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Abstract

In this paper, we consider the Schrödinger operators defined by the differential

expression

Lu = −∆u+ q(x)u

in d-dimensional paralellepiped F , with the Dirichlet and the Neumann boundary

conditions, where q(x) is a real valued function of L2(F ). We obtain the asymptotic

formulas for the resonance eigenvalues of these operators.

First asymptotic formulas for the eigenvalues of the Schrödinger operator in paral-
lelepiped with quasiperiodic boundary conditions are obtained in papers [8]–[11]. By
some other methods, the asymptotic formulas for quasiperiodic boundary conditions in
two and three dimensional cases are obtained in [2], [3], [6], [7]. The asymptotic formulas
for the eigenvalues of the Schrödinger operator with periodic boundary conditions are ob-
tained in [4] and with Dirichlet boundary conditions in 2-dimensional case are obtained
in [5].

Let Ω ≡ {∑d
i=1miwi;mi ∈ Z, i = 1, 2, ..., d} be a lattice in Rd with the reduced basis

w1 = (a1, 0, ..., 0), w2 = (0, a2, 0, ..., 0),...,wd = (0, ..., 0, ad),

Γ ≡ {∑d
i=1 niβi : ni ∈ Z, i = 1, 2, ...d} be the dual lattice of Ω, where

〈wi, βj〉 = 2πδij , 〈., .〉 is inner product in Rd and F ≡ [0, a1]× [0, a2]× ...× [0, ad].
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In this paper we consider the d-dimensional Schrödinger operators LD(q(x)) and
LN (q(x)), defined by the differential expression

Lu = −∆u+ q(x)u (1)

in F , with the Dirichlet boundary condition

u|∂F = 0 (2)

and the Neumann boundary condition

∂u

∂n
|∂F = 0, (3)

respectively, where ∂F denotes the boundary of the domain F , x = (x1, x2, ..., xd) ∈ Rd,
d ≥ 2, ∆ is the Laplace operator in Rd, and ∂

∂n denotes the differentiation along the
outward normal n of ∂F .

We denote the eigenvalues and the normalized eigenfunctions of LD(q(x)) by ΛN and
ΨN , respectively. The eigenvalues and the normalized eigenfunctions of LN (q(x)) are
denoted by ΥN and ΦN , respectively.

The eigenvalues of the operators LD(0) and LN(0) are |γ|2 , with the corresponding
eigenfunctions

uγ(x) = sin γ1x1 sin γ2x2... sinγdxd, (4)

and

vγ(x) = cos γ1x1 cos γ2x2... cosγdxd, (5)

respectively, where γ = (γ1 , γ2, ..., γd) ∈ Γ
2 .

Since the orthogonal system {vγ′ (x)}γ′∈ Γ
2
, is a basis in L2(F ), the potential q(x) in

(1) can be written as

q(x) =
∑
γ′∈ Γ

2

qγ′vγ′ (x), (6)

where qγ′ is the Fourier coefficient of q(x) with respect to the basis vγ′ (x), γ
′ ∈ Γ

2 .
Without loss of generality we can take q0 = 0.

324
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In this paper, we assume that the Fourier coefficients of the potential q(x) satisfy the
condition ∑

γ
′∈Γ

2

|qγ′ |2(1 + |γ′ |2l) <∞, (7)

where l > (d−1)(d+20)
2

+ d+ 1. Therefore, one can write

q(x) =
∑

γ′∈Γ(ρα)

qγ′ vγ′ (x) +O(ρ−pα), (8)

where p = l − d, Γ(ρα) = {γ ∈ Γ
2

: 0 < |γ| < ρα}, α < 1
(d+20)

and ρ is a

large parameter.

Remark 1 Notice that, if q(x) is sufficiently smooth, (q(x) ∈ W l
2(F )) and the support

of gradq(x) = ( ∂q∂x1
, ∂q∂x2

, ..., ∂q∂xd ) is contained in the interior of the domain F, then q(x)

satisfies the condition (7).
There is also another class of functions q(x), such that q(x) ∈W l

2(F ),

q(x) =
∑
γ
′∈Γ

qγ′vγ′ ,

which is periodic with respect to Ω and thus also satisfies the condition (7).

As in the papers [11], [12], we divide the eigenvalues |γ|2 for |γ| ∼ ρ of the Laplace
operator into two groups, where |γ| ∼ ρ means that c1ρ < |γ| < c2ρ and by ci, i = 1, 2, ...,
we denote the positive independent on ρ constants whose exact values are inessential.
For this, we let αk = 3kα, k = 1, 2, ..., d− 1 and introduce the following notations and
definitions:

M =
∑
γ
′∈ Γ

2

|qγ′ |, (9)

Vb(ρα1) = {x ∈ Rd : ||x|2− |x+ b|2| < ρα1}, E1(ρα1 , p) =
⋃

b∈Γ(pρα)

Vb(ρα1 ),

U(ρα1 , p) = Rd\E1(ρα1 , p), Ek(ραk , p) =
⋃

γ1,γ2,...,γk∈Γ(pρα)

(
k⋂
i=1

Vγi (ρ
αk)),
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where the intersection
⋂k
i=1 Vγi (ρ

αk) in Ek is taken over γ1, γ2, ..., γk which are linearly
independent vectors and the length of γi is not greater than the length of the other vectors
in Γ

⋂
γiR . The set U(ρα1 , p) is said to be a non-resonance domain, and the eigenvalue

|γ|2 is called a non-resonance eigenvalue if γ ∈ U(ρα1 , p). The domains Vb(ρα1), for all
b ∈ Γ(pρα) are called resonance domains and the eigenvalue |γ|2 is a resonance eigenvalue
if γ ∈ Vb(ρα1).
As noted in [12], the domain Vb(ρα1 ) \ E2, called a single resonance domain, has asymp-
totically full measure on Vb(ρα1 ), that is

µ((Vb(ρα1) \ E2)
⋂
B(ρ))

µ(Vb(ρα1 )
⋂
B(ρ))

→ 1, as ρ→∞,

where B(ρ) = {x ∈ Rd : |x| = ρ}, if

2α2 − α1 + (d+ 3)α < 1 and α2 > 2α1, (10)

hold. Since α < 1
d+20 , the conditions in (10) hold.

In [1], we obtained the asymptotic formulas for the non-resonance eigenvalues of the
d-dimensional Schrödinger operators LD(q(x)) and LN (q(x)) with the condition (7).

In continuation of the paper [1], in this paper we investigate the perturbation of the
resonance eigenvalue |γ|2, i.e., when γ ∈ Vδ(ρα1 ) \E2, where δ is from {e1, e2, ..., ed} and
e1 = ( πa1

, 0, ..., 0), e2 = (0, πa2
, 0, ..., 0), ..., ed = (0, ..., 0, πad ).

Now let Hδ = {x ∈ R : 〈x, δ〉 = 0} be the hyperplane which is orthogonal to δ. Then,
we define the following sets:

Ωδ = {w ∈ Ω : 〈w, δ〉 = 0} = Ω
⋂
Hδ,

Γδ = {γ ∈ Γ
2

: 〈γ, δ〉 = 0} =
Γ
2

⋂
Hδ.

Clearly, for all γ ∈ Γ
2 , we have the following decomposition

γ = jδ + β, β ∈ Γδ, j ∈ Z. (11)

We write the decomposition (6) of q(x) as

q(x) =
∑
γ
′∈ Γ

2

qγ′vγ′ (x) = qδ(x) +
∑

γ∈ Γ
2 \δR

qγvγ(x), (12)
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where qδ(x) ≡ Q(s) =
∑

n∈Z qnδ cosn〈x, δ〉, qnδ =
∫
F
q(x) cosn〈x, δ〉dx, s = 〈x, δ〉.

We consider the operators LD(qδ(x)) and LN (qδ(x)), defined by the differential ex-
pression

Lu = −∆u+ qδ(x)u (13)

with the Dirichlet boundary condition u|∂F = 0 and the Neumann boundary condition
∂u
∂n |∂F = 0, respectively.

It can be easily verified by the method of separation of variables that the eigenvalues
and the eigenfunctions of LD(qδ(x)) are λ̃j,β = µ̃j + |β|2 and

Θ̃j,β = ϕ̃j(s)uβ , respectively, where β ∈ Γδ, µ̃j is the eigenvalue and ϕ̃j(s) is the corre-
sponding eigenfunction of the operator T δD(Q(s)) defined by the differential expression

Ty(s) = −|δ|2y′′(s) + Q(s)y(s) (14)

in [0, π], with the Dirichlet boundary conditions y(0) = y(π) = 0.
Similarly, the eigenvalues and the eigenfunctions of LN(qδ(x)) are λj,β = µj + |β|2

and Θj,β = ϕj(s)vβ , respectively, where β ∈ Γδ, and µj is the eigenvalue and ϕj(s)
is the corresponding eigenfunction of the Sturm-Liouville operator T δN (Q(s)), defined
by the differential expression (14) in [0, π], with the Neumann boundary conditions
y′(0) = y′(π) = 0.

The eigenvalues of the operators T δD(0) and T δN (0) are |nδ|2 with the corresponding
eigenfunctions sinns and cosns, respectively. It is well known that the eigenvalue µ̃j
of T δD(Q(s)) and the eigenvalue µj of T δN(Q(s)) such that |µ̃j − |jδ|2| < supQ(s),|µj −
|jδ|2| < supQ(s) together with the corresponding eigenfunction ϕ̃j(s) of T δD(Q(s)) and
the corresponding eigenfunction ϕj(s) of T δN (Q(s)) satisfy the following relations:

µ̃j = |jδ|2 +O(
1
|jδ| ), ϕ̃j(s) = sin js+O(

1
|jδ| ),

µj = |jδ|2 +O(
1
|jδ| ), ϕj(s) = cos js+O(

1
|jδ| ). (15)

By the first equation in (15), the eigenvalue |γ|2 = |β|2 + |jδ|2 of LD(0) corresponds
the eigenvalue |β|2 + µ̃j of LD(qδ); and by the second equation in (15), the eigenvalue
|γ|2 = |β|2 + |jδ|2 of LN(0) corresponds the eigenvalue |β|2 + µj of LN(qδ). Now we
prove that there is an eigenvalue ΛN of LD(q) which is close to the eigenvalue |β|2 + µ̃j
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of LD(qδ) and that there is an eigenvalue ΥN of LN (q) which is closed to the eigenvalue
|β|2 + µj of LN (qδ). For this we use the binding formula for LD(q) and LD(qδ)

(ΛN − λ̃j,β)(ΨN , Θ̃j,β) = (ΨN , (q(x)− qδ(x))Θ̃j,β), (16)

and the binding formula for LN (q) and LN (qδ)

(ΥN − λj,β)(ΦN ,Θj,β) = (ΦN , (q(x)− qδ(x))Θj,β). (17)

Now as in the non-resonance case, we decompose (q(x) − qδ(x))Θ̃j,β by Θ̃j′,β′ and
(q(x)−qδ(x))Θj,β by Θj′,β′ then put these decompositions into (16) and (17), respectively.
Let us find these decompositions. Writing (11) for every γ1 ∈ Γ(ρα) and using (8), we
have

γ1 = n1δ + β1, vγ1 (x) = (cos n1s)vβ1 (x),

q(x)−Q(s) =
∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)vβ1 (x) +O(ρ−pα), (18)

where β1 ∈ Γδ , d(β1, n1) =
∫
F
q(x)(cos n1s)vβ1(x)dx and

Γ′(ρα) = {(β1, n1) : β1 ∈ Γδ \ {0}, n1 ∈ Z, n1δ + β1 ∈ Γ(ρα)}.
The fact that γ = jδ + β ∈ Vδ(ρα1 ) \ E2 implies

|j| < r1, r1 ≡ ρα1 |δ|2 + 1 (19)

and β /∈ Vek(ρα1), for all ek 6= δ, by which we have

|βk| > 1
3
ρα1 , ∀k : ek 6= δ. (20)

Clearly for (β1 , n1) ∈ Γ′(pρα), we have |n1δ + β1| < pρα, and since β1 is orthogonal
to δ,

|β1| < pρα, |n1| < pρα, |n1| <
1
2
r1, (21)

(see 19).
Now we prove that∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)vβ1 (x)vβ(x) =
∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)vβ1+β(x),

(22)
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for all β ∈ Γei satisfying (20).

Clearly vβ(x) = 1
|Aβ|

∑
α∈Aβ e

i〈α,x〉, where Aβ = {α = (α1, α2, ..., αd) ∈ Rd : |αi| =

|βi|, i = 1, 2, ..., d} and |Aβ| is the number of vectors in Aβ . Using these, it is not difficult
to verify that for all β ∈ Γei satisfying (20) and for all a such that (a, n1) ∈ Γ′(ρα), the
following relations hold:

va(x)vβ(x) =
1
|Aa|

1
|Aβ|

∑
γ′∈Aa

∑
α∈A

β+γ′

ei〈α,x〉 =
1
|Aa|

∑
γ′∈Aa

vβ+γ′ , (23)

since |Aβ| = |Aβ+γ′ | = 2d−1, because all components of βi and βi + γ
′
i for all i : ei 6= δ

are different from zero and βk = 0, βk + γ
′
k = 0 for k : ek = δ . Really, the condition

(20) implies |βi| > 1
3ρ
α1 , ∀i 6= k. Also, if (a, n1) ∈ Γ′(ρα), then for all γ

′ ∈ Aa we have

|γ′i | < ρα, ∀i 6= k. Therefore, |βi + γ
′
i | ≥ ||βk| − |γ

′
k|| > 1

4ρ
3α.

The set Aa consists of the vectors a1, a2, ..., as, where s = |Aa| and clearly,

Aa1 = Aa2 = ... = Aas = Aa, va1 = va2 = ... = vas = va. (24)

Hence in (23), the vector a can be replaced by a1, a2, ..., as. Summing the obtained s

equality and using (24), we get

s∑
k=1

vak(x)vβ(x) =
∑
γ′∈Aa

vβ+γ′ (x)⇔
∑
γ′∈Aa

vγ′ (x)vβ(x) =
∑
γ′∈Aa

vβ+γ′ (x).

Thus, we have∑
γ′∈Aa

d(γ′, n1)(cos n1s)vγ′ (x)vβ(x) =
∑
γ′∈Aa

d(γ′, n1)(cos n1s)vγ′+β(x), (25)

for all n1 ∈ Z, since d(γ′, n1) cosn1s = d(a, n1) cos n1s, for all γ′ ∈ Aa, n1 ∈ Z. Clearly,
there exist vectors β1, β2, ..., βm ∈ Γei such that

Γ′(ρα) ⊆ (
m⋃
j=1

Aβj )× {n1 ∈ Z : |n1| <
1
2
r1}. (26)

In (25), replacing a by βj , for j = 1, 2, ...,m, summing all obtained m equations and using
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(26), we get (22). Similarly, one can prove∑
(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)vβ1 (x)uβ(x) =
∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)uβ1+β(x),

(27)

for all β ∈ Γei satisfying (20).

Now multiplying the both sides of the equation (18) by Θ̃j′,β′ , where β′ satisfies (20)
and using (27), we obtain

(q(x)−Q(s))Θ̃j′,β′ =
∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)vβ1 Θ̃j′,β′ +O(ρ−pα)

=
∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)ϕ̃j′ (s)uβ1+β′ +O(ρ−pα). (28)

Similarly, multiplying the both sides of the equation (18) by Θj′,β′ and using (22), we get

(q(x) −Q(s))Θj′,β′ =
∑

(β1,n1)∈Γ′(ρα)

d(β1, n1)(cos n1s)ϕj′(s)vβ1+β′ + O(ρ−pα), (29)

To decompose the right hand sides of (16) and (17) by Θ̃j′,β′ and Θj′,β′ , respectively, we
use the following lemmas:

Lemma 1 Let r be a number no less than r1, i.e. r ≥ r1, and j,m be integers satisfying
|j|+ 1 < r, |m| ≥ 2r. Then,

(ϕj(s), cosms) = O(
1

|mδ|l−1
), (30)

ϕj(s) =
∑
|m|<2r

(ϕj(s), cosms) cosms+ O(
1

ρ(l−2)α
) (31)

and

|(ϕ̃j(s), sinms)| = O(
1

|mδ|l−1
), (32)

ϕ̃j(s) =
∑
|m|<2r

(ϕ̃j(s), sinms) sinms+O(
1

ρ(l−2)α
). (33)

330
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Proof. First we prove (30) and (31) using the following binding formula for T δN (Q(s))
and T δN (0)

(µj − |mδ|2)(ϕj(s), cosms) = (ϕj(s)Q(s), cosms). (34)

Using the obvious decomposition (see (7)) for Q(s),

Q(s) =
∑

|l1δ|< |mδ|2l

ql1δ cos l1s+O(|mδ|−(l−1)). (35)

into (34), we get

(µj − |mδ|2)(ϕj(s), cosms) = (ϕj(s)
∑

|l1δ|< |mδ|2l

ql1δ cos l1s, cosms) +O(|mδ|−(l−1))

=
∑

|l1δ|< |mδ|2l

ql1δ(ϕj(s), cos l1s. cosms) +O(|mδ|−(l−1))

=
∑

|l1δ|< |mδ|2l

ql1δ(ϕj(s),
1
2

[cos(m+ l1)s+ cos(m− l1)s]) +O(|mδ|−(l−1))

=
∑

|l1δ|< |mδ|2l

ql1δ(ϕj(s), cos(m− l1)s) +O(|mδ|−(l−1)).

And, again using (34), we get

(µj − |mδ|2)(ϕj(s), cosms) =
∑

|l1δ|< |mδ|2l

ql1δ
(ϕj(s)Q(s), cos(m− l1)s)

µj − |(m− l1)δ|2 +O(|mδ|−(l−1)).

Putting (35) into the last equation, we obtain

(µj − |mδ|2)(ϕj(s), cosms) =
∑

|l1δ|<
|mδ|

2l ,

|l2δ|<
|mδ|

2l

ql1δql2δ
(ϕj(s), cos(m− l1 − l2)s)

µj − |(m− l1)δ|2

+O(|mδ|−(l−1)).

In this way, iterating k = [ l2 ] times and dividing both sides of the obtained equation by
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µj − |mδ|2, we have

(ϕj(s), cosms) =
∑

|l1δ|<
|mδ|

2l ,...,

|lkδ|<
|mδ|

2l

ql1δ ...qlkδ
(ϕj(s), cos(m− l1 − ...− lk)s)∏k−1
t=0 (µj − |(m− l1 − ...− lt)δ|2

+O(|mδ|−(l−1)), (36)

where the integers m, l1, ..., lk satisfy the conditions

|li| < |m|
2l , i = 1, 2, ..., k, |j|+1 < |m|

2 (see assumption of the lemma). These conditions

imply that ||m− l1 − ...− lt| − |j|| > |m|
5 . This together with (15) give

1
|µj − |(m− l1 − ...− lt)δ|2|

=
1

||jδ|2 +O( 1
|jδ| )− |(m− l1 − ...− lt)δ|2|

= O(|mδ|−2),

(37)

for t = 0, 1, ..., k−1.Hence by (36),(37) and (9), we have |(ϕj(s), cosms)| = O(|mδ|−(l−1)).
(30) is proved.

To prove (31), for j satisfying |j| + 1 < r, we write the Fourier series of ϕj(s) with
respect to the basis {cosms : m ∈ Z}, i.e.,

ϕj(s) =
∑
m∈Z

(ϕj(s), cosms) cosms

=
∑
|m|<2r

(ϕj(s), cosms) cosms+
∑
m≥2r

(ϕj(s), cosms) cosms.

By (30), for |m| ≥ 2r and |j| + 1 < r, we have (ϕj(s), cosms) = O(|mδ|−(l−1)). Using
this relation, we get

ϕj(s) =
∑
|m|<2r

(ϕj(s), cosms) cosms+ O(|mδ|−(l−2)),

since |mδ| > ρα, (31) is proved.
In the same way, instead of (34), using the the following binding formula for T δD(Q(s))

and T δD(0)

(µ̃j − |mδ|2)(ϕ̃j(s), sinms) = (ϕ̃j(s)Q(s), sinms), (38)

(32) and (33) can be easily proved. 2

332
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Lemma 2 Let r be a number no less than r1, i.e. r ≥ r1, and j be integer satisfying
|j|+ 1 < r. Then

(cosn1s)ϕj(s) =
∑
|j1|<6r

a(n1, j, j + j1)ϕj+j1(s) + O(r−(l−3)), (39)

(cosn1s)ϕ̃j(s) =
∑
|j1|<6r

ã(n1, j, j + j1)ϕ̃j+j1(s) + O(r−(l−3)), (40)

for (n1, β1) ∈ Γ′(p1ρ
α), where a(n1, j, j+ j1) = ((cosn1s)ϕj(s), ϕj+j1(s)) and ã(n1, j, j+

j1) = ((cosn1s)ϕ̃j(s), ϕ̃j+j1 (s)).

Proof. First we prove (39). Consider the Fourier series of (cosn1s)ϕj(s) with respect
to the basis {ϕj+j1(s) : j1 ∈ Z}

(cos n1s)ϕj (s) =
∑
j1∈Z

((cosn1s)ϕj(s), ϕj+j1 (s))ϕj+j1(s)

=
∑
|j1|<6r

a(n1, j, j + j1)ϕj+j1(s) +
∑
|j1|≥6r

a(n1, j, j + j1)ϕj+j1 (s).

To prove (39), we must prove
∑
|j1|≥6r |a(n1, j, j + j1)| = O(r−(l−3)) or, equivalently,

|a(n1, j, j + j1)| = O(r−(l−2)), ∀j1 : |j1| ≥ 6r. (41)

Decomposing ϕj(s) by cosms, we have ϕj(s) =
∑

m∈Z(ϕj(s), cosms) cosms and multi-
plying this decomposition by cosn1s, we obtain

(cos n1s)ϕj (s) =
∑
m∈Z

(ϕj(s), cosms)(cosms)(cos n1s),

=
∑
m∈Z

(ϕj(s), cosms)
1
2

[cos(n1 + m)s+ cos(n1 −m)s]

=
∑
m∈Z

(ϕj(s), cosms) cos(n1 + m)s. (42)

333



KARAKILIÇ, VELIEV, ATILGAN

Using (42) and the decomposition ϕj+j1(s) =
∑

k∈Z(ϕj+j1(s), cos ks) cos ks, we get

a(n1, j, j + j1) = ((cos n1s)ϕj(s), ϕj+j1(s))

= (
∑
m∈Z

(ϕj(s), cosms) cos(n1 +m)s,
∑
k∈Z

(ϕj+j1(s), cos ks) cos ks)

=
∑

m,k∈Z
(ϕj(s), cosms)(ϕj+j1 (s), cos ks)(cos(n1 +m)s, cos ks)

=
∑
k∈Z

(ϕj(s), cos(k − n1)s)(ϕj+j1 (s), cos ks). (43)

Consider the following two cases:

Case 1: |k| > 1
2 |j1| ≥ 3r. Since |n1|+ 1 < r (see 21), |k − n1| > 2r. Hence by (31)

∑
|k|>1

2 |j1|
|(ϕj(s), cos(k − n1)s)| =

∑
|k−n1|>2r

O(
1

|(k − n1)δ|l−1
) = O(r−(l−2)). (44)

Case 2: |k| ≤ 1
2 |j1|. By assumptions |j| < r and |j1| ≥ 6r, we have |j1 + j| > 5r.

For any integers l1, ..., lt satisfying |li| < |j1|
3l , i = 1, 2, ..., t, where t = [ l2 ], we have

|j1 + j| − |k − l1 − ...− lt| > 1
6 |j1|. This together with (15) gives

1
|µj − |(k− l1 − ...− li)δ|2|

= O(|j1δ|−2), (45)

for i = 0, 1, ..., t. Arguing as the proof of (31), we get∑
|k|≤1

2 |j1|
|(ϕj1+j(s), cos ks)| = O(r−(l−2)). (46)

Using (44) and (46), we have

|a(n1, j, j + j1)| ≤
∑

|k|≤1
2 |j1|
|(ϕj(s), cos(k − n1)s)||(ϕj+j1(s), cos ks)|

+
∑

|k|>1
2 |j1|
|(ϕj(s), cos(k − n1)s)||(ϕj+j1(s), cos ks)| = O(r−(l−2)).

(41), hence (39) is proved.
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Similarly, to prove (40), instead of (41), we must prove

|ã(n1, j, j + j1)| = O(r−(l−2)), ∀j1 : |j1| ≥ 6r (47)

which can be proved in the same way as (41). Lemma is proved. 2

Now substituting (39) into (29) and (40) into (28), we get

(q(x)−Q(s))Θj′,β′ =
∑

(β1,j1)∈Q(ρα,6r)

A(j′, β′, j′ + j1, β
′ + β1)Θj′+j1,β′+β1 +O(ρ−pα),

(48)

and

(q(x)−Q(s))Θ̃j′,β′ =
∑

(β1,j1)∈Q(ρα,6r)

Ã(j′, β′, j′ + j1, β
′ + β1)Θ̃j′+j1,β′+β1 +O(ρ−pα),

(49)

respectively, for every j′ satisfying |j′|+ 1 < r, where

Q(ρα, 6r) = {(j, β) : |jδ| < 6r, 0 < |β| < ρα},

A(j′, β′, j′ + j1, β
′ + β1) =

∑
n1:(β1,n1)∈Γ′(ρα)

d(β1, n1)a(n1, j
′, j′ + j1),

and

Ã(j′, β′, j′ + j1, β
′ + β1) =

∑
n1:(β1,n1)∈Γ′(ρα)

d(β1, n1)ã(n1, j
′, j′ + j1).

We need to prove that ∑
(β1,j1)∈Q(ρα ,6r)

|A(j′, β′, j′ + j1, β
′ + β1)| < c1 (50)

and ∑
(β1,j1)∈Q(ρα ,6r)

|Ã(j′, β′, j′ + j1, β
′ + β1)| < c2. (51)
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First we prove (50). By definition of A(j′, β′, j′ + j1, β
′ + β1), d(β1, n1), (9) and (43), we

have ∑
(β1,j1)∈Q(ρα,6r)

|A(j′, β′, j′ + j1, β
′ + β1)| ≤

∑
(β1,n1)∈Γ′(ρα)

|d(β1, n1)|
∑
|j1|≤6r

|a(n1, j
′, j′ + j1)|

≤M
∑
k∈Z
|(ϕj(s), cos(k − n1)s)|

∑
|j1|≤6r

|(ϕj+j1(s), cos ks)|.

Hence (50) follows from the inequalities
∑
k∈Z |(ϕj(s), cos(k − n1)s)| < c3 and∑

|j1|≤6r |(ϕj+j1(s), cos ks)| < c4, which can be easily obtained by (34). (51) can be
proved similarly.

The decomposition (48) together with the binding formula (17) for LN (q) and LN(qδ)
give

(ΥN − λj′,β′ )(ΦN ,Θj′,β′ ) = (ΦN , (q(x)−Q(s))Θj′,β′)

=
∑

(β1,j1)∈Q(ρα ,6r)

A(j′, β′, j′ + j1, β
′ + β1)(ΦN ,Θj′+j1,β′+β1 ) +O(ρ−pα) (52)

and the decomposition (49) together with the binding formula (16) for LD(q) and LD(qδ)
give

(ΛN − λ̃j′,β′ )(ΨN , Θ̃j′,β′) = (ΨN , (q(x)−Q(s))Θ̃j′,β′)

=
∑

(β1,j1)∈Q(ρα ,6r)

Ã(j′, β′, j′ + j1, β
′ + β1)(ΨN , Θ̃j′+j1,β′+β1 ) + O(ρ−pα). (53)

If the conditions (iterability conditions for the triple (N, j′, β′))

|ΥN − λj′,β′ | > c7 and |ΛN − λ̃j′,β′ | > c8 (54)

hold, then the formulas (52) and (53) can be written in the following forms:

(ΦN ,Θj′,β′) =
(ΦN , (q(x)−Q(s))Θj′,β′)

ΥN − λj′,β′

=
∑

(β1,j1)∈Q(ρα ,6r)

A(j′, β′, j′ + j1, β
′ + β1)(ΦN ,Θj′+j1,β′+β1 )

ΥN − λj′,β′
+O(ρ−pα) (55)
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and

(ΨN , Θ̃j′,β′ ) =
(ΨN , (q(x)−Q(s))Θ̃j′,β′ )

ΛN − λ̃j′,β′

=
∑

(β1,j1)∈Q(ρα ,6r)

Ã(j′, β′, j′ + j1, β
′ + β1)(ΨN , Θ̃j′+j1,β′+β1 )

ΛN − λ̃j′,β′
+ O(ρ−pα), (56)

respectively. Using (52), (55), we will find ΥN , which is close to λj,β; and using (53),

(56), we will find ΛN , which is close to λ̃j,β , where |j|+ 1 < r1. For this, first in (52) and
(53) instead of j′, β′, taking j and β, hence instead of r taking r1, we get

(ΥN − λj,β)(ΦN ,Θj,β) = (ΦN , (q(x)−Q(s))Θj,β)

=
∑

(β1,j1)∈Q(ρα ,6r1)

A(j, β, j + j1, β + β1)(ΦN ,Θj+j1,β+β1) +O(ρ−pα) (57)

and

(ΛN − λ̃j,β)(ΨN , Θ̃j,β) = (ΨN , (q(x)−Q(s))Θ̃j,β)

=
∑

(β1,j1)∈Q(ρα ,6r1)

Ã(j, β, j + j1, β + β1)(ΨN , Θ̃j+j1,β+β1 ) + O(ρ−pα), (58)

respectively. To iterate (57) and (58) using (55) and (56), respectively, for
j′ = j + j1 and β′ = β + β1 , we will prove that there is a number N satisfying

|ΥN − λj+j1,β+β1 | >
1
2
ρα2 , |ΛN − λ̃j+j1,β+β1 | >

1
2
ρα2 , (59)

where |j + j1| + 1 < 7r1 ≡ r2, since |j| + 1 < r1 and |j1| < 6r1. Then (j + j1, β + β1)
satisfies both conditions in (54). This means that, in formulas (55) and (56), the pair
(j′, β′) can be replaced by the pair (j + j1, β + β1). Then we get

(ΦN ,Θj+j1,β+β1 ) = O(ρ−pα) +∑
(β2,j2)∈Q(ρα,6r2)

A(j + j1, β + β1, j + j1 + j2, β + β1 + β2)(ΦN ,Θj+j1+j2,β+β1+β2)
ΥN − λj+j1,β+β1

(60)

and

(ΨN , Θ̃j+j1,β+β1 ) = O(ρ−pα) +∑
(β2,j2)∈Q(ρα,6r2)

Ã(j + j1, β + β1, j + j1 + j2, β + β1 + β2)(ΨN , Θ̃j+j1+j2,β+β1+β2)

ΛN − λ̃j+j1,β+β1

, (61)
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respectively. Putting the formula (60) into (57), we obtain

(ΥN − λj,β)c(N, j, β) = O(ρ−pα) +∑
(β1 ,j1)∈Q(ρα,6r1),
(β2 ,j2)∈Q(ρα,6r2)

A(j, β, j1, β1)A(j1, β1, j2, β2)c(N, j2 , β2)
ΥN − λj1,β1

(62)

and putting the formula (61) into (58), we get

(ΛN − λ̃j,β)b(N, j, β) = O(ρ−pα) +∑
(β1 ,j1)∈Q(ρα,6r1),
(β2 ,j2)∈Q(ρα,6r2)

Ã(j, β, j1, β1)Ã(j1, β1, j2, β2)b(N, j2 , β2)

ΛN − λ̃j1,β1

, (63)

where c(N, j, β) = (ΦN ,Θj,β), b(N, j, β) = (ΨN , Θ̃j,β) jk = j + j1 + j2 + ... + jk and
βk = β + β1 + β2 + ... + βk. Thus we will find a number N such that c(N, j, β) and
b(N, j, β) are not too small and the conditions in (59) are satisfied.

Similar investigation for quasiperiodic boundary condition was made in [12]. Arguing
as in that paper, one can easily obtain the following results:

Result (a) Suppose h1(x), h2(x), ..., hm(x) ∈ L2(F ), where m = [ d
2α2

] + 1. Then for

every eigenvalue λj,β of the operator LN (qδ), there exists an eigenvalue ΥN of LN (q) and

for every eigenvalue λ̃j,β of the operator LD(qδ), there exists an eigenvalue ΛN of LD(q)
satisfying

(i) |ΥN − λj,β| < 2M , |ΛN − λ̃j,β| < 2M , where M = sup |q(x)|,

(ii) |c(N, j, β)| > ρ−qα, |b(N, j, β)| > ρ−qα, where qα = [ d2α + 2]α,

(iii) |c(N, j, β)|2 > 1
2m

∑m
i=1 |(ΦN , hi

‖hi‖ )|
2 > 1

2m
|(ΦN , hi

‖hi‖ )|
2,

|b(N, j, β)|2 > 1
2m

∑m
i=1 |(ΨN ,

hi
‖hi‖ )|

2 > 1
2m |(ΨN ,

hi
‖hi‖ )|

2, ∀i = 1, 2, ..., m.

(b) Let γ = β+ jδ ∈ Vδ(α)\E2 and (β1, j1) ∈ Q(ρα, 6r1), (βk, jk) ∈ Q(ρα, 6rk), where
rk = 7rk−1 for k = 2, 3, ..., p. Then for k = 1, 2, 3, ..., p1, we have

|λj,β − λjk,βk | >
3
5
ρα2 , ∀βk 6= β (64)
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and

|λ̃j,β − λ̃jk,βk | >
3
5
ρα2 , ∀βk 6= β. (65)

Now we prove the estimates (i), (ii) and (iii) of the Result(a) for the Neumann problem:
Let A,B, C be the set of indexes N satisfying (i), (ii), (iii), respectively. Using the binding
formula (17) for LN (q) and LN(qei) and the Bessel’s inequality, we get∑

N /∈A
|c(N, j, β)|2 =

∑
N /∈A
| (ΦN , (q(x)−Q(s))Θj,β)

ΥN − λj,β
|2

≤ 1
4M2

‖(q(x)−Q(s))Θj,β‖2 ≤
1
4
.

Hence by Parseval’s relation, we obtain∑
N∈A

|c(N, j, β)|2 > 3
4
.

Using the fact that the number of indexes N in A is less than ρdα and by the relation
N /∈ B ⇒ |c(N, j, β)| < ρ−qα, we have∑

N∈A\B
|c(N, j, β)|2 < ρdαρ−qα < ρ−α.

Since A = (A \B)
⋃

(A
⋂
B), by above inequalities, we get

3
4
<
∑
N∈A

|c(N, j, β)|2 =
∑

N∈A\B
|c(N, j, β)|2 +

∑
N∈ATB

|c(N, j, β)|2,

which implies ∑
N∈ATB

|c(N, j, β)|2 > 3
4
− ρ−α > 1

2
. (66)

Now, suppose that A
⋂
B
⋂
C = ∅, i.e., for all N ∈ A⋂B, the condition (iii) does not

hold. Then by (66) and Bessel’s inequality, we have

1
2

<
∑

N∈ATB
|c(N, j, β)|2 ≤

∑
N∈ATB

1
2m

m∑
i=1

|(ΦN ,
hi
‖hi‖

)|2

=
1

2m

m∑
i=1

∑
N∈ATB

|(ΦN ,
hi
‖hi‖

)|2 < 1
2m

m∑
i=1

‖ hi
‖hi‖

‖2 =
1
2
,
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which is a contradiction.
Similarly, the estimates (i), (ii) and (iii) for the Dirichlet problem can be easily

obtained.
Now we consider the following functions:

hi(x) =
∑

(j1 ,β1)
(j2 ,β2)

A(j, β, j + j1, β + β1)A(j + j1, β + β1, j
2, β2)Θj2,β2(x)

(λj,β − λj+j1,β+β1 )i
(67)

and

h̃i(x) =
∑

(j1 ,β1)
(j2 ,β2)

Ã(j, β, j + j1, β + β1)Ã(j + j1, β + β1, j
2, β2)Θ̃j2,β2 (x)

(λ̃j,β − λ̃j+j1,β+β1)i
, (68)

where (j1, β1) ∈ Q(ρα, 6r1) and (j2, β2) ∈ Q(ρα, 6r2). Since {Θj2,β2 (x)} is a total system
and β1 6= 0, by (50) and (64), we have

∑
(j′,β′) |(hi(x),Θj′,β′ )|2 ≤ c9ρ−2iα2 , i.e.,

hi(x) ∈ L2(F ) and ‖hi(x)‖ = O(ρ−iα2). (69)

Similarly, using the fact that {Θ̃j2,β2(x)} is a total system, by (51) and (65), we get

h̃i(x) ∈ L2(F ) and ‖h̃i(x)‖ = O(ρ−iα2). (70)

Theorem 1 a) For every eigenvalue λj,β of the operator LN(qδ) with
β + jδ ∈ Vδ(ρα1) \ E2, there exists an eigenvalue ΥN of the operator LN (q) satisfying

ΥN = λj,β + O(ρ−α2). (71)

b) For every eigenvalue λ̃j,β of the operator LD(qδ) with β + jδ ∈ Vδ(ρα1) \ E2, there
exists an eigenvalue ΛN of the operator LD(q) satisfying

ΛN = λ̃j,β + O(ρ−α2). (72)

Proof. a) By Result (a), for the chosen hi(x), i = 1, 2, ...,m in (67), there exists a
number N , satisfying (i), (ii), (iii). Since β1 6= 0, by (64), we have

|λj,β − λj1,β1 | > c10ρ
α2 .

The above inequality together with (i) imply

|ΥN − λj1,β1 | > c11ρ
α2 .
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Using the following well known decomposition

1
|ΥN − λj1,β1 | =

m∑
i=1

|ΥN − λj,β|i−1

|λj,β − λj1,β1 |i +O(ρ−(m+1)α2 ),

we see that the formula (62) can be written as

(ΥN − λj,β)c(N, j, β) = O(ρ−pα)

+
∑

(β1 ,j1)∈Q(ρα,6r1),
(β2 ,j2)∈Q(ρα,6r2)

A(j, β, j + j1, β + β1)A(j + j1, β + β1, j
2, β2)c(N, j2, β2)

ΥN − λj+j1,β+β1

=
m∑
i=1

|ΥN − λj,β|i−1(ΦN ,
hi
‖hi‖

)‖hi‖+O(ρ−(m+1)α2 ).

Now dividing both sides of the last equation by c(N, j, β) and using (ii), (iii), we have

|ΥN − λj,β| ≤
|(ΦN , h1

‖h1‖ )|
|c(N, j, β)| ‖h1‖+

|ΥN − λj,β||(ΦN , h2
‖h2‖ )|

|c(N, j, β)| ‖h2‖

+...+
|ΥN − λj,β|(m−1)|(ΦN , hm

‖hm‖ )|
|c(N, j, β)| ‖hm‖+O(ρ−(m+1)α2+qα)

≤ ‖h1‖+ 2M‖h2‖+ ...+ (2M)m−1‖hm‖+O(ρ−(m+1)α2+qα).

Hence by (69), we obtain

ΥN = λj,β + O(ρ−α2),

since (m+ 1)α2 − qα > α2.

The part b) of the theorem can be proved similarly. Theorem is proved. 2

It follows from (64),(65), (71) and (72) that the triples (N, jk, βk) for
k = 1, 2, ..., p1, satisfy the iterability conditions in (54). In (55) and (56), instead of j′, β′

and r taking j2, β2 and r3 , we have

c(N, j2, β2) =
∑

(β3,j3)∈Q(ρα ,6r3)

A(j2, β2, j3, β3)(ΦN ,Θj3,β3)
ΥN − λj2,β2

+ O(ρ−pα) (73)
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and

b(N, j2, β2) =
∑

(β3,j3)∈Q(ρα ,6r3)

Ã(j2, β2, j3, β3)(ΨN , Θ̃j3,β3 )

ΛN − λ̃j2,β2

+ O(ρ−pα), (74)

respectively.

To obtain the other terms of the asymptotic formulas of ΥN and ΛN , we iterate the
formulas (52) and (53), respectively.

Now we isolate the terms with multiplicands c(N, j, β) in the right hand side of (62);
hence we get

(ΥN − λj,β)c(N, j, β) = O(ρ−pα)

+
∑

(β1 ,j1)∈Q(ρα,6r1)
(β2 ,j2)∈Q(ρα,6r2)

(j+j1+j2 ,β+β1+β2)=(j,β)

A(j, β, j1, β1)A(j1 , β1, j, β)
ΥN − λj1,β1

c(N, j, β)

+
∑

(β1 ,j1)∈Q(ρα,6r1)
(β2 ,j2)∈Q(ρα,6r2)

(j+j1+j2 ,β+β1+β2)6=(j,β)

A(j, β, j1, β1)A(j1 , β1, j2, β2)
ΥN − λj1,β1

c(N, j2, β2). (75)

Substituting the equation (73) into the second sum of the equation (75), we get

(ΥN − λj,β)c(N, j, β) = O(ρ−pα)

+
∑

(β1 ,j1)∈Q(ρα,6r1)
(β2 ,j2)∈Q(ρα,6r2)

(j2 ,β2)=(j,β)

A(j, β, j1, β1)A(j1, β1, j, β)
ΥN − λj1,β1

c(N, j, β) +

∑
(β1 ,j1)∈Q(ρα,6r1)
(β2 ,j2)∈Q(ρα,6r2)

(j2 ,β2)6=(j,β)
(j3 ,β3)∈Q(ρα,6r3)

A(j, β, j1 , β1)A(j1 , β1, j2, β2)A(j2, β2, j3, β3)
(ΥN − λj1,β1 )(ΥN − λj2,β2 )

c(N, j3, β3). (76)

Again isolating the terms c(N, j, β) in the last sum of the equation (76), we obtain

(ΥN − λj,β)c(N, j, β) = [
∑

(β1 ,j1)∈Q(ρα,6r1)
(β2 ,j2)∈Q(ρα,6r2)

(j2 ,β2)=(j,β)

A(j, β, j1 , β1)A(j1 , β1, j, β)
ΥN − λj1,β1
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+
∑

(β1 ,j1)∈Q(ρα,6r1)
(β2 ,j2)∈Q(ρα,6r2)
(β3 ,j3)∈Q(ρα,6r3)

(j2 ,β2)6=(j,β)
(j3 ,β3)=(j,β)

A(j, β, j1, β1)A(j1, β1, j2, β2)A(j2 , β2, j, β)
ΥN − λj1,β1

]c(N, j, β)

∑
(β1,j1)∈Q(ρα,6r1)
(β2,j2)∈Q(ρα,6r2)
(j3,β3)∈Q(ρα,6r3)

(j2 ,β2)6=(j,β)
(j3 ,β3)6=(j,β)

A(j, β, j1, β1)A(j1, β1, j2, β2)A(j2, β2, j3, β3)
(ΥN − λj1,β1 )(ΥN − λj2,β2 )

c(N, j3, β3) +O(ρ−pα). (77)

In this way, iterating 2p times, we get

(ΥN − λj,β)c(N, j, β) = [
2p∑
k=1

S′k]c(N, j, β) + C ′2p +O(ρ−pα), (78)

where

S′k(ΥN , λj,β) =
∑

(β1 ,j1)∈Q(ρα,6r1),...,
(jk+1 ,βk+1)∈Q(ρα,6rk+1)

(jk+1 ,βk+1)=(j,β)
(js,βs)6=(j,β),s=2,...,k

(
k∏
i=1

A(ji−1, βi−1, ji, βi)
(ΥN − λji,βi)

)A(jk, βk, j, β) (79)

and

C ′k =
∑

(β1 ,j1)∈Q(ρα,6r1),...,
(jk+1 ,βk+1)∈Q(ρα,6rk+1)
(js,βs)6=(j,β),s=2,...,k+1

(
k∏
i=1

A(ji−1, βi−1, ji, βi)
(ΥN − λji,βi)

)A(jk, βk, jk+1, βk+1)c(N, jk+1 , βk+1).

(80)

Similarly, we isolate the terms with multiplicands b(N, j, β) in the right hand side of
(63), substitute the equation (74) into the obtained equation and iterate 2p times, we
obtain

(ΛN − λ̃j,β)b(N, j, β) = [
2p∑
k=1

S′′k ]b(N, j, β) + C ′′2p + O(ρ−pα), (81)

where

S′′k (ΛN , λ̃j,β) =
∑

(β1 ,j1)∈Q(ρα,6r1),...,
(jk+1 ,βk+1)∈Q(ρα,6rk+1)

(jk+1 ,βk+1)=(j,β)
(js,βs)6=(j,β),s=2,...,k

(
k∏
i=1

Ã(ji−1, βi−1, ji, βi)

(ΛN − λ̃ji,βi)
)Ã(jk, βk, j, β) (82)

343
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and

C ′′k =
∑

(β1 ,j1)∈Q(ρα,6r1),...,
(jk+1 ,βk+1)∈Q(ρα,6rk+1)
(js,βs)6=(j,β),s=2,...,k+1

(
k∏
i=1

Ã(ji−1, βi−1, ji, βi)

(ΛN − λ̃ji,βi)
)Ã(jk, βk, jk+1, βk+1)b(N, jk+1, βk+1).

(83)

First we estimate S′k and C ′k. For this, we consider the terms which appear in the
denominators of (79) and (80). By the conditions under the summations in (79) and (80),
we have j1 + j2 + ...+ ji 6= 0 or β1 + β2 + ...+ βi 6= 0, for i = 2, 3, ..., k.

If β1 + β2 + ...+ βi 6= 0, then by (64) and (71), we have

|ΥN − λji,βi | >
1
2
ρα2 . (84)

If β1 + β2 + ...+ βi = 0, i.e., j1 + j2 + ...+ ji 6= 0, then by well-known theorem

|λj,β − λji,βi | = |µj − µji | > c13,

hence by (71), we obtain

|ΥN − λji,βi | >
1
2
c13. (85)

Since βk 6= 0 for all k ≤ 2p, the relation β1+β2+...+βi = 0 implies β1+β2+...+βi±1 6=
0. Therefore the number of multiplicands ΥN − λji,βi in (84) is no less than p. Thus by
(50), (84) and (85), we get

S′1 = O(ρ−α2), C ′2p = O(ρ−pα2). (86)

By similar calculations and considerations, it can be easily obtained that

S′′1 = O(ρ−α2), C ′′2p = O(ρ−pα2). (87)

Theorem 2 (a) For every eigenvalue λj,β of LN (qδ) and for every eigenvalue λ̃j,β of
LD(qδ) such that β + jδ ∈ Vδ(ρα1 ) \ E2, there exists an eigenvalue ΥN of the operator
LN (q) and an eigenvalue ΛN of the operator LD(q) satisfying

ΥN = λj,β +Ek−1 +O(ρ−kα2) (88)
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and

ΛN = λ̃j,β +Ek−1 +O(ρ−kα2), (89)

respectively, where E0 =0, Es=
∑2p

k=1 S
′
k(Es−1 +λj,β, λj,β), Ẽ0 =0, Ẽs=

∑2p
k=1 S

′′
k (Ẽs−1 +

λ̃j,β , λ̃j,β), s = 1, 2, ...
(b) If

|ΥN − λj,β| < c14, |ΛN − λ̃j,β| < c15 (90)

and

|c(N, j, β)| > ρ−nα, |b(N, j, β)| > ρ−nα (91)

then ΥN satisfies (88) and ΛN satisfies (89).

Proof. By Result (a)–(b), there exists N satisfying the conditions (90) and (91) in
part (b). Hence it suffices to prove part (b). By (64), (65) and (90), the triples (N, jk, βk)
satisfy the iterability conditions in (54). Hence we can use (78), (81), (86) and (87). Now,
we prove the theorem by induction:

For k = 1, to prove (88), we divide both sides of the equation (78) by c(N, j, β) and
use the estimations (86). Similarly, to prove (89) for k = 1, we divide both sides of the
equation (81) by b(N, j, β) and use the estimations (87).

Suppose that (88) and (89) hold for k = s, i.e.,

ΥN = λj,β + Es−1 +O(ρ−sα2), (92)

ΛN = λ̃j,β + Ẽs−1 + O(ρ−sα2). (93)

First we prove that (88) holds for k = s+1. For this, we substitute the formula (92) into

the expression
∑2p

k=1 S
′
k(ΥN , λj,β) in equation (78) , then we get

(ΥN − λj,β)c(N, j, β) = (
2p∑
k=1

S′k(λj,β +Es−1 + O(ρ−sα2), λj,β))c(N, j, β)

+C ′2p + O(ρ−pα) (94)

Dividing both sides of (94) by c(N, j, β) using (91) and (86), we have

ΥN = λj,β +
2p∑
k=1

S′k(λj,β +Es−1 + O(ρ−sα2), λj,β) +O(ρ−(p−q)α). (95)
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Now we add and subtract the term
∑2p

k=1 S
′
k(Es−1 + λj,β, λj,β) in (95) then we have

ΥN = λj,β + Es +O(ρ−(p−q)α)

+[
2p∑
k=1

S′k(λj,β +Es−1 + O(ρ−sα2), λj,β) −
2p∑
k=1

S′k(Es−1 + λj,β, λj,β)] (96)

Now, we first prove that Ej = O(ρ−α2) by induction. E0 = 0. Suppose that
Ej−1 = O(ρ−α2 ), then a = λj,β + Ej−1 satisfies (84) and (85). Hence we get

S′1(a, λj,β) = O(ρ−α2)⇒ Ej = O(ρ−α2). (97)

So to prove (88) for k = s+1, we need to show that the expression in the square brackets
in (96) is equal to O(ρ−(s+1)α2). This can be easily checked by (97) and the obvious
relation

1
λj,β + Es−1 +O(ρ−sα2) − λjk,βk

− 1
λj,β + Es−1 − λjk,βk

= O(ρ−(s+1)α2),

for βk 6= β. The formula (89) for k = s + 1 can be proved similarly. The theorem is
proved. 2
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