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The Basis Number of the Semi-Composition Product

of Some Graphs I

M. M. M. Jaradat, E. A. Rawashdeh, M. Y. Alzoubi

Abstract

The basis number of a graph G is defined to be the least integer d such that

there is a basis B of the cycle space of G such that each edge of G is contained in

at most d members of B. We investigate the basis number of the semi-composition

product of two paths and a cycle with a path.
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1. Introduction and Definitions

Graph products have been the impetus for several areas of research. The revival of
interest seems to be mostly due to the algorithmic point of view and how particular
graphical parameters interact with graph products. In recent years, there was a growing
literature on the basis number of graphs. Even more recently, the most attention has
been given to the basis number of graphs obtained from graph products. We refer the
readers to the papers [1], [2], [3], [4], [7], [8], [9].

All graphs under consideration are undirected, finite and simple. Our terminology and
notations will be standard except as indicated. For undefined terms, see [5]. We use the
symbols V (G) and E(G), respectively, to denote the vertex set and edge set of G. Given
a graph G, let e1, e2, . . . , e|E(G)| be an ordering of its edges. Then a subset S of E(G)
corresponds to a (0, 1)-vector (b1, b2, . . . , b|E(G)|) in the usual way with bi = 1 if ei ∈ S,
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and bi = 0 if ei /∈ S. These vectors form an |E(G)|-dimensional vector space, denoted by
(Z2)|E(G)|, over the field of integer numbers modulo 2. The vectors in (Z2)|E(G)| which
correspond to the cycles in G generate a subspace called the cycle space of G and denoted
by C(G). We shall say that the cycles themselves, rather than the vectors corresponding
to them, generate C(G). It is known that for a connected graph G

dim C(G) = |E(G)| − |V (G)|+ 1. (1)

Given any spanning tree T of G, every graph T + e, e /∈ T , consists exactly one cycle
Ce, and the collection of cycles {Ce : e /∈ T} forms a basis of C(G), called the fundamental
basis corresponding to T . One can observe that each edge outside of T occurs in exactly
one cycle of this basis, but each edge of T itself may occur in many cycles of the basis.
This led Schmeichel [11]. to formally introduce the following definition:

Definition 1.1 A basis B for C(G) is called a d-fold if each edge of G occurs in at most
d of the cycles in the basis B. The basis number b(G) of G is the least non-negative
integer d such that C(G) has a d-fold basis. The required basis of G is a basis B of
b(G)-fold.

We now give the definitions of the following four graph products.

Definition 1.2 Let G = (V (G), E(G)) and H = (V (H), E(H)) be two graphs. (1)
The cartesian product G∗ = G × H has the vertex set V (G∗) = V (G) × V (H) and the
edge set E(G∗) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G) and v1 = v2, or u1 = u2 and v1v2 ∈
E(H)}. (2) The lexicographic (or composition) product G∗ = G[H ] has the vertex set
V (G∗) = V (G)×V (H) and edge set the E(G∗) = {(u1, v1)(u2, v2)|u1u2 ∈ E(G), or u1 =
u2 and v1v2 ∈ E(H)}. (3) The direct product G∗ = G ∧H has the vertex set V (G∗) =
V (G)×V (H) and the edge set E(G∗) = {(u1, v1)(u2, v2)|v1v2 ∈ E(H) and u1u2 ∈ E(G)}.
(4) The semi-composition product G∗ = G � H has the vertex set V (G∗) = V (G) ×
V (H) and the edge set E(G∗) = {(u1, v1)(u2, v2)|u1 = u2 and v1v2 ∈ E(H) or u1u2 ∈
E(G) and v1v2 /∈ E(H)} (see Figure 1). Note that E(G�H) = E(G[H ])− E(G ∧H).

One can notice that the cartesian and the direct products is commutative but the
lexicographic and the semi-composition products are not commutative. Moreover,

dG�H(u, v) = |V (H)|dG(u) + dH(v) − dG(u)dH(v),

|E(G�H)| = |E(G)||V (H)|2 + |V (G)||E(H)| − 2|E(G)||E(H)|,
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Figure 1. This is an example to explain the definition of the semi-composition product of two

paths of order 3 and 4, P3 � P4.

where dG(x) is the degree of the vertex x in the graph G.

The first important result in the basis number was given by MacLane, in 1937 [10],
who proved that b(G) ≤ 2 if and only if G is non planar. In 1981 [11], Schmeichel proved
that b(P2[N ]) ≤ 4 where P2 is a path of order two and N is a null graph.

The purpose of this paper is to find the basis number of the semi-composition product
of two paths and a cycle with a path.

Throughout this work, for B ⊂ C(G), fB(e) stands for the number of cycles in
B containing the edge e, C(B) stands for the subspace of C(G) generated by B and
E(B) = ∪c∈BE(c).

2. Main Results

In this section, we investigate the basis number of the semi-composition product of
two paths and a cycle with a path. In fact, we show, under some restrictions on their
orders, the basis number is 4. Let P2 = ab be a path of order 2 and U = {u1, u2, ..., un}
be a set of vertices. Then the Schemichel basis, B, (see [11], Theorem 2.4) of the cycle
space C(P2[N ]), where N is the null graph with vertex set U , is defined as follows:

B = {(a, uj)(b, ul)(a, uj+1)(b, ul+1)(a, uj) : 1 ≤ j, l ≤ n− 1}.

Now, Let

A(1)
ab = {(a, uj)(b, ul)(a, uj+1)(b, ul+1)(a, uj) : 1 ≤ j, l ≤ n− 1 and |j − l| > 2}.
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Then the following assertions are easy to see (1) If e = (a, uj)(b, uj), then fA(1)
ab

(e) = 0.

(2) If e = (a, u1)(b, un) or e = (a, un)(b, u1) or (a, uj)(b, uj+2), or (a, uj+2)(b, uj), then
fA(1)

ab

(e) ≤ 1. (3) If e = (a, u1)(b, uj) or (a, uj)(b, u1) or (a, uj)(b, un) or(a, uj)(b, un),

then fA(1)
ab

(e) ≤ 2. (4) If e = (a, uj)(b, uj+3) or (a, uj+3)(b, uj), then fA(1)
ab

(e) ≤ 3.

(5) If e ∈ E(A(1)
ab ) and is not any of the above forms, then fA(1)

ab

(e) ≤ 4. Moreover,

|A(1)
ab | = |B| − (5(n− 5) + 14) = (n − 3)(n− 4).

The following lemma follows immediately from being that A(1)
ab ⊆ B.

Lemma 2.1 A(1)
ab is a linearly independent set of cycles.

We now define the following sets of 4-cycles:

A(2)
ab = {A(j)

2 = (a, uj)(b, uj)(a, uj+2)(b, uj+2)(a, uj) : 1 ≤ j ≤ n− 2},

A(3)
ab = {A(j)

3 = (b, un)(a, un−j)(b, un−j)(a, un−j−2)(b, un) : 2 ≤ j ≤ n− 3}.

Note that if n < 5, then A(3)
ab contains no cycles.

Lemma 2.2 A(2)
ab ∪ A

(3)
ab is a linearly independent set of cycles.

Proof. Since each cycle A(j)
3 contains (a, un−j)(b, un−j), which is not in any other cycle

of A(3)
ab ,A

(3)
ab is linearly independent. Similarly, each cycle A(j)

2 contains (b, uj)(a, uj+2)

which is not in any other cycle of A(2)
ab ∪ A

(3)
ab . Therefore, A(2)

ab ∪ A
(3)
ab is a linearly

independent set of cycles. The proof is complete. 2

Lemma 2.3 C(A(1)
ab ∪ A

(2)
ab ∪ A

(3)
ab ) is the direct sum of C(A(1)

ab ) and C(A(2)
ab ∪ A

(3)
ab ).

Proof. To prove the lemma, by Lemma 2.1 and Lemma 2.2, it suffices to show that any

element of C(A(2)
ab ∪A

(3)
ab ) can not be written as a linear combination of cycles from A(1)

ab .

Let C be a nontrivial element of C(A(2)
ab ∪ A

(3)
ab ). Then C =

∑k1
j=1A

(2j)
2 +

∑k2
j=1A

(3j)
3

(mod2) such that at least one of k1 and k2 is non zero. We consider two cases:
Case 1. C contains at least one edge of the form (a, uf)(b, uf). Then C can not be

written as a linear combination of cycles of A(1)
ab because no cycle of A(1)

ab contains such
an edge.
Case 2. C contains no edges of the form (a, uf)(b, uf). Since any linear combination of

cycles of A(3)
ab (or A(2)

ab ) must contain at least one edge of the form (a, uf)(b, uf) for some
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f , as a result both of k1, k2 ≥ 1. Now, A(1)
ab ⊆ B, C(A(2)

ab ∪ A
(3)
ab ) ⊆ C(P2[N ]) and B is a

basis for C(P2[N ]). Thus, to show that C can not be written as a linear combination of

A(1)
ab , it suffices to show that the unique combination of C from cycles of B must contain

at least one element of B−A(1)
ab . Now each cycle of {A(2j)

2 }k1
j=1∪{A

(3j)
3 }k2

j=1 can be written
uniquely as a linear combination of cycles of B as follows: For each j = 1, 2, . . .k1,

A(2j)
2 = S

(2j)
1 + S

(2j)
2 + S

(2j)
3 + S

(2j)
4 (mod2),

where

S
(2j)
1 = (a, u2j)(b, u2j)(a, u2j+1)(b, u2j+1)(a, u2j),

S
(2j)
2 = (a, u2j+1)(b, u2j+1)(a, u2j+2)(b, u2j+2)(a, u2j+1),

S
(2j)
3 = (a, u2j)(b, u2j+1)(a, u2j+1)(b, u2j+2)(a, u2j),

S
(2j)
4 = (b, u2j)(a, u2j+1)(b, u2j+1)(a, u2j+2)(b, u2j).

And for each j = 1, 2, . . . , k2,

A(3j)
3 =

n−1∑
l=n−3j

(S(3j)
1l

+ S
(3j)
2l

)

where

S
(3j)
1l

= (a, un−3j−2)(b, ul)(a, un−3j−1)(b, ul+1)(a, un−3j−2),

S
(3j)
2l

= (a, un−3j−1)(b, ul)(a, un−3j)(b, ul+1)(a, un−3j−2).

Note that (a, u2t+2)(b, u2t) ∈ E(S(2t)
4 ) and (a, u2t+2)(b, u2t) /∈ ∪k1

j=1, j 6=t ∪4
i=1 E(S(2j)

i ).

Moreover, (a, u2t+2)(b, u2t) /∈ ∪k2
j=1 ∪n−1

l=n−3j
(E(S(3j)

1l
) ∪ E(S(3j)

2l
)). Thus, S(2t)

4 appears

only in the combination of A(2t)
2 . Therefore, S(2t)

4 appears in the combination of C and

is an element of B −A(1)
ab . Hence, C can not be written as a linear combination of cycles

of A(1)
ab . The proof is complete. 2
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We now define the following sets of cycles for n ≥ 5:

A(4)
ab = {A(j)

4 = (a, uj)(a, uj+1)(b, uj+3)(a, uj) : 1 ≤ j ≤ n− 3}∪
{A(n−2)

4 = (a, un−2)(a, un−1)(b, un−1)(b, un)(a, un−2)},
A(5)
ab = {A(j)

5 = (a, un−j)(a, un−j−1)(b, un−j−1)(b, un−j−2)(a, un−j) : 0 ≤ j ≤ n− 3},
A(6)
ab = {(b, un−1)(b, un)(a, u2)(a, u1)(b, un−1)},
A(7)
ab = {(b, un−2)(b, un−1)(a, u1)(b, un−2)}.

Lemma 2.4 ∪7
k=1A

(k)
ab is a linearly independent set of cycles.

Proof. By Lemma 2.3, ∪3
k=1A

(k)
ab is a linearly independent set of cycles. Since each cycle

A(j)
4 contains (a, uj)(a, uj+1) which is not in any other cycle of ∪4

k=1A
(k)
ab , (∪4

k=1A
(k)
ab ) −

{A(n−2)
4 } is linearly independent. Now, A(6)

ab contains the edge (b, un−1)(b, un) which is

not in any other cycle of (∪4
k=1A

(k)
ab ) − {A(n−2)

4 }. Thus, (∪4
k=1A

(k)
ab ) ∪ A(6)

ab − {A
(n−2)
4 }

is linearly independent. The cycle A(n−2)
4 contains the edge (a, un−2)(a, un−1) which is

not in any cycle of (∪4
k=1A

(k)
ab ) ∪ A(6)

ab − {A
(n−2)
4 }. Hence, (∪4

k=1A
(k)
ab ) ∪ A(6)

ab is linearly

independent. The cycle A(7)
ab contains the edge (b, un−1)(b, un−2) which is not in any

cycle of (∪4
k=1A

(k)
ab )∪A(6)

ab . Hence, (∪4
k=1A

(k)
ab )∪A(6)

ab ∪A
(7)
ab is linearly independent. The

cycle A(0)
5 contains the edge (a, un)(a, un−1) which is not in any cycle of (∪4

k=1A
(k)
ab ) ∪

A(6)
ab ∪ A

(7)
ab . Thus, (∪4

k=1A
(k)
ab ) ∪ A(6)

ab ∪ A
(7)
ab ∪ {A

(0)
5 } is linearly independent. Similarly,

for each j ≥ 1, the cycle A(j)
5 contains (b, un−j−1)(b, un−j−2) which is not in any cycle of

(∪4
k=1A

(k)
ab ) ∪ A(6)

ab ∪ A
(7)
ab ∪ {A

(0)
5 }. Therefore, (∪7

k=1A
(k)
ab ) is linearly independent set of

cycles. The proof is complete. 2

In the following work, for the simplicity, the edge e = (a, uj)(b, ui) ∈ P2[N ] is said to
be of length l(e) = |i− j| for any i, j. Set

A(8)
ab = {A(j)

8 = (b, uj)(b, uj+1)(a, uj+3)(b, uj) : 1 ≤ j ≤ n− 3}.

Lemma 2.5 C(∪8
k=1A

(k)
ab −{A

(n−2)
2 ,A(0)

5 ,A(n−3)
8 ,A(1)

8 }) is the direct sum of C(∪7
k=1A

(k)
ab −

{A(n−2)
2 ,A(0)

5 }) and C(A(8)
ab − {A

(n−3)
8 ,A(1)

8 }).
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Proof. Since E(A(i)
8 ) ∩ E(A(k)

8 ) = φ for each i 6= k, A(8)
ab is linearly independent.

Therefore, it suffices to show that any linear combination C of A(8)
ab − {A

(n−3)
8 ,A(1)

8 }
can not be written as a linear combination of cycles of (∪7

k=1A
(k)
ab )− {A(n−2)

2 ,A(0)
5 }. Let

C be a linear combination of cycles of A(8)
ab − {A

(n−3)
8 ,A(1)

8 }. Then C is either a cycle

or an edge disjoint union of cycles each of which is a cycle of A(8)
ab − {A

(n−3)
8 ,A(1)

8 }.
Therefore, C contains an edge of the form e0 = (b, uj)(a, uj+3), which is of a longest
length in C, for some 2 ≤ j ≤ n − 4. Thus, if C is a sum modulo 2 of some cycles of

(∪7
k=1A

(k)
ab ) − {A(n−2)

2 ,A(0)
5 }, say of R = {R1, R2, . . . , Rs}, then there must be at least

one cycle of R, say R1, contains this edge. Note that there are at most three cycles of

(∪7
k=1A

(k)
ab ) − {A(n−2)

2 ,A(0)
5 } contain this edge, we list them as follows:

R
(1)
1 = (b, uj)(a, uj+3)(b, uj+1)(a, uj+4)(b, uj),

R
(2)
1 = (b, uj−1)(a, uj+2)(b, uj)(a, uj+3)(b, uj−1),

R
(3)
1 = (b, uj−1)(a, uj+3)(b, uj)(a, uj+4)(b, uj−1).

Therefore, R1 must be one of R(1)
1 , R

(2)
1 and R

(3)
1 . To this end, we choose R1 to be the

cycle of R(1)
1 , R

(2)
1 and R(3)

1 which belongs to R and has an edge of a longest length among

the edges of R(1)
1 ∪R(2)

1 ∪R(3)
1 . Thus, only one of the following holds:

(i) R(3)
1 ∈ R. Then we choose R1 = R

(3)
1 . Note that (a, uj+4)(b, uj−1) ∈ E(R1) which is

the longest edge of R1. Moreover, (a, uj+4)(b, uj−1) /∈ E(C).

(ii) R(3)
1 /∈ R and R

(2)
1 ∈ R. Then we choose R1 = R

(2)
1 . Note that (a, uj+3)(b, uj−1) ∈

E(R1) which is the longest edge of R1. Moreover, (a, uj+3)(b, uj−1) /∈ E(C).

(iii) R(3)
1 , R

(2)
1 /∈ R and R(1)

1 ∈ R. Then we choose R1 = R
(1)
1 . Note that (a, uj+4)(b, uj) ∈

E(R1) which is the longest edge of R1. Moreover, (a, uj+4)(b, uj) /∈ E(C).

We notice that in either of the above (i), (ii) and (iii) holds, we get the following: R1

contains an edge of the longest length of the form e1 = (a, uk1)(b, uj1) where k1 ≥ j + 3,
j ≥ j1, l(e1) ≥ 4 and l(e1) > l(e0). Moreover, e1 /∈ E(C). Thus, without loss of generality,
we may assume that any of (i), (ii) and (iii) holds, say (i).

Since e1 = (a, uj+4)(b, uj−1) ∈ E(R1) and e1 /∈ E(C), as a result there must be a cycle
of R, say R2, which contains e1 as an edge. Now, e1 belongs to at most four cycles of

(∪7
k=1A

(k)
ab ) − {A(n−2)

2 ,A(0)
5 }, we list them as follows:

R
(1)
2 = (b, uj−1)(a, uj+3)(b, uj)(a, uj+4)(b, uj−1),
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R
(2)
2 = (b, uj−1)(a, uj+4)(b, uj)(a, uj+5)(b, uj−1),

R
(3)
2 = (b, uj−2)(a, uj+3)(b, uj−1)(a, uj+4)(b, uj−2),

R
(4)
2 = (b, uj−2)(a, uj+4)(b, uj−1)(a, uj+5)(b, uj−2).

Since R(1)
2 = R1, R2 must be one of R(2)

2 , R
(3)
2 and R

(4)
2 . As in the above, we choose the

cycle which belongs to R and has a longest edge. Thus, only one of the following holds:

(I) R(4)
2 ∈ R. Then we choose R2 = R

(4)
2 . Note that (a, uj+5)(b, uj−2) is the longest

edge in R1 + R2 (mod2) which is longer than the longest edge in R1 by 2. Moreover,
(a, uj+5)(b, uj−2) /∈ E(C).

(II) R(4)
2 /∈ R and R

(3)
2 ∈ R. Then we choose R2 = R

(3)
2 . Note that (a, uj+4)(b, uj−2) is

the longest edge in R1 + R2 (mod2) which is longer than the longest edge in R1 by 1.
Moreover, (a, uj+4)(b, uj−2) /∈ E(C)

(III) R(4)
2 , R

(3)
2 /∈ R andR(2)

2 ∈ R. Then we choose R2 = R
(2)
2 . Note that (a, uj+5)(b, uj−1)

is the longest edge in R1 +R2 (mod2) which is longer than the longest edge in R1 by 1.
Moreover, (a, uj+5)(b, uj−1) /∈ E(C).

We notice that in either of the above (I), (II) and (III) holds, we get the following.
R1 + R2 (mod2) contains an edge of the longest length of the form e2 = (a, uk2)(b, uj2)
where k2 ≥ k1, j1 ≥ j2 and l(e2) > l(e1) > l(e0). Moreover, e2 /∈ E(C). Thus, without
loss of generality, we may assume that any of (I), (II) and (III) holds, say (I).

Since e2 = (a, uj+5)(b, uj−2) is an edge of R1 + R2 (mod2) and e2 /∈ E(C), as a result
there must be a cycle of R, say R3, which contains e2 as an edge. Now, e2 belongs to

at most four cycles of (∪7
k=1A

(k)
ab ) − {A(n−2)

2 ,A(0)
5 }. By using the same arguments as

in the above cases, we get that the longest edge of R1 + R2 + R3 (mod2) has the form
e3 = (a, uk2)(b, uj2) where k3 ≥ k2, j2 ≥ j3 and l(e3) > l(e2) > l(e1) > l(e0). Moreover,
e3 /∈ E(C).

By continuing in this process, there must be the least integer r ≤ s such that Rr ∈ R
and the longest edge of Rr + Rr−1 + · · · + R1 (mod2), which is of Rr, has the form
er = (a, uh)(b, u1) or (a, un)(b, ug) where h ≥ 5 and g ≤ n − 4. Moreover, l(er) >

l(er−1) > . . . > l(e0). Now we consider two cases:

Case a. (a, uh)(b, u1) is the longest edge of Rr + Rr−1 + · · ·+ R1 (mod2). Note that,

(a, uh)(b, u1) belongs to exactly two cycles of (∪7
k=1Ak)− {A(n−2)

2 ,A(0)
5 } we list them as

follows:

R
(1)
r+1 = (b, u1)(a, uh)(b, u2)(a, uh+1)(b, u1),
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R
(2)
r+1 = (b, u1)(a, uh−1)(b, u2)(a, uh)(b, u1).

Since (a, uh)(b, u1) is an edge of Rr+Rr−1 +· · ·+R1 (mod2), Rr must be one of R(1)
r+1 and

R
(2)
r+1. If R(1)

r+1 = Rr, then (a, uh+1)(b, u1) is an edge of Rr+Rr−1+ · · ·+R1 (mod2) which

is longer than (a, uh)(b, u1), a contradiction. Therefore, Rr = R
(2)
r+1. Since (a, uh)(b, u1) is

an edge of Rr+Rr−1 + · · ·+R1 (mod2) and (a, uh)(b, u1) /∈ E(C), R(1)
r+1 ∈ R, say Rr+1 =

R
(1)
r+1. Thus, (a, uh+1)(b, u1) is an edge of Rr+1 +Rr +Rr−1 + · · ·+R1 (mod2) and not in

E(C). Since (a, uh+1)(b, u1) belongs to exactly two cycles of (∪7
k=1A

(k)
ab )−{A(n−2)

2 ,A(0)
5 },

in fact, in Rr+1 and in R
(1)
r+2 = (b, u1)(a, uh+1)(b, u2)(a, uh+2)(b, u1). Thus, R(1)

r+2 must

be in R. say Rr+2 = R
(1)
r+2. So, (a, uh+2)(b, u1) is an edge of Rr+2 + Rr+1 + · · ·+ R1

(mod2), but (a, uh+2)(b, u1) /∈ E(C). By continuing in this way , there must be an
integer z such that Rz = (b, u1)(a, un−1)(b, u2)(a, un)(b, u1) ∈ R. Thus, (a, un)(b, u1) ∈
Rz +Rz−1 + · · ·+R1 (mod2). Since Rz is the only cycle of (∪7

k=1A
(k)
ab )− {A(n−2)

2 ,A(0)
5 }

which contains the edge (a, un)(b, u1), (a, un)(b, u1) ∈ R1 + R2 + · · ·+ Rs (mod2). This
contradicts the fact that (a, un)(b, u1) /∈ E(C).

Case b. (a, un)(b, ug) is the longest edge of Rr +Rr−1 + · · ·+R1 (mod2). Then we use
the same arguments as in Case a, to get the same contradiction. The proof is complete.
2

Lemma 2.6 ∪8
k=1A

(k)
ab is a linearly independent set of cycles.

Proof. By the proof of Lemma 2.5, (∪8
k=1A

(k)
ab ) − {A(n−2)

2 ,A(0)
5 ,A(1)

8 ,A(n−3)
8 } is lin-

early independent. A(n−3)
8 contains the edge (b, un−2)(a, un) which is not in any cy-

cle of (∪8
k=1A

(k)
ab )−{A(n−2)

2 ,A(0)
5 ,A(1)

8 ,A(n−3)
8 }. Thus (∪8

k=1A
(k)
ab )− {A(n−2)

2 ,A(0)
5 ,A(1)

8 }
is linearly independent. A(0)

5 contains the edge (a, un−1)(a, un) which is not in any

cycle of (∪8
k=1A

(k)
ab ) − {A(n−2)

2 ,A(0)
5 ,A(1)

8 }. Thus, (∪8
k=1A

(k)
ab ) − {A(n−2)

2 ,A(1)
8 } is lin-

early independent. A(n−2)
2 contains the edge (a, un)(b, un) which is not in any cycle of

(∪8
k=1A

(k)
ab ) − {A(n−2)

2 ,A(1)
8 }. Thus, (∪8

k=1A
(k)
ab ) − {A(1)

8 } is linearly independent. Fi-

nally, assume that A(1)
8 is a linear combination of cycles from (∪8

k=1A
(k)
ab ) − {A(1)

8 }, say

T = {T1, T2, . . . , Ty}. Since A(1)
8 contains the edge (b, u1)(b, u2) and the only cycle of

(∪8
k=1A

(k)
ab ) − {A(1)

8 } contains such an edge is A(n−3)
5 , as a result A(n−3)

5 must belong to
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T , say T1 = A(n−3)
5 . Since (a, u3)(b, u1) ∈ E(A(n−3)

5 ) and (a, u3)(b, u1) /∈ E(A(1)
8 ) and

since the only cycle of (∪8
k=1A

(k)
ab ) − {A(n−3)

5 } contains such an edge is A(1)
2 , it implies

that A(1)
2 ∈ T , say A(1)

2 = T2. Since (a, u1)(b, u1) ∈ A(1)
2 and no other cycles of ∪8

k=1A
(k)
ab

contain such an edge, we have that (a, u1)(b, u1) is an edge of T1 + T2 + . . .+ Ty (mod2)

but (a, u1)(b, u1) /∈ E(A(1)
8 ). That is a contradiction. The proof is complete. 2

Now, let Pm = a1a2 . . . am and Pn = u1u2 . . . un be two paths with m, n vertices.
Then, the following lemma is a straightforward from equation (1.1) and noting that
|E(Pm � Pn)| = (m− 1)n2 − (n− 1)(m− 2) and |V (Pm � Pn)| = mn.

Lemma 2.7 dimC(Pm � Pn) = (n− 1)2(m− 1).

Lemma 2.8 For any integer n ≥ 2, b(P2 � Pn) ≤ 4.

Proof. To prove the lemma, it suffices to exhibit a 4-fold basis. The lemma is clear for

n = 2, 3, and 4. For n ≥ 5, define B(P2 � Pn) = ∪8
k=1A

(k)
ab . By Lemma 2.6, B(P2 � Pn)

is linearly independent. Since

|A(1)
ab | = (n − 3)(n− 4),

|A(2)
ab | = |A

(4)
ab | = |A

(5)
ab | = (n− 2),

|A(3)
ab | = (n− 4),

|A(6)
ab | = |A

(7)
ab | = 1,

and

|A(8)
ab | = (n− 3),

we have,
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|B(P2 � Pn)| = | ∪8
k=1 Ak|

=
8∑
i=1

|Ak|

= (n− 3)(n− 4) + 3(n− 2) + (n− 4) + 1 + 1 + (n − 3)

= (n− 1)2

= dim C(P2 � Pn).

Therefore, B(P2 � Pn) is a basis of C(P2 � Pn). We now show that B(P2 � Pn) is of fold
4. Let e ∈ E(P2 � Pn). Then (1) If e = (a, uj)(b, uj) where j 6= n − 1, then fA(1)

ab

(e) =

fA(4)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(2)
ab

(e) ≤ 2, fA(3)
ab

(e) ≤ 1, fA(5)
ab

(e) ≤ 1. (2)

If e = (a, un−1)(b, un−1), then fA(1)
ab

(e) = fA(3)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) =

0, fA(2)
ab

(e) ≤ 1, fA(4)
ab

(e) = 1, fA(5)
ab

(e) ≤ 1. (3) If e = (a, un)(b, uj) or (b, u1)(a, ui)

or(a, u1)(b, ul) or(b, un)(a, uf) for j < n − 3, i > 3, 3 < l < n − 1, 2 < j < n − 3,
then fA(2)

ab

(e) = fA(3)
ab

(e) = fA(3)
ab

(e) = fA(4)
ab

(e) = fA(5)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) =

fA(8)
ab

(e) = 0, fA(1)
ab

(e) ≤ 4. (4) If e = (a, u1)(b, un) or (a, u2)(b, un) or(a, u1)(b, un−1),

then fA(2)
ab

(e) = fA(3)
ab

(e) = fA(3)
ab

(e) = fA(4)
ab

(e) = fA(5)
ab

(e) = fA(8)
ab

(e) = 0, fA(6)
ab

(e) =

fA(7)
ab

(e) = 1, fA(1)
ab

(e) ≤ 2. (5) If e = (a, uj)(b, uj+2) for j < n − 2, then fA(5)
ab

(e) =

fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(1)
ab

(e) ≤ 1, fA(2)
ab

(e) = 1, fA(3)
ab

(e) ≤ 1, fA(4)
ab

(e) ≤ 1 .

(6) If e = (a, un−2)(b, un), then fA(1)
ab

(e) = fA(5)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) =

0, fA(2)
ab

(e) ≤ 1, fA(3)
ab

(e) ≤ 1, fA(4)
ab

(e) ≤ 2 .(7) If e = (a, uj+2)(b, uj), then fA(3)
ab

(e) =

fA(4)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = 0, fA(1)
ab

(e) ≤ 1, fA(2)
ab

(e) = 1, fA(5)
ab

(e) ≤ 1, fA(8)
ab

(e) ≤ 1.

(8) If e = (a, uj)(b, uj+3) where j < n − 3, then fA(2)
ab

(e) = fA(3)
ab

(e) = fA(5)
ab

(e) =

fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(1)
ab

(e) ≤ 3, fA(4)
ab

(e) ≤ 1. (9) If e = (a, un−3)(b, un),

then fA(2)
ab

(e) = fA(5)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(1)
ab

(e) ≤ 2, fA(3)
ab

(e) ≤
1, fA(4)

ab

(e) ≤ 1.(10) If e = (a, uj+3)(b, uj) then fA(2)
ab

(e) = fA(3)
ab

(e) = fA(4)
ab

(e) = fA(5)
ab

(e) =

fA(6)
ab

(e) = fA(7)
ab

(e) = 0, fA(1)
ab

(e) ≤ 3, fA(8)
ab

(e) ≤ 1. (11) If e = (a, uj)(a, uj+1) where

j 6= 1 then fA(1)
ab

(e) = fA(2)
ab

(e) = fA(3)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(4)
ab

(e) =
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fA(5)
ab

(e) = 1. (12) If e = (a, u1)(a, u2), then fA(1)
ab

(e) = fA(2)
ab

(e) = fA(3)
ab

(e) = fA(5)
ab

(e) =

fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(4)
ab

(e) = fA(6)
ab

(e) = 1.(13) If e = (b, uj)(b, uj+1) where

j 6= n − 1, n − 2 then fA(1)
ab

(e) = fA(2)
ab

(e) = fA(3)
ab

(e) = fA(4)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) =

0, fA(5)
ab

(e) = fA(8)
ab

(e) = 1. (14) If e = (b, un−2)(b, un−1), then fA(1)
ab

(e) = fA(2)
ab

(e) =

fA(3)
ab

(e) = fA(4)
ab

(e) = fA(6)
ab

(e) = fA(8)
ab

(e) = 0, fA(5)
ab

(e) = fA(7)
ab

(e) = 1. (15) If e =

(b, un−1)(b, un), then fA(1)
ab

(e) = fA(2)
ab

(e) = fA(3)
ab

(e) = fA(5)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) =

0, fA(4)
ab

(e) = fA(6)
ab

(e) = 1. (16) If e ∈ E(P2 �Pn) and not of any form of the above, then

fA(2)
ab

(e) = fA(3)
ab

(e) = fA(4)
ab

(e) = fA(5)
ab

(e) = fA(6)
ab

(e) = fA(7)
ab

(e) = fA(8)
ab

(e) = 0, fA(1)
ab

(e) ≤
4. The proof is complete. 2

Theorem 2.1 For any n,m ≥ 2, we have b(Pm�Pn) ≤ 4. Moreover, the equality holds
if n ≥ 14 and m ≥ 2.

Proof. To prove that b(Pm � Pn) ≤ 4, it suffices to exhibit a 4-fold basis. Let

P
(i)
2 = aiai+1 for each i ≤ m − 1. Define B(Pm � Pn) = ∪m−1

i=1 B(P (i)
2 � Pn) where

B(P (i)
2 �Pn) is the basis of C(P (i)

2 �Pn) as in Lemma 2.8. We proceed using induction on
m to show that B(Pm � Pn) is linearly independent. If m = 2, then B(Pm � Pn) =

B(P (1)
2 � Pn) which is linearly independent, by Lemma 2.8. Now, B(Pm � Pn) =

(∪m−2
i=1 B(P (i)

2 � Pn)) ∪ B(P (m−1)
2 � Pn). By induction step and Lemma 2.8, each of

∪m−2
i=1 B(P (i)

2 � Pn) and B(P (m−1)
2 � Pn) is linearly independent. Since E(∪m−2

i=1 (P (i)
2 �

Pn)) ∩ E(P (m−1)
2 � Pn) = E(am−1 × Pn) which is an edge set of a path, as a result any

non trivial linear combination of cycles of B(P (m−1)
2 �Pn) can not be written as a linear

combination of ∪m−2
i=1 B(P (i)

2 �Pn). Thus, B(Pm�Pn) is a linearly independent set. Since,

|B(Pm � Pn)| =
m−1∑
i=1

|B(P (i)
2 � Pn)|

=
m−1∑
i=1

(n− 1)2

= (n− 1)2(m− 1)

= dimC(Pm � Pn),
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B(Pm � Pn) is a basis of C(Pm � Pn). Let e ∈ E(Pm � Pn). (1) If e ∈ E(ai × Pn) for

some 2 ≤ i ≤ m − 1, then fB(Pm�Pn)(e) =
∑m−1

k=1 fB(P
(k)
2 �Pn)

(e) = fB(P
(i−1)
2 �Pn)

(e) +

fB(P
(i)
2 �Pn)

(e) ≤ 2 + 2 = 4. (2) If e ∈ E(a1 × Pn), then fB(Pm�Pn)(e) = fB(P
(1)
2 �Pn)

(e) ≤
2. (3) If e ∈ E(am × Pn), then fB(Pm�Pn)(e) = fB(P

(m−1)
2 �Pn)

(e) ≤ 2. (4) If e /∈

E(∪mi=1ai × Pn), then e belongs only to P (i0)
2 � Pn for some i0 and so , by Lemma 2.8,

fB(Pm�Pn)(e) = fB(P
(i0)
2 �Pn)

(e) ≤ 4.

On the other hand, to show that b(Pm � Pn) ≥ 4 for any n ≥ 14 and m ≥ 2, we have
to exclude any possibility for the cycle space C(Pm � Pn) to have a 3-fold basis for any
n ≥ 14 and m ≥ 2. Suppose that B is a 3-fold basis of the cycle space, then we have the
following three cases:
Case 1. Suppose that B consists only of 3-cycles. Then |B| ≤ 3m(n− 1) because any 3-
cycle must contain an edge of the form (ai, uj)(ai, uj+1) for some 1 ≤ i ≤ m, 1 ≤ j ≤ n−1
and each edge is of fold at most 3. That is equivalent to the inequality (m− 1)(n− 1)2 ≤
3m(n − 1) which implies that m(n − 4) ≤ n − 1. But m ≥ 2, so n ≤ 7. This is a
contradiction.
Case 2. Suppose that B consists only of cycles of length greater than or equal to 4. Then
4|B| ≤ 3|E(Pm � Pn)| because the length of each cycle of B greater than or equal to 4
and each edge is of fold at most 3. Thus, 4(m− 1)(n− 1)2 ≤ 3(m− 1)n2− (n− 1)(m− 2)
which is equivalent to m(n2 − 7n + 3) ≤ n2 − 6n + 2. But m ≥ 2, so n ≤ 7. This is a
contradiction.
Case 3. Suppose that B consists of s 3-cycles and t cycles of length greater than or
equal to 4. Then as in Case 1 s ≤ 3m(n − 1). Since the length of each cycle of s is
3 and each cycle of t is at least 4 and the fold of each edge is at most 3, we have that
4t + 3s ≤ 3|E(Pm � Pn)|. But t = |B| − s = |E(Pm � Pn)| − |V (Pm � Pn)| + 1 − s, so
4t + 3s = 4|E(Pm � Pn)| − 4|V (Pm � Pn)| + 4 − s ≤ 3|E(Pm � Pn)| which implies that
|E(Pm�Pn)| − 4|V (Pm�Pn)|+ 4 = (m− 1)(n− 1)2− 3nm+ 3 ≤ s ≤ 3m(n− 1) . Thus,
(m−1)(n−1)2−3nm+3 ≤ 3m(n−1) which is equivalent to m(n2−8n+4) ≤ n2−2n−2.
But m ≥ 2, so n ≤ 13. This is a contradiction. The proof is complete. 2

Let Cm = a1a2 . . . ama1 be a cycle of order m. Then, the following lemma is a
straightforward from equation (1.1) and noting that |E(Cm�Pn)| = mn2−m(n−1) and
|V (Cm � Pn)| = mn.

Lemma 2.9 dimC(Cm � Pn) = m(n − 1)2 + 1.
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Theorem 2.2 For any n ≥ 2, m ≥ 3, we have b(Cm � Pn) ≤ 4. Moreover, the equality
holds if n ≥ 8 and m ≥ 4.

Proof. To prove that b(Cm � Pn) ≤ 4, it suffices to exhibit a 4-fold basis. Let

P
(i)
2 = aiai+1 for each i ≤ m − 1 and P

(m)
2 = ama1. Define B = ∪mi=1B(P (i)

2 � Pn)

where B(P (i)
2 � Pn) is the basis of C(P (i)

2 � Pn) as in Lemma 2.8. By Theorem 2.1,

∪m−1
i=1 B(P (i)

2 � Pn) is a linearly independent set. Since E(a1 × Pm) ∪ E(am × Pm) is

an edge set of a forest, any linear combination of cycles of B(P (m)
2 � Pn) must contain

at least one edge of the form (a1, uj)(am, ul) for some j, l which is not in any cycle of

∪m−1
i=1 B(P (i)

2 � Pn). Thus, B is linearly independent. Now, consider the following cycle:

C = (a1, u1)(a2, u1) . . . (am−1, u1)(am, u1)(a1, u1).

We now show that C is independent of cycles of ∪mi=1B(P (i)
2 � Pn). Suppose that C is a

sum modulo 2 of cycles of ∪mi=1B(P (i)
2 � Pn). Then

C =
m∑
j=1

bj (mod 2)

where bj is a linear combination of cycles of B(P (j)
2 � Pn). Thus,

b1 = C +
m∑
j=2

bj (mod 2).

Therefore,

E(b1) = E(C ⊕ b2 ⊕ · · · ⊕ bm) ⊆ E(B(P (1)
2 � Pn)) ∩ (E(∪mi=2B(P (i)

2 � Pn)) ∪ E(C))

where ⊕ is the ring sum. But,

E(B(P (1)
2 � Pn)) ∩ (E(∪mi=2B(P (i)

2 � Pn)) ∪ E(C)) = E(a1 × Pn) ∪ E(a2 × Pn)

∪{(a1, u1)(a2, u1)},
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which is an edge set of a tree. This contradicts the fact that b1 is a cycle or an edge
disjoint union of cycles. Therefore, B(Cm�Pn) = B∪{C} is linearly independent. Since,

|B(Cm � Pn)| =
m∑
i=1

|B(P (i)
2 � Pn)|+ |C|

=
m∑
i=1

(n− 1)2 + 1

= (n− 1)2m+ 1

= dimC(Cn � Pm),

B(Cm � Pn) is a basis of C(Cm � Pn). It is easy to show that B(Cm � Pn) is a 4-fold
basis.

On the other hand, to show that b(Cm � Pn) ≥ 4, we follow, more or less, the same
arguments as in the three cases of Theorem 2.1. The proof is complete. 2
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