+ dµ(ρ)

=
1

Γ(α
2
)
e−τ Wγ(y, τ)

∞∫
0

 ∞∫
ε

(τ − ηρ)
α
2 −1
+

η1+α
2

dη

 dµ(ρ).

Setting η = τ
ρ

1
ξ+1 , after simple calculations we have

∞∫
ε

(τ − ηρ)
α
2 −1
+

η1+α
2

dη ≡

τ
ρ∫

0

(τ − ηρ)α2 −1

η1+α
2

dη =
2
ατ

(τ
ε
− ρ
)α

2

+
.
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Further,

1
Γ(α2 )

∞∫
0

 ∞∫
ε

(τ − ηρ)
α
2−1
+

η1+α
2

dη

 dµ(ρ) =
1

Γ(α2 )

∞∫
0

2
α τ

(τ
ε
− ρ
) α

2

+
dµ(ρ)

=
1

α
2 Γ(α2 )

.
1
τ

τ
ε∫

0

(τ
ε
− ρ
)α

2
dµ(ρ) =

1
ε
λα(

t

ε
),

where λα(t) = 1
t
(I

α
2 +1µ)(t), I

α
2 +1µ is defined as in (2.18).

Hence, (Dα
ε f)(x, t) = e−tψε(x, t)~ g, and ψε is defined by (3.6). Now, using Young’s

inequality (2.7) we have

‖Dα
ε f‖p,γ ≤ ‖ψε‖1,γ . ‖g‖p,γ ;

‖ψε‖1,γ = c

∫
Rn+×(0,∞)

e−t Wγ(x, t)
1
ε

∣∣∣∣λα(
t

ε
)
∣∣∣∣ dν(x)dt

= c

∞∫
0

e−t
1
ε

∣∣∣∣λα(
t

ε
)
∣∣∣∣ dt ∫

Rn+

Wγ(x, t)dν(x)

(2.11)
= c

∞∫
0

e−t
1
ε

∣∣∣∣λα(
t

ε
)
∣∣∣∣ dt = c

∞∫
0

e−tε |λα(t)| dt

≤ c
∞∫

0

|λα(t)| dt = c

∞∫
0

1
t

∣∣(I α2 +1µ)(t)
∣∣ dt (2.19)

< ∞.

Hence, ‖Dα
ε f‖p,γ ≤ c. ‖g‖p,γ =⇒ sup

ε>0
‖Dα

ε f‖p,γ <∞.

Let now f ∈ Lp,γ , 1 < p <∞ and sup
ε>0
‖Dα

ε f‖p,γ <∞. We want to show that f = Hαγ g,

for some g ∈ Lp,γ . Since the Schwartz space S+ is dense in Lp,γ , it sufficies to show that

〈f , w〉 = 〈Hαγ g , w〉, ∀w ∈ S+ (3.7)
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for some g ∈ Lp,γ . Since sup
ε>0
‖Dα

ε f‖p,γ <∞, a function g ∈ Lp,γ and a sequence εk → 0,

(k →∞) exist by Banach-Alaoglu theorem, such that 〈Dα
εkf , w〉 → 〈g , w〉 as k→∞ for

any w ∈ Lp′,γ , 1
p′ + 1

p
= 1 (in particular, for all w ∈ S+).

We want to prove that the function g ∈ Lp,γ satisfies the equality (3.7). For this g
and any Schwartz function w ∈ S+ we have

〈Hαγ g , w〉 = 〈g , H̃αγw〉 = lim
k→∞

〈Dα
εkf , H̃αγw〉 = lim

k→∞
〈f , D̃α

εkH̃αγw〉, (3.8)

where D̃α
εk
ϕ = UDα

εk
Uϕ and H̃αγw = UHαγUw.

Since (Uw)(x, t) = w(−x,−t), then U2 = E (identity operator) and therefore (3.8)
yields that

〈Hαγ g , w〉 = lim
k→∞

〈f , UDα
εkHαγUw〉 . (3.9)

Set Uw = v. It is clear that Uw ∈ S+ if w ∈ S+ . We first show that

lim
k→∞

∥∥Dα
εkHαγ v − v

∥∥
q,γ

= 0, ∀v ∈ S+ , ∀q ∈ (1,∞).

By (3.5), Dα
εkHαγ v = e−t ψεk(x, t)~ v, where ψεk is defined as in (3.6). Hence

Dα
εkHαγ v(x, t) = e−t ψεk(x, t)~ v =

∫
Rn+×(0,∞)

e−tψεk(y, τ) (T y,τv(x, t)) dν(y)dτ

(
we set τ = ρεk , dτ = εkdρ ; y =

√
εkz , dν(y) = ε

γ+ n
2

k dν(z) and use (2.10)
)

=
∫

Rn+×(0,∞)

e−εkρψ1(z, ρ)
(
T
√
εkz,εkρv(x, t)

)
dν(z)dρ,
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where ψ1(z, ρ) = 1
d(α2 ,µ) .Wγ(z, ρ)λα(ρ). Further, owing to (2.23) we have

Dα
εkHαγ v(x, t)− v(x, t) =

∫
Rn+×(0,∞)

e−εkρψ1(z, ρ)
(
T
√
εkz,εkρv(x, t)

)
dν(z)dρ

−
∫

Rn+×(0,∞)

ψ1(z, ρ)v(x, t)dν(z)dρ =
∫

Rn+×(0,∞)

(
e−εkρ − 1

)
ψ1(z, ρ)

(
T
√
εkz,εkρv(x, t)

)

×dν(z)dρ +
∫

Rn+×(0,∞)

ψ1(z, ρ)
(
T
√
εkz,εkρv(x, t)− v(x, t)

)
dν(z)dρ.

By making use the Minkowski inequality we have∥∥Dα
εk
Hαγ v(x, t)− v(x, t)

∥∥
q,γ
≤

∫
Rn+×(0,∞)

(1− e−εkρ)|ψ1(z, ρ)|
∥∥∥T√εkz,εkρv(x, t)∥∥∥

q,γ

×dν(z)dρ +
∫

Rn+×(0,∞)

|ψ1(z, ρ)|
∥∥∥T√εkz,εkρv(x, t) − v(x, t)∥∥∥

q,γ
dν(z)dρ.

Owing to (2.4), (2.5) and the Lebesque dominated convergence theorem, it follows that
the right-hand side tends to zero as εk → 0. Thus

lim
εk→0

∥∥UDα
εkHαγUw − w

∥∥
q,γ

= 0, ∀w ∈ S+ . (3.10)

Now let us show that for f ∈ Lp,γ and any w ∈ S+ the equality

lim
εk→0

〈f , UDα
εkHαγUw〉 = 〈f , w〉 (3.11)

holds. The Hölder inequality yields∣∣〈f , UDα
εk
HαγUw〉 − 〈f , w〉

∣∣ ≤ ‖f‖p,γ ∥∥UDα
εk
HαγUw − w

∥∥
q,γ

,
1
p

+
1
q

= 1.

From (3.10) it follows that the right-hand side of last expression tends to zero as εk → 0.
Thus (3.11) holds.

Now the equalities (3.9) and (3.11) show that for any w ∈ S+

〈Hαγ g , w〉 = 〈f , w〉,
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and as a result, f(x, t) = Hαγ g(x, t) for almost all (x, t) ∈ Rn+ × R1.

The proof of the Theorem is completed. 2

The following theorem contains a description of the space Lαp,γ in terms of convergence
in the Lp,γ -norm of the “truncated” integrals Dα

ε f as ε→ 0.

Theorem 3.2 Let a measure µ satisfies the conditions (3.1) and (3.2) of Theorem 3.1.
Then f ∈ Lαp,γ , (1 < p <∞) if and only if f ∈ Lp,γ and the family of truncated integrals

(Dα
ε f)(x, t) =

1
d(α2 , µ)

∞∫
ε

(Vµf)(x, t; η)
dη

η1+α/2

converges in Lp,γ-norm as ε→ 0.

Proof. Let f ∈ Lp,γ and the family Dα
ε f converges in f ∈ Lp,γ-norm as ε→ 0. Then

there exist a constant c > 0 such that sup
ε>0
‖Dα

ε f‖p,γ ≤ c and therefore, by Theorem 3.1, f

belongs to Lαp,γ . Conversely, let f ∈ Lαp,γ . Then there exist g ∈ Lp,γ such that f = Hαγ g.
Using this representation of f we have by (3.5) that

(Dα
ε f)(x, t) = e−t ψε(x, t)~ g =

∫
Rn+×(0,∞)

e−τψε(y, τ) (T y,τg(x, t)) dν(y)dτ,

where the function ψε is defined by (3.6).

By setting y =
√
εz, τ = ερ, dν(y)dτ = εν+n

2 +1dν(z)dρ, and using (2.10) we have

(Dα
ε f) (x, t) =

∫
Rn+×(0,∞)

e−ερψ1(z, ρ)
(
T
√
εz,ερg(x, t)

)
dν(z)dρ, (3.12)

where the function ψ1 = ψε|ε=1. Further, by (2.23) it follows that

g(x, t) =
∫

Rn+×(0,∞)

ψ1(z, ρ)g(x, t)dν(z)dρ. (3.13)
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Using (3.12) , (3.13) and Minkowski inequality we get

‖Dα
ε f − g‖p,γ ≤

∫
Rn+×(0,∞)

|e−ερ − 1| |ψ1(z, ρ)| ‖T
√
εz,ερg(x, t)‖p,γ dν(z)dρ

+
∫

Rn+×(0,∞)

|ψ1(z, ρ)| ‖T
√
εz,ερg(x, t)− g(x, t)‖p,γ dν(z)dρ.

Now by virtue of (2.4), (2.5) and the Lebesgue theorem on dominated convergence, it
follows that lim

ε→0
‖Dα

ε f − g‖p,γ = 0. The proof is completed. 2

Remark 3.3 Take a measure µ =
l∑

k=0

(−1)k
(
l
k

)
δk , where l > α

2 and δk = δk(t) is the

unit mass at t = k, (k = 0, 1, . . . , l), that is 〈δk, w〉 = w(k) , (k = 0, 1, . . . , l). It is well
known that (see, e.g. [12], p.116-117)

∞∫
0

tmdµ(t) ≡
l∑

k=0

(−1)k
(
l
k

)
km = 0, ∀m = 0, 1, . . . , l− 1.

It is also clear that |µ|(R1) < ∞ and supp µ ⊂ [0,∞). Thus the measure µ satisfies all
the conditions of Theorem 3.1.
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