# Asymptotic Formulas for the Resonance Eigenvalues of the Schrödinger Operator 

Sedef Karakılıç*, Oktay A. Veliev, Şirin Atılgan


#### Abstract

In this paper, we consider the Schrödinger operators defined by the differential expression $$
L u=-\Delta u+q(x) u
$$ in $d$-dimensional paralellepiped $F$, with the Dirichlet and the Neumann boundary conditions, where $q(x)$ is a real valued function of $L_{2}(F)$. We obtain the asymptotic formulas for the resonance eigenvalues of these operators.


First asymptotic formulas for the eigenvalues of the Schrödinger operator in parallelepiped with quasiperiodic boundary conditions are obtained in papers [8]-[11]. By some other methods, the asymptotic formulas for quasiperiodic boundary conditions in two and three dimensional cases are obtained in [2], [3], [6], [7]. The asymptotic formulas for the eigenvalues of the Schrödinger operator with periodic boundary conditions are obtained in [4] and with Dirichlet boundary conditions in 2-dimensional case are obtained in [5].

Let $\Omega \equiv\left\{\sum_{i=1}^{d} m_{i} w_{i} ; m_{i} \in Z, i=1,2, \ldots, d\right\}$ be a lattice in $R^{d}$ with the reduced basis $w_{1}=\left(a_{1}, 0, \ldots, 0\right), w_{2}=\left(0, a_{2}, 0, \ldots, 0\right), \ldots, w_{d}=\left(0, \ldots, 0, a_{d}\right)$,
$\Gamma \equiv\left\{\sum_{i=1}^{d} n_{i} \beta_{i}: n_{i} \in Z, i=1,2, \ldots d\right\}$ be the dual lattice of $\Omega$, where $\left\langle w_{i}, \beta_{j}\right\rangle=2 \pi \delta_{i j},\langle.,$.$\rangle is inner product in R^{d}$ and $F \equiv\left[0, a_{1}\right] \times\left[0, a_{2}\right] \times \ldots \times\left[0, a_{d}\right]$.

[^0]
## KARAKILIÇ, VELIEV, ATILGAN

In this paper we consider the d-dimensional Schrödinger operators $L_{D}(q(x))$ and $L_{N}(q(x))$, defined by the differential expression

$$
\begin{equation*}
L u=-\Delta u+q(x) u \tag{1}
\end{equation*}
$$

in $F$, with the Dirichlet boundary condition

$$
\begin{equation*}
\left.u\right|_{\partial F}=0 \tag{2}
\end{equation*}
$$

and the Neumann boundary condition

$$
\begin{equation*}
\left.\frac{\partial u}{\partial n}\right|_{\partial F}=0, \tag{3}
\end{equation*}
$$

respectively, where $\partial F$ denotes the boundary of the domain $F, x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in R^{d}$, $d \geq 2, \Delta$ is the Laplace operator in $R^{d}$, and $\frac{\partial}{\partial n}$ denotes the differentiation along the outward normal $n$ of $\partial F$.

We denote the eigenvalues and the normalized eigenfunctions of $L_{D}(q(x))$ by $\Lambda_{N}$ and $\Psi_{N}$, respectively. The eigenvalues and the normalized eigenfunctions of $L_{N}(q(x))$ are denoted by $\Upsilon_{N}$ and $\Phi_{N}$, respectively.

The eigenvalues of the operators $L_{D}(0)$ and $L_{N}(0)$ are $|\gamma|^{2}$, with the corresponding eigenfunctions

$$
\begin{equation*}
u_{\gamma}(x)=\sin \gamma^{1} x_{1} \sin \gamma^{2} x_{2} \ldots \sin \gamma^{d} x_{d}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\gamma}(x)=\cos \gamma^{1} x_{1} \cos \gamma^{2} x_{2} \ldots \cos \gamma^{d} x_{d} \tag{5}
\end{equation*}
$$

respectively, where $\gamma=\left(\gamma^{1}, \gamma^{2}, \ldots, \gamma^{d}\right) \in \frac{\Gamma}{2}$.
Since the orthogonal system $\left\{v_{\gamma^{\prime}}(x)\right\}_{\gamma^{\prime} \in \frac{\Gamma}{2}}$, is a basis in $L_{2}(F)$, the potential $q(x)$ in (1) can be written as

$$
\begin{equation*}
q(x)=\sum_{\gamma^{\prime} \in \frac{\Gamma}{2}} q_{\gamma^{\prime}} v_{\gamma^{\prime}}(x) \tag{6}
\end{equation*}
$$

where $q_{\gamma^{\prime}}$ is the Fourier coefficient of $q(x)$ with respect to the basis $v_{\gamma^{\prime}}(x), \gamma^{\prime} \in \frac{\Gamma}{2}$. Without loss of generality we can take $q_{0}=0$.

## KARAKILIÇ, VELIEV, ATILGAN

In this paper, we assume that the Fourier coefficients of the potential $q(x)$ satisfy the condition

$$
\begin{equation*}
\sum_{\gamma^{\prime} \in \frac{\Gamma}{2}}\left|q_{\gamma^{\prime}}\right|^{2}\left(1+\left|\gamma^{\prime}\right|^{2 l}\right)<\infty, \tag{7}
\end{equation*}
$$

where $l>\frac{(d-1)(d+20)}{2}+d+1$. Therefore, one can write

$$
\begin{equation*}
q(x)=\sum_{\gamma^{\prime} \in \Gamma\left(\rho^{\alpha}\right)} q_{\gamma^{\prime}} v_{\gamma^{\prime}}(x)+O\left(\rho^{-p \alpha}\right), \tag{8}
\end{equation*}
$$

where $\quad p=l-d, \quad \Gamma\left(\rho^{\alpha}\right)=\left\{\gamma \in \frac{\Gamma}{2}: 0<|\gamma|<\rho^{\alpha}\right\}, \quad \alpha<\frac{1}{(d+20)} \quad$ and $\rho$ is a large parameter.

Remark 1 Notice that, if $q(x)$ is sufficiently smooth, $\left(q(x) \in W_{2}^{l}(F)\right)$ and the support of $\operatorname{grad} q(x)=\left(\frac{\partial q}{\partial x_{1}}, \frac{\partial q}{\partial x_{2}}, \ldots, \frac{\partial q}{\partial x_{d}}\right)$ is contained in the interior of the domain $F$, then $q(x)$ satisfies the condition (7).
There is also another class of functions $q(x)$, such that $q(x) \in W_{2}^{l}(F)$,

$$
q(x)=\sum_{\gamma^{\prime} \in \Gamma} q_{\gamma^{\prime}} v_{\gamma^{\prime}}
$$

which is periodic with respect to $\Omega$ and thus also satisfies the condition (7).
As in the papers [11], [12], we divide the eigenvalues $|\gamma|^{2}$ for $|\gamma| \sim \rho$ of the Laplace operator into two groups, where $|\gamma| \sim \rho$ means that $c_{1} \rho<|\gamma|<c_{2} \rho$ and by $c_{i}, i=1,2, \ldots$, we denote the positive independent on $\rho$ constants whose exact values are inessential. For this, we let $\alpha_{k}=3^{k} \alpha, k=1,2, \ldots, d-1$ and introduce the following notations and definitions:

$$
\begin{gather*}
M=\sum_{\gamma^{\prime} \in \frac{\Gamma}{2}}\left|q_{\gamma^{\prime}}\right|,  \tag{9}\\
V_{b}\left(\rho^{\alpha_{1}}\right)=\left\{x \in R^{d}:\left||x|^{2}-|x+b|^{2}\right|<\rho^{\alpha_{1}}\right\}, \quad E_{1}\left(\rho^{\alpha_{1}}, p\right)=\bigcup_{b \in \Gamma\left(p \rho^{\alpha}\right)} V_{b}\left(\rho^{\alpha_{1}}\right), \\
U\left(\rho^{\alpha_{1}}, p\right)=R^{d} \backslash E_{1}\left(\rho^{\alpha_{1}}, p\right), \quad E_{k}\left(\rho^{\alpha_{k}}, p\right)=\bigcup_{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k} \in \Gamma\left(p \rho^{\alpha}\right)}\left(\bigcap_{i=1}^{k} V_{\gamma_{i}}\left(\rho^{\alpha_{k}}\right)\right),
\end{gather*}
$$

where the intersection $\bigcap_{i=1}^{k} V_{\gamma_{i}}\left(\rho^{\alpha_{k}}\right)$ in $E_{k}$ is taken over $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ which are linearly independent vectors and the length of $\gamma_{i}$ is not greater than the length of the other vectors in $\Gamma \bigcap \gamma_{i} R$. The set $U\left(\rho^{\alpha_{1}}, p\right)$ is said to be a non-resonance domain, and the eigenvalue $|\gamma|^{2}$ is called a non-resonance eigenvalue if $\gamma \in U\left(\rho^{\alpha_{1}}, p\right)$. The domains $V_{b}\left(\rho^{\alpha_{1}}\right)$, for all $b \in \Gamma\left(p \rho^{\alpha}\right)$ are called resonance domains and the eigenvalue $|\gamma|^{2}$ is a resonance eigenvalue if $\gamma \in V_{b}\left(\rho^{\alpha_{1}}\right)$.
As noted in [12], the domain $V_{b}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}$, called a single resonance domain, has asymptotically full measure on $V_{b}\left(\rho^{\alpha_{1}}\right)$, that is

$$
\frac{\mu\left(\left(V_{b}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}\right) \bigcap B(\rho)\right)}{\mu\left(V_{b}\left(\rho^{\alpha_{1}}\right) \bigcap B(\rho)\right)} \rightarrow 1, \text { as } \rho \rightarrow \infty
$$

where $B(\rho)=\left\{x \in R^{d}:|x|=\rho\right\}$, if

$$
\begin{equation*}
2 \alpha_{2}-\alpha_{1}+(d+3) \alpha<1 \quad \text { and } \quad \alpha_{2}>2 \alpha_{1} \tag{10}
\end{equation*}
$$

hold. Since $\alpha<\frac{1}{d+20}$, the conditions in (10) hold.
In [1], we obtained the asymptotic formulas for the non-resonance eigenvalues of the $d$-dimensional Schrödinger operators $L_{D}(q(x))$ and $L_{N}(q(x))$ with the condition (7).

In continuation of the paper [1], in this paper we investigate the perturbation of the resonance eigenvalue $|\gamma|^{2}$, i.e., when $\gamma \in V_{\delta}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}$, where $\delta$ is from $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ and $e_{1}=\left(\frac{\pi}{a_{1}}, 0, \ldots, 0\right), e_{2}=\left(0, \frac{\pi}{a_{2}}, 0, \ldots, 0\right), \ldots, e_{d}=\left(0, \ldots, 0, \frac{\pi}{a_{d}}\right)$.

Now let $H_{\delta}=\{x \in R:\langle x, \delta\rangle=0\}$ be the hyperplane which is orthogonal to $\delta$. Then, we define the following sets:

$$
\begin{aligned}
& \Omega_{\delta}=\{w \in \Omega:\langle w, \delta\rangle=0\}=\Omega \bigcap H_{\delta} \\
& \Gamma_{\delta}=\left\{\gamma \in \frac{\Gamma}{2}:\langle\gamma, \delta\rangle=0\right\}=\frac{\Gamma}{2} \bigcap H_{\delta}
\end{aligned}
$$

Clearly, for all $\gamma \in \frac{\Gamma}{2}$, we have the following decomposition

$$
\begin{equation*}
\gamma=j \delta+\beta, \quad \beta \in \Gamma_{\delta}, \quad j \in Z \tag{11}
\end{equation*}
$$

We write the decomposition (6) of $q(x)$ as

$$
\begin{equation*}
q(x)=\sum_{\gamma^{\prime} \in \frac{\Gamma}{2}} q_{\gamma^{\prime}} v_{\gamma^{\prime}}(x)=q^{\delta}(x)+\sum_{\gamma \in \frac{\Gamma}{2} \backslash \delta R} q_{\gamma} v_{\gamma}(x), \tag{12}
\end{equation*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

where $q^{\delta}(x) \equiv Q(s)=\sum_{n \in Z} q_{n \delta} \cos n\langle x, \delta\rangle, q_{n \delta}=\int_{F} q(x) \cos n\langle x, \delta\rangle d x, s=\langle x, \delta\rangle$.
We consider the operators $L_{D}\left(q^{\delta}(x)\right)$ and $L_{N}\left(q^{\delta}(x)\right)$, defined by the differential expression

$$
\begin{equation*}
L u=-\Delta u+q^{\delta}(x) u \tag{13}
\end{equation*}
$$

with the Dirichlet boundary condition $\left.u\right|_{\partial F}=0$ and the Neumann boundary condition $\left.\frac{\partial u}{\partial n}\right|_{\partial F}=0$, respectively.

It can be easily verified by the method of separation of variables that the eigenvalues and the eigenfunctions of $L_{D}\left(q^{\delta}(x)\right)$ are $\widetilde{\lambda}_{j, \beta}=\widetilde{\mu}_{j}+|\beta|^{2}$ and $\widetilde{\Theta}_{j, \beta}=\widetilde{\varphi}_{j}(s) u_{\beta}$, respectively, where $\beta \in \Gamma_{\delta}, \widetilde{\mu}_{j}$ is the eigenvalue and $\widetilde{\varphi}_{j}(s)$ is the corresponding eigenfunction of the operator $T_{D}^{\delta}(Q(s))$ defined by the differential expression

$$
\begin{equation*}
T y(s)=-|\delta|^{2} y^{\prime \prime}(s)+Q(s) y(s) \tag{14}
\end{equation*}
$$

in $[0, \pi]$, with the Dirichlet boundary conditions $y(0)=y(\pi)=0$.
Similarly, the eigenvalues and the eigenfunctions of $L_{N}\left(q^{\delta}(x)\right)$ are $\lambda_{j, \beta}=\mu_{j}+|\beta|^{2}$ and $\Theta_{j, \beta}=\varphi_{j}(s) v_{\beta}$, respectively, where $\beta \in \Gamma_{\delta}$, and $\mu_{j}$ is the eigenvalue and $\varphi_{j}(s)$ is the corresponding eigenfunction of the Sturm-Liouville operator $T_{N}^{\delta}(Q(s))$, defined by the differential expression (14) in $[0, \pi]$, with the Neumann boundary conditions $y^{\prime}(0)=y^{\prime}(\pi)=0$.

The eigenvalues of the operators $T_{D}^{\delta}(0)$ and $T_{N}^{\delta}(0)$ are $|n \delta|^{2}$ with the corresponding eigenfunctions $\sin n s$ and $\cos n s$, respectively. It is well known that the eigenvalue $\widetilde{\mu_{j}}$ of $T_{D}^{\delta}(Q(s))$ and the eigenvalue $\mu_{j}$ of $T_{N}^{\delta}(Q(s))$ such that $\left|\widetilde{\mu}_{j}-|j \delta|^{2}\right|<\sup Q(s), \mid \mu_{j}-$ $|j \delta|^{2} \mid<\sup Q(s)$ together with the corresponding eigenfunction $\widetilde{\varphi}_{j}(s)$ of $T_{D}^{\delta}(Q(s))$ and the corresponding eigenfunction $\varphi_{j}(s)$ of $T_{N}^{\delta}(Q(s))$ satisfy the following relations:

$$
\begin{array}{ll}
\widetilde{\mu}_{j}=|j \delta|^{2}+O\left(\frac{1}{|j \delta|}\right), & \widetilde{\varphi}_{j}(s)=\sin j s+O\left(\frac{1}{|j \delta|}\right) \\
\mu_{j}=|j \delta|^{2}+O\left(\frac{1}{|j \delta|}\right), & \varphi_{j}(s)=\cos j s+O\left(\frac{1}{|j \delta|}\right) \tag{15}
\end{array}
$$

By the first equation in (15), the eigenvalue $|\gamma|^{2}=|\beta|^{2}+|j \delta|^{2}$ of $L_{D}(0)$ corresponds the eigenvalue $|\beta|^{2}+\widetilde{\mu}_{j}$ of $L_{D}\left(q^{\delta}\right)$; and by the second equation in (15), the eigenvalue $|\gamma|^{2}=|\beta|^{2}+|j \delta|^{2}$ of $L_{N}(0)$ corresponds the eigenvalue $|\beta|^{2}+\mu_{j}$ of $L_{N}\left(q^{\delta}\right)$. Now we prove that there is an eigenvalue $\Lambda_{N}$ of $L_{D}(q)$ which is close to the eigenvalue $|\beta|^{2}+\widetilde{\mu}_{j}$

## KARAKILIÇ, VELIEV, ATILGAN

of $L_{D}\left(q^{\delta}\right)$ and that there is an eigenvalue $\Upsilon_{N}$ of $L_{N}(q)$ which is closed to the eigenvalue $|\beta|^{2}+\mu_{j}$ of $L_{N}\left(q^{\delta}\right)$. For this we use the binding formula for $L_{D}(q)$ and $L_{D}\left(q^{\delta}\right)$

$$
\begin{equation*}
\left(\Lambda_{N}-\widetilde{\lambda}_{j, \beta}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j, \beta}\right)=\left(\Psi_{N},\left(q(x)-q^{\delta}(x)\right) \widetilde{\Theta}_{j, \beta}\right) \tag{16}
\end{equation*}
$$

and the binding formula for $L_{N}(q)$ and $L_{N}\left(q^{\delta}\right)$

$$
\begin{equation*}
\left(\Upsilon_{N}-\lambda_{j, \beta}\right)\left(\Phi_{N}, \Theta_{j, \beta}\right)=\left(\Phi_{N},\left(q(x)-q^{\delta}(x)\right) \Theta_{j, \beta}\right) \tag{17}
\end{equation*}
$$

Now as in the non-resonance case, we decompose $\left(q(x)-q^{\delta}(x)\right) \widetilde{\Theta}_{j, \beta}$ by $\widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}$ and $\left(q(x)-q^{\delta}(x)\right) \Theta_{j, \beta}$ by $\Theta_{j^{\prime}, \beta^{\prime}}$ then put these decompositions into (16) and (17), respectively. Let us find these decompositions. Writing (11) for every $\gamma_{1} \in \Gamma\left(\rho^{\alpha}\right)$ and using (8), we have

$$
\begin{align*}
\gamma_{1} & =n_{1} \delta+\beta_{1}, \quad v_{\gamma_{1}}(x)=\left(\cos n_{1} s\right) v_{\beta_{1}}(x), \\
q(x)-Q(s) & =\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) v_{\beta_{1}}(x)+O\left(\rho^{-p \alpha}\right), \tag{18}
\end{align*}
$$

where $\beta_{1} \in \Gamma_{\delta}, d\left(\beta_{1}, n_{1}\right)=\int_{F} q(x)\left(\cos n_{1} s\right) v_{\beta_{1}}(x) d x$ and $\Gamma^{\prime}\left(\rho^{\alpha}\right)=\left\{\left(\beta_{1}, n_{1}\right): \beta_{1} \in \Gamma_{\delta} \backslash\{0\}, n_{1} \in Z, n_{1} \delta+\beta_{1} \in \Gamma\left(\rho^{\alpha}\right)\right\}$.

The fact that $\gamma=j \delta+\beta \in V_{\delta}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}$ implies

$$
\begin{equation*}
|j|<r_{1}, \quad r_{1} \equiv \rho^{\alpha_{1}}|\delta|^{2}+1 \tag{19}
\end{equation*}
$$

and $\beta \notin V_{e_{k}}\left(\rho^{\alpha_{1}}\right)$, for all $e_{k} \neq \delta$, by which we have

$$
\begin{equation*}
\left|\beta^{k}\right|>\frac{1}{3} \rho^{\alpha_{1}}, \quad \forall k: e_{k} \neq \delta \tag{20}
\end{equation*}
$$

Clearly for $\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(p \rho^{\alpha}\right)$, we have $\left|n_{1} \delta+\beta_{1}\right|<p \rho^{\alpha}$, and since $\beta_{1}$ is orthogonal to $\delta$,

$$
\begin{equation*}
\left|\beta_{1}\right|<p \rho^{\alpha},\left|n_{1}\right|<p \rho^{\alpha},\left|n_{1}\right|<\frac{1}{2} r_{1} \tag{21}
\end{equation*}
$$

(see 19).
Now we prove that

$$
\begin{equation*}
\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) v_{\beta_{1}}(x) v_{\beta}(x)=\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) v_{\beta_{1}+\beta}(x) \tag{22}
\end{equation*}
$$

```
KARAKILIÇ, VELIEV, ATILGAN
```

for all $\beta \in \Gamma_{e_{i}}$ satisfying (20).
Clearly $v_{\beta}(x)=\frac{1}{\left|A_{\beta}\right|} \sum_{\alpha \in A_{\beta}} e^{i\langle\alpha, x\rangle}$, where $A_{\beta}=\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right) \in R^{d}:\left|\alpha_{i}\right|=\right.$ $\left.\left|\beta^{i}\right|, i=1,2, \ldots, d\right\}$ and $\left|A_{\beta}\right|$ is the number of vectors in $A_{\beta}$. Using these, it is not difficult to verify that for all $\beta \in \Gamma_{e_{i}}$ satisfying (20) and for all $a$ such that $\left(a, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)$, the following relations hold:

$$
\begin{equation*}
v_{a}(x) v_{\beta}(x)=\frac{1}{\left|A_{a}\right|} \frac{1}{\left|A_{\beta}\right|} \sum_{\gamma^{\prime} \in A_{a}} \sum_{\alpha \in A_{\beta+\gamma^{\prime}}} e^{i\langle\alpha, x\rangle}=\frac{1}{\left|A_{a}\right|} \sum_{\gamma^{\prime} \in A_{a}} v_{\beta+\gamma^{\prime}} \tag{23}
\end{equation*}
$$

since $\left|A_{\beta}\right|=\left|A_{\beta+\gamma^{\prime}}\right|=2^{d-1}$, because all components of $\beta_{i}$ and $\beta_{i}+\gamma_{i}^{\prime}$ for all $i: e_{i} \neq \delta$ are different from zero and $\beta_{k}=0, \beta_{k}+\gamma_{k}^{\prime}=0$ for $k: e_{k}=\delta$. Really, the condition (20) implies $\left|\beta_{i}\right|>\frac{1}{3} \rho^{\alpha_{1}}, \quad \forall i \neq k$. Also, if $\left(a, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)$, then for all $\gamma^{\prime} \in A_{a}$ we have $\left|\gamma_{i}^{\prime}\right|<\rho^{\alpha}, \forall i \neq k$. Therefore, $\left|\beta_{i}+\gamma_{i}^{\prime}\right| \geq\left|\left|\beta_{k}\right|-\right| \gamma_{k}^{\prime} \|>\frac{1}{4} \rho^{3 \alpha}$.

The set $A_{a}$ consists of the vectors $a^{1}, a^{2}, \ldots, a^{s}$, where $s=\left|A_{a}\right|$ and clearly,

$$
\begin{equation*}
A_{a^{1}}=A_{a^{2}}=\ldots=A_{a^{s}}=A_{a}, \quad v_{a^{1}}=v_{a^{2}}=\ldots=v_{a^{s}}=v_{a} \tag{24}
\end{equation*}
$$

Hence in (23), the vector $a$ can be replaced by $a^{1}, a^{2}, \ldots, a^{s}$. Summing the obtained $s$ equality and using (24), we get

$$
\sum_{k=1}^{s} v_{a^{k}}(x) v_{\beta}(x)=\sum_{\gamma^{\prime} \in A_{a}} v_{\beta+\gamma^{\prime}}(x) \Leftrightarrow \sum_{\gamma^{\prime} \in A_{a}} v_{\gamma^{\prime}}(x) v_{\beta}(x)=\sum_{\gamma^{\prime} \in A_{a}} v_{\beta+\gamma^{\prime}}(x)
$$

Thus, we have

$$
\begin{equation*}
\sum_{\gamma^{\prime} \in A_{a}} d\left(\gamma^{\prime}, n_{1}\right)\left(\cos n_{1} s\right) v_{\gamma^{\prime}}(x) v_{\beta}(x)=\sum_{\gamma^{\prime} \in A_{a}} d\left(\gamma^{\prime}, n_{1}\right)\left(\cos n_{1} s\right) v_{\gamma^{\prime}+\beta}(x), \tag{25}
\end{equation*}
$$

for all $n_{1} \in \mathbb{Z}$, since $d\left(\gamma^{\prime}, n_{1}\right) \cos n_{1} s=d\left(a, n_{1}\right) \cos n_{1} s$, for all $\gamma^{\prime} \in A_{a}, n_{1} \in \mathbb{Z}$. Clearly, there exist vectors $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in \Gamma_{e_{i}}$ such that

$$
\begin{equation*}
\Gamma^{\prime}\left(\rho^{\alpha}\right) \subseteq\left(\bigcup_{j=1}^{m} A_{\beta_{j}}\right) \times\left\{n_{1} \in \mathbb{Z}:\left|n_{1}\right|<\frac{1}{2} r_{1}\right\} \tag{26}
\end{equation*}
$$

In (25), replacing $a$ by $\beta_{j}$, for $j=1,2, \ldots, m$, summing all obtained $m$ equations and using

KARAKILIÇ, VELIEV, ATILGAN

(26), we get (22). Similarly, one can prove

$$
\begin{equation*}
\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) v_{\beta_{1}}(x) u_{\beta}(x)=\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) u_{\beta_{1}+\beta}(x) \tag{27}
\end{equation*}
$$

for all $\beta \in \Gamma_{e_{i}}$ satisfying (20).
Now multiplying the both sides of the equation (18) by $\widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}$, where $\beta^{\prime}$ satisfies (20) and using (27), we obtain

$$
\begin{align*}
(q(x)-Q(s)) \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}} & =\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) v_{\beta_{1}} \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}+O\left(\rho^{-p \alpha}\right) \\
& =\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) \widetilde{\varphi}_{j^{\prime}}(s) u_{\beta_{1}+\beta^{\prime}}+O\left(\rho^{-p \alpha}\right) \tag{28}
\end{align*}
$$

Similarly, multiplying the both sides of the equation (18) by $\Theta_{j^{\prime}, \beta^{\prime}}$ and using (22), we get

$$
\begin{equation*}
(q(x)-Q(s)) \Theta_{j^{\prime}, \beta^{\prime}}=\sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right)\left(\cos n_{1} s\right) \varphi_{j^{\prime}}(s) v_{\beta_{1}+\beta^{\prime}}+O\left(\rho^{-p \alpha}\right) \tag{29}
\end{equation*}
$$

To decompose the right hand sides of (16) and (17) by $\widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}$ and $\Theta_{j^{\prime}, \beta^{\prime}}$, respectively, we use the following lemmas:

Lemma 1 Let $r$ be a number no less than $r_{1}$, i.e. $r \geq r_{1}$, and $j, m$ be integers satisfying $|j|+1<r,|m| \geq 2 r$. Then,

$$
\begin{gather*}
\left(\varphi_{j}(s), \cos m s\right)=O\left(\frac{1}{|m \delta|^{l-1}}\right)  \tag{30}\\
\varphi_{j}(s)=\sum_{|m|<2 r}\left(\varphi_{j}(s), \cos m s\right) \cos m s+O\left(\frac{1}{\rho^{(l-2) \alpha}}\right) \tag{31}
\end{gather*}
$$

and

$$
\begin{gather*}
\left|\left(\widetilde{\varphi}_{j}(s), \sin m s\right)\right|=O\left(\frac{1}{|m \delta|^{l-1}}\right)  \tag{32}\\
\widetilde{\varphi}_{j}(s)=\sum_{|m|<2 r}\left(\widetilde{\varphi}_{j}(s), \sin m s\right) \sin m s+O\left(\frac{1}{\rho^{(l-2) \alpha}}\right) . \tag{33}
\end{gather*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

Proof. First we prove (30) and (31) using the following binding formula for $T_{N}^{\delta}(Q(s))$ and $T_{N}^{\delta}(0)$

$$
\begin{equation*}
\left(\mu_{j}-|m \delta|^{2}\right)\left(\varphi_{j}(s), \cos m s\right)=\left(\varphi_{j}(s) Q(s), \cos m s\right) \tag{34}
\end{equation*}
$$

Using the obvious decomposition (see (7)) for $Q(s)$,

$$
\begin{equation*}
Q(s)=\sum_{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}} q_{l_{1} \delta} \cos l_{1} s+O\left(|m \delta|^{-(l-1)}\right) \tag{35}
\end{equation*}
$$

into (34), we get

$$
\begin{aligned}
\left(\mu_{j}-\right. & \left.|m \delta|^{2}\right)\left(\varphi_{j}(s), \cos m s\right)=\left(\varphi_{j}(s) \sum_{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}} q_{l_{1} \delta} \cos l_{1} s, \cos m s\right)+O\left(|m \delta|^{-(l-1)}\right) \\
& =\sum_{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}} q_{l_{1} \delta}\left(\varphi_{j}(s), \cos l_{1} s \cdot \cos m s\right)+O\left(|m \delta|^{-(l-1)}\right) \\
& =\sum_{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}} q_{l_{1} \delta}\left(\varphi_{j}(s), \frac{1}{2}\left[\cos \left(m+l_{1}\right) s+\cos \left(m-l_{1}\right) s\right]\right)+O\left(|m \delta|^{-(l-1)}\right) \\
& =\sum_{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}} q_{l_{1} \delta}\left(\varphi_{j}(s), \cos \left(m-l_{1}\right) s\right)+O\left(|m \delta|^{-(l-1)}\right) .
\end{aligned}
$$

And, again using (34), we get

$$
\left(\mu_{j}-|m \delta|^{2}\right)\left(\varphi_{j}(s), \cos m s\right)=\sum_{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}} q_{l_{1} \delta} \frac{\left(\varphi_{j}(s) Q(s), \cos \left(m-l_{1}\right) s\right)}{\mu_{j}-\left|\left(m-l_{1}\right) \delta\right|^{2}}+O\left(|m \delta|^{-(l-1)}\right)
$$

Putting (35) into the last equation, we obtain

$$
\begin{aligned}
\left(\mu_{j}-|m \delta|^{2}\right)\left(\varphi_{j}(s), \cos m s\right)= & \sum_{\substack{\left|l_{1} \delta\right|<\frac{m \delta \mid}{2 l},\left|l_{2} \delta\right|<\frac{m \delta \mid}{2 l}}} q_{l_{1} \delta} q_{l_{2} \delta} \frac{\left(\varphi_{j}(s), \cos \left(m-l_{1}-l_{2}\right) s\right)}{\mu_{j}-\left|\left(m-l_{1}\right) \delta\right|^{2}} \\
& +O\left(|m \delta|^{-(l-1)}\right) .
\end{aligned}
$$

In this way, iterating $k=\left[\frac{l}{2}\right]$ times and dividing both sides of the obtained equation by

## KARAKILIÇ, VELIEV, ATILGAN

$\mu_{j}-|m \delta|^{2}$, we have

$$
\begin{align*}
\left(\varphi_{j}(s), \cos m s\right)= & \sum_{\substack{\left|l_{1} \delta\right|<\frac{|m \delta|}{2 l}, \ldots,\left|l_{k} \delta\right|<\frac{\mid m \delta}{2 l}}} q_{l_{1} \delta \ldots q_{l_{k} \delta} \delta} \frac{\left(\varphi_{j}(s), \cos \left(m-l_{1}-\ldots-l_{k}\right) s\right)}{\prod_{t=0}^{k-1}\left(\mu_{j}-\left|\left(m-l_{1}-\ldots-l_{t}\right) \delta\right|^{2}\right.} \\
& +O\left(|m \delta|^{-(l-1)}\right), \tag{36}
\end{align*}
$$

where the integers $m, l_{1}, \ldots, l_{k}$ satisfy the conditions
$\left|l_{i}\right|<\frac{|m|}{2 l}, i=1,2, \ldots, k, \quad|j|+1<\frac{|m|}{2}$ (see assumption of the lemma). These conditions imply that $\left|\left|m-l_{1}-\ldots-l_{t}\right|-|j|\right|>\frac{|m|}{5}$. This together with (15) give

$$
\begin{equation*}
\frac{1}{\left|\mu_{j}-\left|\left(m-l_{1}-\ldots-l_{t}\right) \delta\right|^{2}\right|}=\frac{1}{\left||j \delta|^{2}+O\left(\frac{1}{|j \delta|}\right)-\left|\left(m-l_{1}-\ldots-l_{t}\right) \delta\right|^{2}\right|}=O\left(|m \delta|^{-2}\right) \tag{37}
\end{equation*}
$$

for $t=0,1, \ldots, k-1$. Hence by $(36),(37)$ and (9), we have $\left|\left(\varphi_{j}(s), \cos m s\right)\right|=O\left(|m \delta|^{-(l-1)}\right)$. (30) is proved.

To prove (31), for $j$ satisfying $|j|+1<r$, we write the Fourier series of $\varphi_{j}(s)$ with respect to the basis $\{\cos m s: m \in Z\}$, i.e.,

$$
\begin{aligned}
\varphi_{j}(s) & =\sum_{m \in Z}\left(\varphi_{j}(s), \cos m s\right) \cos m s \\
& =\sum_{|m|<2 r}\left(\varphi_{j}(s), \cos m s\right) \cos m s+\sum_{m \geq 2 r}\left(\varphi_{j}(s), \cos m s\right) \cos m s
\end{aligned}
$$

By (30), for $|m| \geq 2 r$ and $|j|+1<r$, we have $\left(\varphi_{j}(s), \cos m s\right)=O\left(|m \delta|^{-(l-1)}\right)$. Using this relation, we get

$$
\varphi_{j}(s)=\sum_{|m|<2 r}\left(\varphi_{j}(s), \cos m s\right) \cos m s+O\left(|m \delta|^{-(l-2)}\right)
$$

since $|m \delta|>\rho^{\alpha}$, (31) is proved.
In the same way, instead of (34), using the the following binding formula for $T_{D}^{\delta}(Q(s))$ and $T_{D}^{\delta}(0)$

$$
\begin{equation*}
\left(\widetilde{\mu}_{j}-|m \delta|^{2}\right)\left(\widetilde{\varphi}_{j}(s), \sin m s\right)=\left(\widetilde{\varphi}_{j}(s) Q(s), \sin m s\right) \tag{38}
\end{equation*}
$$

(32) and (33) can be easily proved.

## KARAKILIÇ, VELIEV, ATILGAN

Lemma 2 Let $r$ be a number no less than $r_{1}$, i.e. $r \geq r_{1}$, and $j$ be integer satisfying $|j|+1<r$. Then

$$
\begin{align*}
& \left(\cos n_{1} s\right) \varphi_{j}(s)=\sum_{\left|j_{1}\right|<6 r} a\left(n_{1}, j, j+j_{1}\right) \varphi_{j+j_{1}}(s)+O\left(r^{-(l-3)}\right)  \tag{39}\\
& \left(\cos n_{1} s\right) \widetilde{\varphi}_{j}(s)=\sum_{\left|j_{1}\right|<6 r} \widetilde{a}\left(n_{1}, j, j+j_{1}\right) \widetilde{\varphi}_{j+j_{1}}(s)+O\left(r^{-(l-3)}\right) \tag{40}
\end{align*}
$$

for $\left(n_{1}, \beta_{1}\right) \in \Gamma^{\prime}\left(p_{1} \rho^{\alpha}\right)$, where $a\left(n_{1}, j, j+j_{1}\right)=\left(\left(\cos n_{1} s\right) \varphi_{j}(s), \varphi_{j+j_{1}}(s)\right)$ and $\widetilde{a}\left(n_{1}, j, j+\right.$ $\left.j_{1}\right)=\left(\left(\cos n_{1} s\right) \widetilde{\varphi}_{j}(s), \widetilde{\varphi}_{j+j_{1}}(s)\right)$.
Proof. First we prove (39). Consider the Fourier series of $\left(\cos n_{1} s\right) \varphi_{j}(s)$ with respect to the basis $\left\{\varphi_{j+j_{1}}(s): j_{1} \in Z\right\}$

$$
\begin{aligned}
\left(\cos n_{1} s\right) \varphi_{j}(s) & =\sum_{j_{1} \in Z}\left(\left(\cos n_{1} s\right) \varphi_{j}(s), \varphi_{j+j_{1}}(s)\right) \varphi_{j+j_{1}}(s) \\
& =\sum_{\left|j_{1}\right|<6 r} a\left(n_{1}, j, j+j_{1}\right) \varphi_{j+j_{1}}(s)+\sum_{\left|j_{1}\right| \geq 6 r} a\left(n_{1}, j, j+j_{1}\right) \varphi_{j+j_{1}}(s)
\end{aligned}
$$

To prove (39), we must prove $\sum_{\left|j_{1}\right| \geq 6 r}\left|a\left(n_{1}, j, j+j_{1}\right)\right|=O\left(r^{-(l-3)}\right)$ or, equivalently,

$$
\begin{equation*}
\left|a\left(n_{1}, j, j+j_{1}\right)\right|=O\left(r^{-(l-2)}\right), \quad \forall j_{1}:\left|j_{1}\right| \geq 6 r \tag{41}
\end{equation*}
$$

Decomposing $\varphi_{j}(s)$ by $\cos m s$, we have $\varphi_{j}(s)=\sum_{m \in Z}\left(\varphi_{j}(s), \cos m s\right) \cos m s$ and multiplying this decomposition by $\cos n_{1} s$, we obtain

$$
\begin{align*}
\left(\cos n_{1} s\right) \varphi_{j}(s) & =\sum_{m \in Z}\left(\varphi_{j}(s), \cos m s\right)(\cos m s)\left(\cos n_{1} s\right) \\
& =\sum_{m \in Z}\left(\varphi_{j}(s), \cos m s\right) \frac{1}{2}\left[\cos \left(n_{1}+m\right) s+\cos \left(n_{1}-m\right) s\right] \\
& =\sum_{m \in Z}\left(\varphi_{j}(s), \cos m s\right) \cos \left(n_{1}+m\right) s \tag{42}
\end{align*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

Using (42) and the decomposition $\varphi_{j+j_{1}}(s)=\sum_{k \in Z}\left(\varphi_{j+j_{1}}(s), \cos k s\right) \cos k s$, we get

$$
\begin{align*}
a\left(n_{1}, j, j+j_{1}\right) & =\left(\left(\cos n_{1} s\right) \varphi_{j}(s), \varphi_{j+j_{1}}(s)\right) \\
& =\left(\sum_{m \in Z}\left(\varphi_{j}(s), \cos m s\right) \cos \left(n_{1}+m\right) s, \sum_{k \in Z}\left(\varphi_{j+j_{1}}(s), \cos k s\right) \cos k s\right) \\
& =\sum_{m, k \in Z}\left(\varphi_{j}(s), \cos m s\right) \overline{\left(\varphi_{j+j_{1}}(s), \cos k s\right)}\left(\cos \left(n_{1}+m\right) s, \cos k s\right) \\
& =\sum_{k \in Z}\left(\varphi_{j}(s), \cos \left(k-n_{1}\right) s\right) \overline{\left(\varphi_{j+j_{1}}(s), \cos k s\right)} \tag{43}
\end{align*}
$$

Consider the following two cases:
Case 1: $|k|>\frac{1}{2}\left|j_{1}\right| \geq 3 r$. Since $\left|n_{1}\right|+1<r$ (see 21), $\left|k-n_{1}\right|>2 r$. Hence by (31)

$$
\begin{equation*}
\sum_{|k|>\frac{1}{2}\left|j_{1}\right|}\left|\left(\varphi_{j}(s), \cos \left(k-n_{1}\right) s\right)\right|=\sum_{\left|k-n_{1}\right|>2 r} O\left(\frac{1}{\left|\left(k-n_{1}\right) \delta\right|^{l-1}}\right)=O\left(r^{-(l-2)}\right) \tag{44}
\end{equation*}
$$

Case 2: $|k| \leq \frac{1}{2}\left|j_{1}\right|$. By assumptions $|j|<r$ and $\left|j_{1}\right| \geq 6 r$, we have $\left|j_{1}+j\right|>5 r$. For any integers $l_{1}, \ldots, l_{t}$ satisfying $\left|l_{i}\right|<\frac{\left|j_{1}\right|}{3 l}, i=1,2, \ldots, t$, where $t=\left[\frac{l}{2}\right]$, we have $\left|j_{1}+j\right|-\left|k-l_{1}-\ldots-l_{t}\right|>\frac{1}{6}\left|j_{1}\right|$. This together with (15) gives

$$
\begin{equation*}
\frac{1}{\left|\mu_{j}-\left|\left(k-l_{1}-\ldots-l_{i}\right) \delta\right|^{2}\right|}=O\left(\left|j_{1} \delta\right|^{-2}\right) \tag{45}
\end{equation*}
$$

for $i=0,1, \ldots, t$. Arguing as the proof of (31), we get

$$
\begin{equation*}
\sum_{|k| \leq \frac{1}{2}\left|j_{1}\right|}\left|\left(\varphi_{j_{1}+j}(s), \cos k s\right)\right|=O\left(r^{-(l-2)}\right) \tag{46}
\end{equation*}
$$

Using (44) and (46), we have

$$
\begin{aligned}
\left|a\left(n_{1}, j, j+j_{1}\right)\right| \leq & \sum_{|k| \leq \frac{1}{2}\left|j_{1}\right|}\left|\left(\varphi_{j}(s), \cos \left(k-n_{1}\right) s\right)\right|\left|\overline{\left(\varphi_{j+j_{1}}(s), \cos k s\right)}\right| \\
& +\sum_{|k|>\frac{1}{2}\left|j_{1}\right|}\left|\left(\varphi_{j}(s), \cos \left(k-n_{1}\right) s\right)\right|\left|\overline{\left(\varphi_{j+j_{1}}(s), \cos k s\right)}\right|=O\left(r^{-(l-2)}\right)
\end{aligned}
$$

(41), hence (39) is proved.

## KARAKILIÇ, VELIEV, ATILGAN

Similarly, to prove (40), instead of (41), we must prove

$$
\begin{equation*}
\left|\widetilde{a}\left(n_{1}, j, j+j_{1}\right)\right|=O\left(r^{-(l-2)}\right), \quad \forall j_{1}:\left|j_{1}\right| \geq 6 r \tag{47}
\end{equation*}
$$

which can be proved in the same way as (41). Lemma is proved.

Now substituting (39) into (29) and (40) into (28), we get

$$
\begin{equation*}
(q(x)-Q(s)) \Theta_{j^{\prime}, \beta^{\prime}}=\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)} A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right) \Theta_{j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}}+O\left(\rho^{-p \alpha}\right) \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
(q(x)-Q(s)) \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}=\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)} \widetilde{A}\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right) \widetilde{\Theta}_{j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}}+O\left(\rho^{-p \alpha}\right) \tag{49}
\end{equation*}
$$

respectively, for every $j^{\prime}$ satisfying $\left|j^{\prime}\right|+1<r$, where

$$
\begin{gathered}
Q\left(\rho^{\alpha}, 6 r\right)=\left\{(j, \beta):|j \delta|<6 r, 0<|\beta|<\rho^{\alpha}\right\} \\
A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)=\sum_{n_{1}:\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right) a\left(n_{1}, j^{\prime}, j^{\prime}+j_{1}\right)
\end{gathered}
$$

and

$$
\widetilde{A}\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)=\sum_{n_{1}:\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)} d\left(\beta_{1}, n_{1}\right) \widetilde{a}\left(n_{1}, j^{\prime}, j^{\prime}+j_{1}\right)
$$

We need to prove that

$$
\begin{equation*}
\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)}\left|A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\right|<c_{1} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)}\left|\widetilde{A}\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\right|<c_{2} \tag{51}
\end{equation*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

First we prove (50). By definition of $A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right), d\left(\beta_{1}, n_{1}\right),(9)$ and (43), we have

$$
\begin{aligned}
\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)}\left|A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\right| \leq \sum_{\left(\beta_{1}, n_{1}\right) \in \Gamma^{\prime}\left(\rho^{\alpha}\right)}\left|d\left(\beta_{1}, n_{1}\right)\right| \sum_{\left|j_{1}\right| \leq 6 r}\left|a\left(n_{1}, j^{\prime}, j^{\prime}+j_{1}\right)\right| \\
\leq M \sum_{k \in Z}\left|\left(\varphi_{j}(s), \cos \left(k-n_{1}\right) s\right)\right| \sum_{\left|j_{1}\right| \leq 6 r}\left|\left(\varphi_{j+j_{1}}(s), \cos k s\right)\right|
\end{aligned}
$$

Hence (50) follows from the inequalities $\sum_{k \in Z}\left|\left(\varphi_{j}(s), \cos \left(k-n_{1}\right) s\right)\right|<c_{3}$ and $\sum_{\left|j_{1}\right| \leq 6 r}\left|\left(\varphi_{j+j_{1}}(s), \cos k s\right)\right|<c_{4}$, which can be easily obtained by (34). (51) can be proved similarly.

The decomposition (48) together with the binding formula (17) for $L_{N}(q)$ and $L_{N}\left(q^{\delta}\right)$ give

$$
\begin{align*}
\left(\Upsilon_{N}-\right. & \left.\lambda_{j^{\prime}, \beta^{\prime}}\right)\left(\Phi_{N}, \Theta_{j^{\prime}, \beta^{\prime}}\right)=\left(\Phi_{N},(q(x)-Q(s)) \Theta_{j^{\prime}, \beta^{\prime}}\right) \\
& =\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)} A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\left(\Phi_{N}, \Theta_{j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}}\right)+O\left(\rho^{-p \alpha}\right) \tag{52}
\end{align*}
$$

and the decomposition (49) together with the binding formula (16) for $L_{D}(q)$ and $L_{D}\left(q^{\delta}\right)$ give

$$
\begin{align*}
\left(\Lambda_{N}\right. & \left.-\widetilde{\lambda}_{j^{\prime}, \beta^{\prime}}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}\right)=\left(\Psi_{N},(q(x)-Q(s)) \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}\right) \\
& =\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)} \widetilde{A}\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}}\right)+O\left(\rho^{-p \alpha}\right) \tag{53}
\end{align*}
$$

If the conditions (iterability conditions for the triple $\left.\left(N, j^{\prime}, \beta^{\prime}\right)\right)$

$$
\begin{equation*}
\left|\Upsilon_{N}-\lambda_{j^{\prime}, \beta^{\prime}}\right|>c_{7} \quad \text { and } \quad\left|\Lambda_{N}-\widetilde{\lambda}_{j^{\prime}, \beta^{\prime}}\right|>c_{8} \tag{54}
\end{equation*}
$$

hold, then the formulas (52) and (53) can be written in the following forms:

$$
\begin{align*}
& \left(\Phi_{N}, \Theta_{j^{\prime}, \beta^{\prime}}\right)=\frac{\left(\Phi_{N},(q(x)-Q(s)) \Theta_{j^{\prime}, \beta^{\prime}}\right)}{\Upsilon_{N}-\lambda_{j^{\prime}, \beta^{\prime}}} \\
& \quad=\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)} \frac{A\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\left(\Phi_{N}, \Theta_{j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}}\right)}{\Upsilon_{N}-\lambda_{j^{\prime}, \beta^{\prime}}}+O\left(\rho^{-p \alpha}\right) \tag{55}
\end{align*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

and

$$
\begin{align*}
& \left(\Psi_{N}, \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}\right)=\frac{\left(\Psi_{N},(q(x)-Q(s)) \widetilde{\Theta}_{j^{\prime}, \beta^{\prime}}\right)}{\Lambda_{N}-\widetilde{\lambda}_{j^{\prime}, \beta^{\prime}}} \\
& \quad=\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r\right)} \frac{\widetilde{A}\left(j^{\prime}, \beta^{\prime}, j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j^{\prime}+j_{1}, \beta^{\prime}+\beta_{1}}\right)}{\Lambda_{N}-\widetilde{\lambda}_{j^{\prime}, \beta^{\prime}}}+O\left(\rho^{-p \alpha}\right), \tag{56}
\end{align*}
$$

respectively. Using (52), (55), we will find $\Upsilon_{N}$, which is close to $\lambda_{j, \beta}$; and using (53), (56), we will find $\Lambda_{N}$, which is close to $\widetilde{\lambda}_{j, \beta}$, where $|j|+1<r_{1}$. For this, first in (52) and (53) instead of $j^{\prime}, \beta^{\prime}$, taking $j$ and $\beta$, hence instead of $r$ taking $r_{1}$, we get

$$
\begin{align*}
\left(\Upsilon_{N}\right. & \left.-\lambda_{j, \beta}\right)\left(\Phi_{N}, \Theta_{j, \beta}\right)=\left(\Phi_{N},(q(x)-Q(s)) \Theta_{j, \beta}\right) \\
& =\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right)} A\left(j, \beta, j+j_{1}, \beta+\beta_{1}\right)\left(\Phi_{N}, \Theta_{j+j_{1}, \beta+\beta_{1}}\right)+O\left(\rho^{-p \alpha}\right) \tag{57}
\end{align*}
$$

and

$$
\begin{align*}
\left(\Lambda_{N}\right. & \left.-\widetilde{\lambda}_{j, \beta}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j, \beta}\right)=\left(\Psi_{N},(q(x)-Q(s)) \widetilde{\Theta}_{j, \beta}\right) \\
& =\sum_{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right)} \widetilde{A}\left(j, \beta, j+j_{1}, \beta+\beta_{1}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j+j_{1}, \beta+\beta_{1}}\right)+O\left(\rho^{-p \alpha}\right) \tag{58}
\end{align*}
$$

respectively. To iterate (57) and (58) using (55) and (56), respectively, for $j^{\prime}=j+j_{1}$ and $\beta^{\prime}=\beta+\beta_{1}$, we will prove that there is a number $N$ satisfying

$$
\begin{equation*}
\left|\Upsilon_{N}-\lambda_{j+j_{1}, \beta+\beta_{1}}\right|>\frac{1}{2} \rho^{\alpha_{2}}, \quad\left|\Lambda_{N}-\widetilde{\lambda}_{j+j_{1}, \beta+\beta_{1}}\right|>\frac{1}{2} \rho^{\alpha_{2}} \tag{59}
\end{equation*}
$$

where $\left|j+j_{1}\right|+1<7 r_{1} \equiv r_{2}$, since $|j|+1<r_{1}$ and $\left|j_{1}\right|<6 r_{1}$. Then $\left(j+j_{1}, \beta+\beta_{1}\right)$ satisfies both conditions in (54). This means that, in formulas (55) and (56), the pair ( $j^{\prime}, \beta^{\prime}$ ) can be replaced by the pair $\left(j+j_{1}, \beta+\beta_{1}\right)$. Then we get

$$
\begin{align*}
& \left(\Phi_{N}, \Theta_{j+j_{1}, \beta+\beta_{1}}\right)=O\left(\rho^{-p \alpha}\right)+ \\
& \quad \sum_{\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, 6 r_{2}\right)} \frac{A\left(j+j_{1}, \beta+\beta_{1}, j+j_{1}+j_{2}, \beta+\beta_{1}+\beta_{2}\right)\left(\Phi_{N}, \Theta_{j+j_{1}+j_{2}, \beta+\beta_{1}+\beta_{2}}\right)}{\Upsilon_{N}-\lambda_{j+j_{1}, \beta+\beta_{1}}} \tag{60}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\Psi_{N}, \widetilde{\Theta}_{j+j_{1}, \beta+\beta_{1}}\right)=O\left(\rho^{-p \alpha}\right)+ \\
& \quad \sum_{\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, 6 r_{2}\right)} \frac{\widetilde{A}\left(j+j_{1}, \beta+\beta_{1}, j+j_{1}+j_{2}, \beta+\beta_{1}+\beta_{2}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j+j_{1}+j_{2}, \beta+\beta_{1}+\beta_{2}}\right)}{\Lambda_{N}-\widetilde{\lambda}_{j+j_{1}, \beta+\beta_{1}}} \tag{61}
\end{align*}
$$

KARAKILIÇ, VELIEV, ATILGAN

respectively. Putting the formula (60) into (57), we obtain

$$
\begin{align*}
&\left(\Upsilon_{N}-\lambda_{j, \beta}\right) c(N, j, \beta)=O\left(\rho^{-p \alpha}\right)+ \\
& \sum_{\substack{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right),\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, 6 r_{2}\right)}} \frac{A\left(j, \beta, j^{1}, \beta^{1}\right) A\left(j^{1}, \beta^{1}, j^{2}, \beta^{2}\right) c\left(N, j^{2}, \beta^{2}\right)}{\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}} \tag{62}
\end{align*}
$$

and putting the formula (61) into (58), we get

$$
\begin{align*}
&\left(\Lambda_{N}-\widetilde{\lambda}_{j, \beta}\right) b(N, j, \beta)=O\left(\rho^{-p \alpha}\right)+ \\
& \sum_{\substack{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right),\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, 6 r_{2}\right)}} \frac{\widetilde{A}\left(j, \beta, j^{1}, \beta^{1}\right) \widetilde{A}\left(j^{1}, \beta^{1}, j^{2}, \beta^{2}\right) b\left(N, j^{2}, \beta^{2}\right)}{\Lambda_{N}-\widetilde{\lambda}_{j^{1}, \beta^{1}}} \tag{63}
\end{align*}
$$

where $c(N, j, \beta)=\left(\Phi_{N}, \Theta_{j, \beta}\right), b(N, j, \beta)=\left(\Psi_{N}, \widetilde{\Theta}_{j, \beta}\right) j^{k}=j+j_{1}+j_{2}+\ldots+j_{k}$ and $\beta^{k}=\beta+\beta_{1}+\beta_{2}+\ldots+\beta_{k}$. Thus we will find a number $N$ such that $c(N, j, \beta)$ and $b(N, j, \beta)$ are not too small and the conditions in (59) are satisfied.

Similar investigation for quasiperiodic boundary condition was made in [12]. Arguing as in that paper, one can easily obtain the following results:

Result (a) Suppose $h_{1}(x), h_{2}(x), \ldots, h_{m}(x) \in L_{2}(F)$, where $m=\left[\frac{d}{2 \alpha_{2}}\right]+1$. Then for every eigenvalue $\lambda_{j, \beta}$ of the operator $L_{N}\left(q^{\delta}\right)$, there exists an eigenvalue $\Upsilon_{N}$ of $L_{N}(q)$ and for every eigenvalue $\widetilde{\lambda}_{j, \beta}$ of the operator $L_{D}\left(q^{\delta}\right)$, there exists an eigenvalue $\Lambda_{N}$ of $L_{D}(q)$ satisfying
(i) $\left|\Upsilon_{N}-\lambda_{j, \beta}\right|<2 M,\left|\Lambda_{N}-\widetilde{\lambda}_{j, \beta}\right|<2 M$, where $M=\sup |q(x)|$,
(ii) $|c(N, j, \beta)|>\rho^{-q \alpha},|b(N, j, \beta)|>\rho^{-q \alpha}$, where $q \alpha=\left[\frac{d}{2 \alpha}+2\right] \alpha$,
(iii) $|c(N, j, \beta)|^{2}>\frac{1}{2 m} \sum_{i=1}^{m}\left|\left(\Phi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\right|^{2}>\frac{1}{2 m}\left|\left(\Phi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\right|^{2}$,

$$
|b(N, j, \beta)|^{2}>\frac{1}{2 m} \sum_{i=1}^{m}\left|\left(\Psi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\right|^{2}>\frac{1}{2 m}\left|\left(\Psi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\right|^{2}, \quad \forall i=1,2, \ldots, m
$$

(b) Let $\gamma=\beta+j \delta \in V_{\delta}(\alpha) \backslash E_{2}$ and $\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right),\left(\beta_{k}, j_{k}\right) \in Q\left(\rho^{\alpha}, 6 r_{k}\right)$, where $r_{k}=7 r_{k-1}$ for $k=2,3, \ldots, p$. Then for $k=1,2,3, \ldots, p_{1}$, we have

$$
\begin{equation*}
\left|\lambda_{j, \beta}-\lambda_{j^{k}, \beta^{k}}\right|>\frac{3}{5} \rho^{\alpha_{2}}, \quad \forall \beta^{k} \neq \beta \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\widetilde{\lambda}_{j, \beta}-\widetilde{\lambda}_{j^{k}, \beta^{k}}\right|>\frac{3}{5} \rho^{\alpha_{2}}, \quad \forall \beta^{k} \neq \beta \tag{65}
\end{equation*}
$$

Now we prove the estimates (i), (ii) and (iii) of the Result(a) for the Neumann problem: Let $A, B, C$ be the set of indexes $N$ satisfying (i), (ii), (iii), respectively. Using the binding formula (17) for $L_{N}(q)$ and $L_{N}\left(q^{e_{i}}\right)$ and the Bessel's inequality, we get

$$
\begin{aligned}
\sum_{N \notin A}|c(N, j, \beta)|^{2} & =\sum_{N \notin A}\left|\frac{\left(\Phi_{N},(q(x)-Q(s)) \Theta_{j, \beta}\right)}{\Upsilon_{N}-\lambda_{j, \beta}}\right|^{2} \\
& \leq \frac{1}{4 M^{2}}\left\|(q(x)-Q(s)) \Theta_{j, \beta}\right\|^{2} \leq \frac{1}{4}
\end{aligned}
$$

Hence by Parseval's relation, we obtain

$$
\sum_{N \in A}|c(N, j, \beta)|^{2}>\frac{3}{4}
$$

Using the fact that the number of indexes $N$ in $A$ is less than $\rho^{d \alpha}$ and by the relation $N \notin B \quad \Rightarrow \quad|c(N, j, \beta)|<\rho^{-q \alpha}$, we have

$$
\sum_{N \in A \backslash B}|c(N, j, \beta)|^{2}<\rho^{d \alpha} \rho^{-q \alpha}<\rho^{-\alpha}
$$

Since $A=(A \backslash B) \bigcup(A \bigcap B)$, by above inequalities, we get

$$
\frac{3}{4}<\sum_{N \in A}|c(N, j, \beta)|^{2}=\sum_{N \in A \backslash B}|c(N, j, \beta)|^{2}+\sum_{N \in A \cap B}|c(N, j, \beta)|^{2}
$$

which implies

$$
\begin{equation*}
\sum_{N \in A \cap B}|c(N, j, \beta)|^{2}>\frac{3}{4}-\rho^{-\alpha}>\frac{1}{2} \tag{66}
\end{equation*}
$$

Now, suppose that $A \bigcap B \bigcap C=\emptyset$, i.e., for all $N \in A \bigcap B$, the condition (iii) does not hold. Then by (66) and Bessel's inequality, we have

$$
\begin{aligned}
\frac{1}{2} & <\sum_{N \in A \cap B}|c(N, j, \beta)|^{2} \leq \sum_{N \in A \cap B} \frac{1}{2 m} \sum_{i=1}^{m}\left|\left(\Phi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\right|^{2} \\
& =\frac{1}{2 m} \sum_{i=1}^{m} \sum_{N \in A \cap B}\left|\left(\Phi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\right|^{2}<\frac{1}{2 m} \sum_{i=1}^{m}\left\|\frac{h_{i}}{\left\|h_{i}\right\|}\right\|^{2}=\frac{1}{2}
\end{aligned}
$$

## KARAKILIÇ, VELIEV, ATILGAN

which is a contradiction.
Similarly, the estimates (i), (ii) and (iii) for the Dirichlet problem can be easily obtained.

Now we consider the following functions:

$$
\begin{equation*}
h_{i}(x)=\sum_{\substack{\left.j_{1}, \beta_{1}\right) \\\left(j_{2}, \beta_{2}\right)}} \frac{A\left(j, \beta, j+j_{1}, \beta+\beta_{1}\right) A\left(j+j_{1}, \beta+\beta_{1}, j^{2}, \beta^{2}\right) \Theta_{j^{2}, \beta^{2}}(x)}{\left(\lambda_{j, \beta}-\lambda_{j+j_{1}, \beta+\beta_{1}}\right)^{i}} \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{h}_{i}(x)=\sum_{\substack{\left(j_{1}, \beta_{1}\right) \\\left(j_{2}, \beta_{2}\right)}} \frac{\widetilde{A}\left(j, \beta, j+j_{1}, \beta+\beta_{1}\right) \widetilde{A}\left(j+j_{1}, \beta+\beta_{1}, j^{2}, \beta^{2}\right) \widetilde{\Theta}_{j^{2}, \beta^{2}}(x)}{\left(\widetilde{\lambda}_{j, \beta}-\widetilde{\lambda}_{j+j_{1}, \beta+\beta_{1}}\right)^{i}} \tag{68}
\end{equation*}
$$

where $\left(j_{1}, \beta_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right)$ and $\left(j_{2}, \beta_{2}\right) \in Q\left(\rho^{\alpha}, 6 r_{2}\right)$. Since $\left\{\Theta_{j^{2}, \beta^{2}}(x)\right\}$ is a total system and $\beta_{1} \neq 0$, by (50) and (64), we have $\sum_{\left(j^{\prime}, \beta^{\prime}\right)}\left|\left(h_{i}(x), \Theta_{j^{\prime}, \beta^{\prime}}\right)\right|^{2} \leq c_{9} \rho^{-2 i \alpha_{2}}$, i.e.,

$$
\begin{equation*}
h_{i}(x) \in L_{2}(F) \quad \text { and } \quad\left\|h_{i}(x)\right\|=O\left(\rho^{-i \alpha_{2}}\right) \tag{69}
\end{equation*}
$$

Similarly, using the fact that $\left\{\widetilde{\Theta}_{j^{2}, \beta^{2}}(x)\right\}$ is a total system, by (51) and (65), we get

$$
\begin{equation*}
\widetilde{h}_{i}(x) \in L_{2}(F) \quad \text { and } \quad\left\|\widetilde{h}_{i}(x)\right\|=O\left(\rho^{-i \alpha_{2}}\right) \tag{70}
\end{equation*}
$$

Theorem 1 a) For every eigenvalue $\lambda_{j, \beta}$ of the operator $L_{N}\left(q^{\delta}\right)$ with $\beta+j \delta \in V_{\delta}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}$, there exists an eigenvalue $\Upsilon_{N}$ of the operator $L_{N}(q)$ satisfying

$$
\begin{equation*}
\Upsilon_{N}=\lambda_{j, \beta}+O\left(\rho^{-\alpha_{2}}\right) \tag{71}
\end{equation*}
$$

b) For every eigenvalue $\widetilde{\lambda}_{j, \beta}$ of the operator $L_{D}\left(q^{\delta}\right)$ with $\beta+j \delta \in V_{\delta}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}$, there exists an eigenvalue $\Lambda_{N}$ of the operator $L_{D}(q)$ satisfying

$$
\begin{equation*}
\Lambda_{N}=\tilde{\lambda}_{j, \beta}+O\left(\rho^{-\alpha_{2}}\right) \tag{72}
\end{equation*}
$$

Proof. a) By Result (a), for the chosen $h_{i}(x), i=1,2, \ldots, m$ in (67), there exists a number $N$, satisfying (i), (ii), (iii). Since $\beta_{1} \neq 0$, by (64), we have

$$
\left|\lambda_{j, \beta}-\lambda_{j^{1}, \beta^{1}}\right|>c_{10} \rho^{\alpha_{2}} .
$$

The above inequality together with (i) imply

$$
\left|\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}\right|>c_{11} \rho^{\alpha_{2}} .
$$

## KARAKILIÇ, VELIEV, ATILGAN

Using the following well known decomposition

$$
\frac{1}{\left|\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}\right|}=\sum_{i=1}^{m} \frac{\left|\Upsilon_{N}-\lambda_{j, \beta}\right|^{i-1}}{\left|\lambda_{j, \beta}-\lambda_{j^{1}, \beta^{1}}\right|^{i}}+O\left(\rho^{-(m+1) \alpha_{2}}\right),
$$

we see that the formula (62) can be written as

$$
\begin{aligned}
\left(\Upsilon_{N}\right. & \left.-\lambda_{j, \beta}\right) c(N, j, \beta)=O\left(\rho^{-p \alpha}\right) \\
& +\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in \in\left(\rho^{\alpha} \alpha r_{1}\right),\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, 6_{r}\right)}} \frac{A\left(j, \beta, j+j_{1}, \beta+\beta_{1}\right) A\left(j+j_{1}, \beta+\beta_{1}, j^{2}, \beta^{2}\right) c\left(N, j^{2}, \beta^{2}\right)}{\Upsilon_{N}-\lambda_{j+j_{1}, \beta+\beta_{1}}} \\
& =\sum_{i=1}^{m}\left|\Upsilon_{N}-\lambda_{j, \beta}\right|^{i-1}\left(\Phi_{N}, \frac{h_{i}}{\left\|h_{i}\right\|}\right)\left\|h_{i}\right\|+O\left(\rho^{-(m+1) \alpha_{2}}\right) .
\end{aligned}
$$

Now dividing both sides of the last equation by $c(N, j, \beta)$ and using (ii), (iii), we have

$$
\begin{aligned}
\left|\Upsilon_{N}-\lambda_{j, \beta}\right| \leq & \frac{\left|\left(\Phi_{N}, \frac{h_{1}}{\left\|h_{1}\right\|}\right)\right|}{|c(N, j, \beta)|}\left\|h_{1}\right\|+\frac{\left|\Upsilon_{N}-\lambda_{j, \beta} \|\left(\Phi_{N}, \frac{h_{2}}{\left\|h_{2}\right\|}\right)\right|}{|c(N, j, \beta)|}\left\|h_{2}\right\| \\
& +\ldots+\frac{\left|\Upsilon_{N}-\lambda_{j, \beta}\right|^{(m-1)}\left|\left(\Phi_{N}, \frac{h_{m}}{\left\|h_{m}\right\|}\right)\right|}{|c(N, j, \beta)|}\left\|h_{m}\right\|+O\left(\rho^{-(m+1) \alpha_{2}+q \alpha}\right) \\
& \leq\left\|h_{1}\right\|+2 M\left\|h_{2}\right\|+\ldots+(2 M)^{m-1}\left\|h_{m}\right\|+O\left(\rho^{-(m+1) \alpha_{2}+q \alpha}\right)
\end{aligned}
$$

Hence by (69), we obtain

$$
\Upsilon_{N}=\lambda_{j, \beta}+O\left(\rho^{-\alpha_{2}}\right)
$$

since $(m+1) \alpha_{2}-q \alpha>\alpha_{2}$.
The part b) of the theorem can be proved similarly. Theorem is proved.

It follows from (64),(65), (71) and (72) that the triples $\left(N, j^{k}, \beta^{k}\right)$ for $k=1,2, \ldots, p_{1}$, satisfy the iterability conditions in (54). In (55) and (56), instead of $j^{\prime}, \beta^{\prime}$ and $r$ taking $j^{2}, \beta^{2}$ and $r_{3}$, we have

$$
\begin{equation*}
c\left(N, j^{2}, \beta^{2}\right)=\sum_{\left(\beta_{3}, j_{3}\right) \in Q\left(\rho^{\alpha}, 6 r_{3}\right)} \frac{A\left(j^{2}, \beta^{2}, j^{3}, \beta^{3}\right)\left(\Phi_{N}, \Theta_{j^{3}, \beta^{3}}\right)}{\Upsilon_{N}-\lambda_{j^{2}, \beta^{2}}}+O\left(\rho^{-p \alpha}\right) \tag{73}
\end{equation*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

and

$$
\begin{equation*}
b\left(N, j^{2}, \beta^{2}\right)=\sum_{\left(\beta_{3}, j_{3}\right) \in Q\left(\rho^{\alpha}, 6 r_{3}\right)} \frac{\widetilde{A}\left(j^{2}, \beta^{2}, j^{3}, \beta^{3}\right)\left(\Psi_{N}, \widetilde{\Theta}_{j^{3}, \beta^{3}}\right)}{\Lambda_{N}-\widetilde{\lambda}_{j^{2}, \beta^{2}}}+O\left(\rho^{-p \alpha}\right), \tag{74}
\end{equation*}
$$

respectively.
To obtain the other terms of the asymptotic formulas of $\Upsilon_{N}$ and $\Lambda_{N}$, we iterate the formulas (52) and (53), respectively.

Now we isolate the terms with multiplicands $c(N, j, \beta)$ in the right hand side of (62); hence we get

$$
\begin{align*}
& \left(\Upsilon_{N}-\lambda_{j, \beta}\right) c(N, j, \beta)=O\left(\rho^{-p \alpha}\right) \\
& +\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right) \\
\left(\beta_{2}, j_{2}\right) \in Q\left(\rho_{0}, \sigma_{1} r_{2}\right) \\
\left(j+j_{1}+j_{2}, \beta+\beta_{1}+\beta_{2}\right)=(j, \beta)}} \frac{A\left(j, \beta, j^{1}, \beta^{1}\right) A\left(j^{1}, \beta^{1}, j, \beta\right)}{\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}} c(N, j, \beta) \\
& +\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in \in\left(\rho^{\alpha}, 6 r_{1}\right) \\
\left(\beta_{2}, j_{2}\right) \in\left(\rho_{0}, c_{2}\right) \\
\left(j+j_{1}+j_{2}, \beta+\beta_{1}+\beta_{2}\right) \neq(j, \beta)}} \frac{A\left(j, \beta, j^{1}, \beta^{1}\right) A\left(j^{1}, \beta^{1}, j^{2}, \beta^{2}\right)}{\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}} c\left(N, j^{2}, \beta^{2}\right) . \tag{75}
\end{align*}
$$

Substituting the equation (73) into the second sum of the equation (75), we get

$$
\begin{align*}
& \left(\Upsilon_{N}-\lambda_{j, \beta}\right) c(N, j, \beta)=O\left(\rho^{-p \alpha}\right) \\
& +\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in\left(\rho^{\alpha}, 6 r_{1}\right) \\
\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, \dot{c}, \sigma_{2}\right) \\
\left(j^{2}, \beta^{2}\right)=\left(j, \beta^{2}\right)}} \frac{A\left(j, \beta, j^{1}, \beta^{1}\right) A\left(j^{1}, \beta^{1}, j, \beta\right)}{\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}} c(N, j, \beta)+ \\
& \sum_{\substack{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right) \\
\left(\beta_{2}, j_{2}\right) \in Q\left(\rho^{\alpha}, 6 r_{2}\right) \\
\left(j^{2}, \mathcal{N}^{2} \neq\left(j_{2}, \beta\right) \\
\left(j_{3}, \beta_{3}\right) \in Q\right) \in Q\left(\rho^{\alpha}, 6 r_{3}\right)}} \frac{A\left(j, \beta, j^{1}, \beta^{1}\right) A\left(j^{1}, \beta^{1}, j^{2}, \beta^{2}\right) A\left(j^{2}, \beta^{2}, j^{3}, \beta^{3}\right)}{\left(\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}\right)\left(\Upsilon_{N}-\lambda_{j^{2}, \beta^{2}}\right)} c\left(N, j^{3}, \beta^{3}\right) . \tag{76}
\end{align*}
$$

Again isolating the terms $c(N, j, \beta)$ in the last sum of the equation (76), we obtain

$$
\left(\Upsilon_{N}-\lambda_{j, \beta}\right) c(N, j, \beta)=\left[\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in \in\left(\rho^{\alpha}, 6 r_{1}\right) \\\left(\beta_{2}, \gamma_{2}\right) \in Q\left(\rho^{2}, 6, r_{2}\right) \\\left(j^{2}, \beta^{2}\right)=(j, \beta)}} \frac{A\left(j, \beta, j^{1}, \beta^{1}\right) A\left(j^{1}, \beta^{1}, j, \beta\right)}{\Upsilon_{N}-\lambda_{j^{1}, \beta^{1}}}\right.
$$

## KARAKILIÇ, VELIEV, ATILGAN

In this way, iterating $2 p$ times, we get

$$
\begin{equation*}
\left(\Upsilon_{N}-\lambda_{j, \beta}\right) c(N, j, \beta)=\left[\sum_{k=1}^{2 p} S_{k}^{\prime}\right] c(N, j, \beta)+C_{2 p}^{\prime}+O\left(\rho^{-p \alpha}\right) \tag{78}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{k}^{\prime}\left(\Upsilon_{N}, \lambda_{j, \beta}\right)=\sum_{\substack{\left.\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right), \ldots \ldots \\\left(j_{k+1}, \beta_{k+1}+1 \in Q(\alpha), \ldots r_{k+1}\right) \\\left(j^{k+1} k+1\right)=()^{k+1}\right)=(j, \beta),\left(j^{s}, \beta^{s}\right) \neq(j, \beta), s=2, \ldots, k}}\left(\prod_{i=1}^{k} \frac{A\left(j^{i-1}, \beta^{i-1}, j^{i}, \beta^{i}\right)}{\left(\Upsilon_{N}-\lambda_{j^{i}, \beta^{i}}\right)}\right) A\left(j^{k}, \beta^{k}, j, \beta\right) \tag{79}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{k}^{\prime}=\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right), \ldots \\\left(j_{k}+\beta_{k}+1\right) \in Q\left(\rho_{\alpha}, 6 r_{k+1}\right) \\\left(j^{s}, \beta^{s}\right) \neq(j, \beta), s=2, \ldots, k+1}}\left(\prod_{i=1}^{k} \frac{A\left(j^{i-1}, \beta^{i-1}, j^{i}, \beta^{i}\right)}{\left(\Upsilon_{N}-\lambda_{j^{i}, \beta^{i}}\right)}\right) A\left(j^{k}, \beta^{k}, j^{k+1}, \beta^{k+1}\right) c\left(N, j^{k+1}, \beta^{k+1}\right) \tag{80}
\end{equation*}
$$

Similarly, we isolate the terms with multiplicands $b(N, j, \beta)$ in the right hand side of (63), substitute the equation (74) into the obtained equation and iterate $2 p$ times, we obtain

$$
\begin{equation*}
\left(\Lambda_{N}-\widetilde{\lambda}_{j, \beta}\right) b(N, j, \beta)=\left[\sum_{k=1}^{2 p} S_{k}^{\prime \prime}\right] b(N, j, \beta)+C_{2 p}^{\prime \prime}+O\left(\rho^{-p \alpha}\right) \tag{81}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{k}^{\prime \prime}\left(\Lambda_{N}, \widetilde{\lambda}_{j, \beta}\right)=\sum_{\substack{\left(\beta_{1}, j_{1}\right) \in Q\left(\rho^{\alpha}, 6 r_{1}\right), \ldots,\left(j_{k+1}, \beta_{k+1}\right) \in Q\left(\rho^{\alpha}, 6 r_{k+1}\right) \\\left(j^{k+1}, \beta^{k+1}\right)=(j, \beta) \\\left(j^{s}, \beta^{s}\right) \neq(j, \beta), s=2, \ldots, k}}\left(\prod_{i=1}^{k} \frac{\widetilde{A}\left(j^{i-1}, \beta^{i-1}, j^{i}, \beta^{i}\right)}{\left(\Lambda_{N}-\widetilde{\lambda}_{j}, \beta^{i}\right)}\right) \widetilde{A}\left(j^{k}, \beta^{k}, j, \beta\right) \tag{82}
\end{equation*}
$$

```
KARAKILIÇ, VELIEV, ATILGAN
```

and

First we estimate $S_{k}^{\prime}$ and $C_{k}^{\prime}$. For this, we consider the terms which appear in the denominators of (79) and (80). By the conditions under the summations in (79) and (80), we have $j_{1}+j_{2}+\ldots+j_{i} \neq 0$ or $\beta_{1}+\beta_{2}+\ldots+\beta_{i} \neq 0$, for $i=2,3, \ldots, k$.

If $\beta_{1}+\beta_{2}+\ldots+\beta_{i} \neq 0$, then by (64) and (71), we have

$$
\begin{equation*}
\left|\Upsilon_{N}-\lambda_{j^{i}, \beta^{i}}\right|>\frac{1}{2} \rho^{\alpha_{2}} \tag{84}
\end{equation*}
$$

If $\beta_{1}+\beta_{2}+\ldots+\beta_{i}=0$, i.e., $j_{1}+j_{2}+\ldots+j_{i} \neq 0$, then by well-known theorem

$$
\left|\lambda_{j, \beta}-\lambda_{j^{i}, \beta^{i}}\right|=\left|\mu_{j}-\mu_{j^{i}}\right|>c_{13},
$$

hence by (71), we obtain

$$
\begin{equation*}
\left|\Upsilon_{N}-\lambda_{j^{i}, \beta^{i}}\right|>\frac{1}{2} c_{13} . \tag{85}
\end{equation*}
$$

Since $\beta_{k} \neq 0$ for all $k \leq 2 p$, the relation $\beta_{1}+\beta_{2}+\ldots+\beta_{i}=0$ implies $\beta_{1}+\beta_{2}+\ldots+\beta_{i \pm 1} \neq$ 0 . Therefore the number of multiplicands $\Upsilon_{N}-\lambda_{j^{i}, \beta^{i}}$ in (84) is no less than $p$. Thus by (50), (84) and (85), we get

$$
\begin{equation*}
S_{1}^{\prime}=O\left(\rho^{-\alpha_{2}}\right), \quad C_{2 p}^{\prime}=O\left(\rho^{-p \alpha_{2}}\right) \tag{86}
\end{equation*}
$$

By similar calculations and considerations, it can be easily obtained that

$$
\begin{equation*}
S_{1}^{\prime \prime}=O\left(\rho^{-\alpha_{2}}\right), \quad C_{2 p}^{\prime \prime}=O\left(\rho^{-p \alpha_{2}}\right) \tag{87}
\end{equation*}
$$

Theorem 2 (a) For every eigenvalue $\lambda_{j, \beta}$ of $L_{N}\left(q^{\delta}\right)$ and for every eigenvalue $\widetilde{\lambda}_{j, \beta}$ of $L_{D}\left(q^{\delta}\right)$ such that $\beta+j \delta \in V_{\delta}\left(\rho^{\alpha_{1}}\right) \backslash E_{2}$, there exists an eigenvalue $\Upsilon_{N}$ of the operator $L_{N}(q)$ and an eigenvalue $\Lambda_{N}$ of the operator $L_{D}(q)$ satisfying

$$
\begin{equation*}
\Upsilon_{N}=\lambda_{j, \beta}+E_{k-1}+O\left(\rho^{-k \alpha_{2}}\right) \tag{88}
\end{equation*}
$$

KARAKILIÇ, VELIEV, ATILGAN

and

$$
\begin{equation*}
\Lambda_{N}=\widetilde{\lambda}_{j, \beta}+E_{k-1}+O\left(\rho^{-k \alpha_{2}}\right) \tag{89}
\end{equation*}
$$

respectively, where $E_{0}=0, E_{s}=\sum_{k=1}^{2 p} S_{k}^{\prime}\left(E_{s-1}+\lambda_{j, \beta}, \lambda_{j, \beta}\right), \widetilde{E}_{0}=0, \widetilde{E}_{s}=\sum_{k=1}^{2 p} S_{k}^{\prime \prime}\left(\widetilde{E}_{s-1}+\right.$ $\left.\widetilde{\lambda}_{j, \beta}, \widetilde{\lambda}_{j, \beta}\right), s=1,2, \ldots$
(b) If

$$
\begin{equation*}
\left|\Upsilon_{N}-\lambda_{j, \beta}\right|<c_{14}, \quad\left|\Lambda_{N}-\widetilde{\lambda}_{j, \beta}\right|<c_{15} \tag{90}
\end{equation*}
$$

and

$$
\begin{equation*}
|c(N, j, \beta)|>\rho^{-n \alpha}, \quad|b(N, j, \beta)|>\rho^{-n \alpha} \tag{91}
\end{equation*}
$$

then $\Upsilon_{N}$ satisfies (88) and $\Lambda_{N}$ satisfies (89).
Proof. By Result (a)-(b), there exists $N$ satisfying the conditions (90) and (91) in part (b). Hence it suffices to prove part (b). By (64), (65) and (90), the triples ( $N, j^{k}, \beta^{k}$ ) satisfy the iterability conditions in (54). Hence we can use (78), (81), (86) and (87). Now, we prove the theorem by induction:

For $k=1$, to prove (88), we divide both sides of the equation (78) by $c(N, j, \beta)$ and use the estimations (86). Similarly, to prove (89) for $k=1$, we divide both sides of the equation (81) by $b(N, j, \beta)$ and use the estimations (87).

Suppose that (88) and (89) hold for $k=s$, i.e.,

$$
\begin{align*}
& \Upsilon_{N}=\lambda_{j, \beta}+E_{s-1}+O\left(\rho^{-s \alpha_{2}}\right)  \tag{92}\\
& \Lambda_{N}=\widetilde{\lambda}_{j, \beta}+\widetilde{E}_{s-1}+O\left(\rho^{-s \alpha_{2}}\right) \tag{93}
\end{align*}
$$

First we prove that (88) holds for $k=s+1$. For this, we substitute the formula (92) into the expression $\sum_{k=1}^{2 p} S_{k}^{\prime}\left(\Upsilon_{N}, \lambda_{j, \beta}\right)$ in equation (78), then we get

$$
\begin{align*}
& \left(\Upsilon_{N}-\lambda_{j, \beta}\right) c(N, j, \beta)=\left(\sum_{k=1}^{2 p} S_{k}^{\prime}\left(\lambda_{j, \beta}+E_{s-1}+O\left(\rho^{-s \alpha_{2}}\right), \lambda_{j, \beta}\right)\right) c(N, j, \beta) \\
& \quad+C_{2 p}^{\prime}+O\left(\rho^{-p \alpha}\right) \tag{94}
\end{align*}
$$

Dividing both sides of (94) by $c(N, j, \beta)$ using (91) and (86), we have

$$
\begin{equation*}
\Upsilon_{N}=\lambda_{j, \beta}+\sum_{k=1}^{2 p} S_{k}^{\prime}\left(\lambda_{j, \beta}+E_{s-1}+O\left(\rho^{-s \alpha_{2}}\right), \lambda_{j, \beta}\right)+O\left(\rho^{-(p-q) \alpha}\right) \tag{95}
\end{equation*}
$$

## KARAKILIÇ, VELIEV, ATILGAN

Now we add and subtract the term $\sum_{k=1}^{2 p} S_{k}^{\prime}\left(E_{s-1}+\lambda_{j, \beta}, \lambda_{j, \beta}\right)$ in (95) then we have

$$
\begin{align*}
\Upsilon_{N}= & \lambda_{j, \beta}+E_{s}+O\left(\rho^{-(p-q) \alpha}\right) \\
& +\left[\sum_{k=1}^{2 p} S_{k}^{\prime}\left(\lambda_{j, \beta}+E_{s-1}+O\left(\rho^{-s \alpha_{2}}\right), \lambda_{j, \beta}\right)-\sum_{k=1}^{2 p} S_{k}^{\prime}\left(E_{s-1}+\lambda_{j, \beta}, \lambda_{j, \beta}\right)\right] \tag{96}
\end{align*}
$$

Now, we first prove that $E_{j}=O\left(\rho^{-\alpha_{2}}\right)$ by induction. $E_{0}=0$. Suppose that $E_{j-1}=O\left(\rho^{-\alpha_{2}}\right)$, then $a=\lambda_{j, \beta}+E_{j-1}$ satisfies (84) and (85). Hence we get

$$
\begin{equation*}
S_{1}^{\prime}\left(a, \lambda_{j, \beta}\right)=O\left(\rho^{-\alpha_{2}}\right) \Rightarrow E_{j}=O\left(\rho^{-\alpha_{2}}\right) \tag{97}
\end{equation*}
$$

So to prove (88) for $k=s+1$, we need to show that the expression in the square brackets in (96) is equal to $O\left(\rho^{-(s+1) \alpha_{2}}\right)$. This can be easily checked by (97) and the obvious relation

$$
\frac{1}{\lambda_{j, \beta}+E_{s-1}+O\left(\rho^{-s \alpha_{2}}\right)-\lambda_{j^{k}, \beta^{k}}}-\frac{1}{\lambda_{j, \beta}+E_{s-1}-\lambda_{j^{k}, \beta^{k}}}=O\left(\rho^{-(s+1) \alpha_{2}}\right)
$$

for $\beta^{k} \neq \beta$. The formula (89) for $k=s+1$ can be proved similarly. The theorem is proved.

## References

[1] Atılgan, S..\& Karakılıç, S. \& Veliev. O.A.(2002). Asymptotic Formulas for the Eigenvalues of the Schrödinger Operator. Turk J Math,26,215-227.
[2] Feldman,J.\& Knorrer,H.\& Trubowitz,E.(1990)The Perturbatively Stable Spectrum of the Periodic Schrodinger Operator. Invent. Math.,100, 259-300.
[3] Feldman,J.\& Knorrer,H.\& Trubowitz,E.(1991)The Perturbatively unstable Spectrum of the Periodic Schrodinger Operator. Comment.Math.Helvetica, 66,557-579.
[4] Friedlanger,L.(1990).On the Spectrum for the Periodic Problem for the Schrodinger Operator. Communications in Partial Differential Equations,15,1631-1647.
[5] Hald,O.H. \& McLaughlin,J.R.(1996). Inverse Nodal Problems: Finding the Potential from Nodal Lines. Memoirs of AMS. 572,119,0075-9266.

```
KARAKILIÇ, VELIEV, ATILGAN
```

[6] Karpeshina,Yu.E.(1992). Perturbation Theory for the Schrödinger Operator with a nonsmooth Periodic Potential. Math.USSR-Sb,71,701-123.
[7] Karpeshina,Yu.E.(1996). Perturbation series for the Schrödinger Operator with a Periodic Potential near Planes of Diffraction. Communication in Analysis and Geometry,4,3,339-413.
[8] Veliev,O.A.(1983). On the Spectrum of the Schrödinger Operator with Periodic Potential. Dokl.Akad.Nauk SSSR 268,no.6,1289-1292.
[9] Veliev,O.A. and Molchanov, S.A.(1985). Structure of the Spectrum of the Periodic Schrödinger Operator on a Euclidean Torus. Functsional Anal. i Prilozhen, 19, no3, 8687.
[10] Veliev,O.A.(1987). Asymptotic Formulas for the Eigenvalues of the Periodic Schrödinger Operator and the Bethe-Sommerfeld Conjecture. Functsional Anal. i Prilozhen, 21, no.2,115.
[11] Veliev,O.A.(1988). The Spectrum of Multidimensional Periodic Operators. Teor.Funktsional Anal. i Prilozhen, 49,17-34.
[12] Veliev,O.A.(2001). The Periodic Multidimensional Schrodinger Operator, Part 1, Asymptotic Formulae for Eigenvalues, University of Texas, Mathematics Department, Mathematical Physics Preprint Archive, 01-446.Dec.4.

## Sedef KARAKILIÇ

Received 21.05.2004
Dept. of Math., Fac. of Art and
Science, Dokuz Eylül Univ.,
Tinaztepe Camp., Buca,
35160, İzmir-TURKEY
e-mail: sedef.erim@deu.edu.tr
Oktay A. VELIEV,
Dep. of Science, Doğuş Univ.,
Acıbadem, Kadıköyy, 81010,
İstanbul-TURKEY
e-mail: oveliev@dogus.edu.tr
Sirin ATILGAN
Dep. of Math., Fac. of Science,
İzmir Inst. of Technology,
Gülbahçe, Urla,
İzmir-TURKEY
e-mail: sirinatilgan@iyte.edu.tr


[^0]:    *Supported by a grant from TÜBİTAK.

