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Self-Adjoint Boundary Value Problems on Time

Scales and Symmetric Green’s Functions

Gusein Sh. Guseinov

Abstract

In this note, higher order self-adjoint differential expressions on time scales, and

associated with them self-adjoint boundary conditions, are discussed. The symmetry

peoperty of the corresponding Green’s functions is emphasized.
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1. Introduction

In [3] self-adjoint boundary value problems (BVPs) for second order differential equa-
tions on time scales were introduced and examined by making use of both delta and
nabla derivatives. Next some BVPs for higher order equations on time scales involving
delta and nabla derivatives at the same time were investigated in [1, 2] where, however,
the considered BVPs turned out, in general, to be nonselfadjoint because their Green’s
functions were found nonsymmetric. Therefore it remained unclear as to how to place
the successive delta and nabla derivatives for higher order to get self-adjoint differential
expressions that can yield symmetric Green’s functions. In this paper we offer a solution
to this problem indicating two classes of higher order differential equations on time scales.
These classes of equations can be formulated as follows.

Let T be a time scale, p0, p1, ..., pn are real-valued right-dense continuous functions
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defined on T with p0(t) 6= 0 for all t ∈ T, and a ∈ Tκn , b ∈ Tκn , with a < b. For

notation’s sake, by f∆−1∇ and f∇
−1∆ we mean the function f.

Then any 2nth order differential expression

Ly(t) =
n∑
i=0

(−1)n−i
[
pi(t)y∆n−i−1∇(t)

]∇n−i−1∆

= (−1)n
[
p0(t)y∆n−1∇(t)

]∇n−1∆

+ · · · −
[
pn−3(t)y∆2∇(t)

]∇2∆

+
[
pn−2(t)y∆∇(t)

]∇∆ −
[
pn−1(t)y∇(t)

]∆
+ pn(t)y(t) (1)

is formally self-adjoint with respect to the inner product

〈y, z〉 =
∫ b

a

y(t)z(t)∆t; (2)

that is, the identity

〈Ly, z〉 = 〈y, Lz〉

holds provided that y and z satisfy some appropriate self-adjoint boundary conditions at
a and b.

Similarly, the differential expression

My(t) =
n∑
i=0

(−1)n−i
[
pi(t)y∇

n−i−1 ∆(t)
]∆n−i−1∇

= (−1)n
[
p0(t)y∇

n−1∆(t)
]∆n−1∇

+ · · · −
[
pn−3(t)y∇

2∆(t)
]∆2∇

+
[
pn−2(t)y∇∆(t)

]∆∇ − [pn−1(t)y∆(t)
]∇

+ pn(t)y(t) (3)

is formally self-adjoint with respect to the inner product

〈y, z〉 =
∫ b

a

y(t)z(t)∇t.
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In the present paper, we give a detailed presentation for differential expression (1).
Differential expression (3) can be examined similarly.

The paper is organized as follows. In Section 2, some time scale essentials are included
for the convenience of the reader. Next in Section 3, we consider the differential expression
(1) and prove its formally self-adjointness with respect to the inner product (2). Finally,
in Section 4 a definition of boundary conditions which are self-adjoint with respect to
the differential expression (1) is given and the symmetry property of the corresponding
Green’s functions is emphasized.

2. Preliminaries on Time Scale Calculus

A time scale (T) is an arbitrary nonempty closed subset of the real numbers. The
calculus of time sacles was initiated by Aulbach and Hilger [4, 8] in order to create a
theory that can unify and extend discrete and continuous analysis. The real numbers
(R), the integers (Z), the natural numbers (N), the nonnegative integers (N0), the
h−numbers (hZ = {hk : k ∈ Z}, where h > 0 is a fixed real number), and the q−numbers
(Kq = qZ ∪ {0} = {qk : k ∈ Z} ∪ {0}, where q > 1 is a fixed real number) are examples
of time scales, as are

[0, 1]∪ [2, 3], [0, 1] ∪N, and the Cantor set,

where [0, 1] and [2, 3] are real number intervals. In [4, 8] Aulbach and Hilger introduced
also dynamic equations (∆-differential equations) on time scales in order to unify and
extend the theory of ordinary differential equations, difference (h-difference) equations,
and q−difference equations. For a general introduction to the calculus of time scales we
refer the reader to the textbooks by Bohner and Peterson [5, 6]. Here we give only those
notions and facts connected to time scales, which we need for our purpose in this paper.

Any time scale T is a complete metric space with the metric (distance) d(t, s) =| t−s |
for t, s ∈ T. Consequently, according to the well-known theory of general metric spaces,
we have for T the fundamental concepts such as open balls (intervals), neighborhoods of
points, open sets, closed sets, compact sets, and so on. In particular, for a given number
δ > 0, the δ−neighborhood Uδ(t) of a given point t ∈ T is the set of all points s ∈ T
such that d(t, s) < δ. By a neighborhood of a point t ∈ T is meant an arbitrary set in
T containing a δ-neighborhood of the point t. Also we have for functions f : T→ R
the concepts of limit, continuity, and the properties of continuous functions on general
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complete metric spaces (note that, in particular, any function f : Z→ R is continuous at
each point of Z). The main task is to introduce and investigate the concept of derivative
for functions f : T→ R. This proves to be possible due to the special structure of the
metric space T. In definition of the derivative an important role play the so-called forward
and backward jump operators.

Definition 1 For t ∈ T we define the forward jump operator σ : T→ T by

σ(t) = inf {s ∈ T : s > t},

while the backward jump operator ρ : T→ T is defined by

ρ(t) = sup {s ∈ T : s < t}.

In this definition we put in addition σ(max T) = maxT if there exists a finite maxT,
and ρ(min T) = minT if there exists a finite minT. Obviously both σ(t) and ρ(t) are in
T when t ∈ T. This is because of our assumption that T is a closed subset of R.

Let t ∈ T. If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t we say that
t is left-scattered. Also, if t < maxT and σ(t) = t, then t is called right-dense, and
if t > minT and ρ(t) = t, then t is called left-dense. Points that are right-scattered
and left-scattered at the same time are called isolated. Finally, the graininess functions
µ, ν : T→ [0,∞) are defined by

µ(t) = σ(t) − t and ν(t) = t− ρ(t) for all t ∈ T.

Example 2 If T = R, then σ(t) = ρ(t) = t and µ(t) = ν(t) = 0. If T =hZ, then
σ(t) = t + h, ρ(t) = t− h, and µ(t) = ν(t) = h. On the other hand, if T = Kq then we
have σ(t) = qt, ρ(t) = q−1t, µ(t) = (q − 1)t, and ν(t) = (1 − q−1)t.

Let Tκ denote Hilger’s truncated above (kappen = lop off) set consisting of T except
for a possible left-scattered maximal point. Similarly, Tκ is the truncated below set
obtained from T by deleting a possible right-scattered minimal point. In addition we use
the notation Tκ2

= (Tκ)κ, etc.

Definition 3 (Delta Derivative). Let f : T→ R be a function and t ∈ Tκ. Then the
delta derivative (or ∆−derivative) of f at the point t is defined to be the number f∆(t)
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(provided it exists) with the property that for each ε > 0 there is a neghborhood U of t in
T such that

| f(σ(t)) − f(s) − f∆(t)[σ(t) − s] |≤ ε | σ(t) − s | for all s ∈ U. (4)

Remark 1 If t ∈ T \Tκ, then f∆(t) is not uniquely defined, since for such a point t
small neighborhoods U of t consist only of t, and besides, we have σ(t) = t. Therefore (4)
holds for an arbitrary number f∆(t). This is a reason why we omit a maximal left-scattered
point.

Definition 4 (Nabla Derivative). If t ∈ Tκ, then we define the nabla derivative (or ∇-
derivative) of f : T→ R at t to be the number f∇(t) (provided it exists) with the property
that for each ε > 0 there is a neighborhood U of t in T such that

| f(ρ(t)) − f(s) − f∇(t)[ρ(t) − s] |≤ ε | ρ(t) − s | for all s ∈ U.

Example 5 If T = R, then f∆(t) = f∇(t) = f
′
(t), the ordinary derivative of f at t. If

T =hZ,then

f∆(t) =
f(t + h)− f(t)

h
and f∇(t) =

f(t) − f(t − h)
h

.

If T = Kq, then

f∆(t) =
f(qt) − f(t)

(q − 1)t
and f∇(t) =

f(t) − f(q−1t)
(1− q−1)t

for all t 6= 0, and

f∆(0) = f∇(0) = lim
s→0

f(s) − f(0)
s

provided that this limit exists.

Among the important properties of the delta and nabla differentiations on T we have
the product rule: If f, g : T→ R are ∆-differentiable functions at t ∈ Tκ,then so is their
product fg and we have

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g(t) (5)

= f(t)g∆(t) + f∆(t)g(σ(t)).
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Also, if f, g : T→ R are ∇-differentiable at t ∈ Tκ, then so is their product fg and we
have

(fg)∇(t) = f∇(t)g(t) + f(ρ(t))g∇(t) (6)

= f(t)g∇(t) + f∇(t)g(ρ(t)).

In the next theorem we give a relationship between the delta and nabla derivatives
(see [3]).

Theorem 6 (i) If f : T→ R is ∆-differentiable on Tκ and if f∆ is continuous on Tκ,
then f is ∇-differentiable on Tκ and

f∇(t) = f∆(ρ(t)) for all t ∈ Tκ.

(ii) If f : T→ R is ∇-differentiable on Tκ and if f∇ is continuous on Tκ, then f is
∆-differentiable on Tκ and

f∆(t) = f∇(σ(t)) for all t ∈ Tκ.

Now we introduce the concept of integral for functions f : T→ R.

If a, b ∈ T with a ≤ b we define the closed interval [a, b] in T by

[a, b] = {t ∈ T : a ≤ t ≤ b}.

Open and half-open intervals etc. are defined accordingly. Below all our intervals will be
time scale intervals.

Definition 7 (Delta Integral). Let [a, b] be a closed bounded interval in T. A function
F : [a, b] → R is called a delta antiderivative of a function f : [a, b)→ R provided F is
continuous on [a, b] and delta differentiable on [a, b), and F∆(t) = f(t) for all t ∈ [a, b).
Then we define the ∆−integral from a to b of f by

∫ b

a

f(t)∆t = F (b)− F (a).

Definition 8 (Nabla Integral). Let [a, b] be a closed bounded interval in T. A function
Φ : [a, b]→ R is called a nabla antiderivative of a function f : (a, b] → R provided Φ is
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continuous on [a, b] and nabla differentiable on (a, b], and Φ∇(t) = f(t) for all t ∈ (a, b].
Then we define the ∇−integral from a to b of f by∫ b

a

f(t)∇t = Φ(b) −Φ(a).

Example 9 Let a, b ∈ T with a < b. Then we have the following:
(i) If T = R, then ∫ b

a

f(t)∆t =
∫ b

a

f(t)∇t =
∫ b

a

f(t)dt,

where the integral on the right is the ordinary integral.
(ii) If [a, b] consists of only isolated points, then∫ b

a

f(t)∆t =
∑
t∈[a,b)

µ(t)f(t) and
∫ b

a

f(t)∇t =
∑
t∈(a,b]

ν(t)f(t),

where µ(t) = σ(t) − t and ν(t) = t− ρ(t). In particular, if T = Z, then

∫ b

a

f(t)∆t =
b−1∑
k=a

f(k) and
∫ b

a

f(t)∇t =
b∑

k=a+1

f(k).

If T =hZ, then ∫ b

a

f(t)∆t = h
∑
t∈[a,b)

f(t) and
∫ b

a

f(t)∇t = h
∑
t∈(a,b]

f(t).

If T = Kq , then∫ b

a

f(t)∆t = (q − 1)
∑
t∈[a,b)

tf(t) and
∫ b

a

f(t)∇t = (1− q−1)
∑
t∈(a,b]

tf(t).

Definition 10 A function f : T→ R is right-dense continuous (or rd-continuous) pro-
vided it is continuous at all right-dense points of T and its left-sided limits exist (finite)
at left-dense points of T. The set of all right-dense continuous functions on T is denoted
by Crd(T). Similarly, a function f : T→ R is left-dense continuous provided it is con-
tinuous at all left-dense points of T and its right-sided limits exist (finite) at right-dense
points of T. The set of all left-dense continuous functions on T is denoted by Cld(T).
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All rd-continuous bounded functions on [a, b) are delta integrable from a to b, and all
ld-continuous bounded functions on (a, b] are nabla integrable from a to b. For a more
general treatment of the delta and nabla integrals on time scales (Riemann and Lebesgue
integration on time scales), see [7] and [6, Chapter 5].

The following relationship between the delta and nabla integrals follows from Defini-
tion 7 and Definiton 8 by using Theorem 6.

Theorem 11 If the function f : T→ R is continuous, then for all a, b ∈ T with a < b

we have ∫ b

a

f(t)∆t =
∫ b

a

f(ρ(t))∇t and
∫ b

a

f(t)∇t =
∫ b

a

f(σ(t))∆t. (7)

Indeed, if F : T→ R is a ∆-antiderivative for f , then F∆(t) = f(t) for all t ∈ Tκ,
and by Theorem 6(i) we have

F∇(t) = F∆(ρ(t)) = f(ρ(t)) for all t ∈ Tκ,

so that F is a ∇-antiderivative for f(ρ(t)). Therefore∫ b

a

f(ρ(t))∇t = F (b)− F (a) =
∫ b

a

f(t)∆t.

The second formula of (7) can be proved in a similar manner by using Theorem 6(ii).
From (5), (6), and (7) we have the following integration by parts formulas: If the

functions f, g : T→ R are delta and nabla differentiable with continuous derivatives,
then ∫ b

a

f∆(t)g(t)∆t = f(t)g(t) |ba −
∫ b

a

f(σ(t))g∆(t)∆t, (8)

∫ b

a

f∇(t)g(t)∇t = f(t)g(t) |ba −
∫ b

a

f(ρ(t))g∇(t)∇t, (9)

∫ b

a

f∆(t)g(t)∆t = f(t)g(t) |ba −
∫ b

a

f(t)g∇(t)∇t, (10)

∫ b

a

f∇(t)g(t)∇t = f(t)g(t) |ba −
∫ b

a

f(t)g∆(t)∆t. (11)
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3. Self-Adjoint Differential Expressions

Consider 2nth order differential expression (1), in which the coefficients pi : T→ R
are right-dense continuous for 0 ≤ i ≤ n and p0(t) 6= 0 for all t ∈ T. Set T∗ = Tκn

κn =
Tκn ∩Tκn .

Definition 12 Let Ω be the linear set of all functions y : T→ R such that the function

(
piy

∆n−i−1∇
)∇n−i−1∆

is defined on Tκn−i

κn−i and is right-dense continuous for 0 ≤ i ≤ n.

For each y ∈ Ω the expression Ly is defined and presents a right-dense continuous
function on T∗.

The differential expression (1) takes the form

Ly(t) = −
[
p0(t)y∇(t)

]∆
+ p1(t)y(t) (12)

if n = 1, and the form

Ly(t) =
[
p0(t)y∆∇(t)

]∇∆ −
[
p1(t)y∇

]∆
+ p2(t)y(t) (13)

if n = 2.

Theorem 13 Let a, b ∈ T be such that a ∈ Tκn , b ∈ Tκn, and a < b. Then for all
functions y, z ∈ Ω we have the Lagrange identity, also called the Green formula,∫ b

a

(Ly)z∆t = [y, z]ba +
∫ b

a

y(Lz)∆t, (14)

where [y, z]ba = [y, z](b)− [y, z](a) and

[y, z](t) =
n−1∑
k=0

(−1)k
{
y∆n−k−1

(t)
k∑
i=0

(−1)i
[
pi(t)z∆n−i−1∇(t)

]∇k−i

−z∆n−k−1
(t)

k∑
i=0

(−1)i
[
pi(t)y∆n−i−1∇(t)

]∇k−i}
. (15)
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In particular, if n = 1 then

[y, z](t) = p0(t)[y(t)z∇(t) − y∇(t)z(t)],

and if n = 2 then

[y, z](t) =
[
p0(t)y∆∇(t)

]∇
z(t)− y(t)

[
p0(t)z∆∇(t)

]∇
−p0(t)[y∆∇(t)z∆(t)− y∆(t)z∆∇(t)]− p1(t)[y∇(t)z(t) − y(t)z∇(t)].

Proof. Consider only the cases n = 1 and n = 2. The case of arbitrary n can be
considered in a similar manner.

If n = 1, then Ly(t) is defined as in (12) and we have∫ b

a

(Ly)z∆t = −
∫ b

a

[
p0(t)y∇

]∆
z(t)∆t+

∫ b

a

p1(t)y(t)z(t)∆t. (16)

Next, using first the integration by parts formula (10) and then (11), we obtain∫ b

a

[
p0(t)y∇

]∆
z(t)∆t = p0(t)y∇(t)z(t) |ba −

∫ b

a

p0(t)y∇(t)z∇(t)∇t

= p0(t)y∇(t)z(t) |ba −p0(t)y(t)z∇(t) |ba +
∫ b

a

y(t)
[
p0(t)z∇

]∆
∆t.

Substituting this in the right-hand side of (16) we complete the proof for the case n = 1.
If n = 2, then Ly(t) is defined as in (13). For the term

L1y(t) =
[
p0(t)y∆∇(t)

]∇∆
,

applying the integration by parts formula (8) and using Theorem 6(ii), we have∫ b

a

(L1y)z∆t =
∫ b

a

[
p0(t)y∆∇(t)

]∇∆
z(t)∆t

=
[
p0(t)y∆∇(t)

]∇
z(t) |ba −

∫ b

a

[
p0y

∆∇]∇ (σ(t))z∆(t)∆t

=
[
p0(t)y∆∇(t)

]∇
z(t) |ba −

∫ b

a

[
p0y

∆∇]∆ (t)z∆(t)∆t.
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Next, using the integration by parts formula (10) we get∫ b

a

[
p0y

∆∇]∆ (t)z∆(t)∆t = p0(t)y∆∇(t)z∆(t) |ba −
∫ b

a

p0(t)y∆∇(t)z∆∇(t)∇t.

Now using the integration by parts formula (9) and Theorem 6(i) we find∫ b

a

p0(t)y∆∇(t)z∆∇(t)∇t = p0(t)y∆(t)z∆∇(t) |ba −
∫ b

a

[
y∆
]

(ρ(t))
[
p0z

∆∇]∇ (t)∇t

= p0(t)y∆(t)z∆∇(t) |ba −
∫ b

a

y∇(t)
[
p0z

∆∇]∇ (t)∇t.

Finally, applying the integration by parts formula (11) we get∫ b

a

y∇(t)
[
p0z

∆∇]∇ (t)∇t = y(t)
[
p0(t)z∆∇(t)

]∇ |ba −∫ b

a

y(t)
[
p0(t)z∆∇(t)

]∇∆
∆t.

Gathering these formulas all together we obtain∫ b

a

(L1y)z∆t =
[
p0(t)y∆∇(t)

]∇
z(t) |ba −p0(t)y∆∇(t)z∆(t) |ba

+p0(t)y∆(t)z∆∇(t) | b
a − y(t)

[
p0(t)z∆∇(t)

]∇ |ba +
∫ b

a

y(L1z)∆t.

Consequently, taking into account also the calculations in the case n = 1 done above, we
complete the proof for the case n = 2. 2

Remark 2 The identity (14) shows that the differential expression Ly is formally self-
adjoint with respect to the inner product (2).

For each function y ∈ Ω, at t ∈ T∗ set

y[k] = y∆k

, 0 ≤ k ≤ n− 1, y[0] = y∆0
= y,

y[n] = p0y
∆n−1∇,

y[n+k] = pky
∆n−k−1∇ −

(
y[n+k−1]

)∇
, 1 ≤ k ≤ n− 1,

y[2n] = pny −
(
y[2n−1]

)∆

.
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The functions y[i], 0 ≤ i ≤ 2n, we call the quasi-derivatives of y related to the expression
Ly.

It follows that

y[n+j] =
j∑
i=0

(−1)j−i
[
pi(t)y∆n−i−1∇(t)

]∇j−i
, 0 ≤ j ≤ n− 1,

y[2n] =
n∑
i=0

(−1)n−i
[
pi(t)y∆n−i−1∇(t)

]∇n−i−1∆

= Ly(t).

Therefore the function [y, z](t) defined by (15) can be represented in the form

[y, z](t) =
n∑
k=1

{
y[k−1](t)z[2n−k](t)− y[2n−k](t)z[k−1](t)

}
. (17)

4. Self-Adjoint Boundary Conditions and Green’s Function

Let a, b ∈ T be such that a ∈ Tκn , b ∈ Tκn , and a < b. If y and z are real valued
right-dense continuous functions and bounded on [a, b), define their inner product to be

〈y, z〉 =
∫ b

a

y(t)z(t)∆t.

Suppose that pn : [a, b) → R is a right-dense continuous and bounded function, and
for 0 ≤ i ≤ n − 1, pi : [ρn−i−1(a), b] → R is right-dense continuous with p0(t) 6= 0 on
[ρn−1(a), b].

Definition 14 Denote by Ω[a, b) the linear set of all right-dense continuous functions
y : [ρn(a), σn−1(b)]→ R such that

(i) for 0 ≤ i ≤ n− 1 the function
[
pi(t)y∆n−i−1∇(t)

]∇n−i−1

is defined for t ∈ [a, b],

(ii) for 0 ≤ i ≤ n − 1 the function
[
pi(t)y∆n−i−1∇(t)

]∇n−i−1∆

is defined for t ∈ [a, b)

and is right-dense continuous and bounded on [a, b).
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For y ∈ Ω[a, b) let

Ly(t) =
n∑
i=0

(−1)n−i
[
pi(t)y∆n−i−1∇(t)

]∇n−i−1∆

, t ∈ [a, b). (18)

Then Ly is right-dense continuous and bounded on [a, b). Together with the differential
expression (18) define the boundary conditions

Uj(y) : =
2n∑
k=1

αjky
[k−1](a) +

2n∑
k=1

βjky
[k−1](b) = 0, 1 ≤ j ≤ 2n, (19)

where αjk , βjk, 1 ≤ j, k ≤ 2n are given real numbers.

Definition 15 The boundary conditions (19) are self-adjoint with respect to the differ-
ential expression (18) if and only if

〈Ly, z〉 = 〈y, Lz〉 (20)

for all functions y, z ∈ Ω[a, b) satisfying the boundary conditions (19).

By the Lagrange identity (14) we have

〈Ly, z〉 − 〈y, Lz〉 = [y, z]ba,

where [y, z] is as defined in (15) or (17). Therefore boundary conditions (19) are self-
adjoint if and only if

[y, z]ba = 0

for all functions y, z ∈ Ω[a, b) satisfying (19). For example, the boundary conditions

y[k](a) = y[k](b) = 0, 0 ≤ k ≤ n− 1,

and also the boundary conditions

y[k](a) = y[k](b), 0 ≤ k ≤ 2n− 1,

are self-adjoint.
The boundary value problem

Ly(t) = 0, Uj(y) = 0, 1 ≤ j ≤ 2n (21)
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has a Green’s function G(t, s) if for any right-dense continuous and bounded functon
g : [a, b)→ R the nonhomogeneous boundary value problem

Ly(t) = g(t), Uj(y) = 0, 1 ≤ j ≤ 2n,

has a unique solution y : [ρn(a), σn−1(b)]→ R which is given by

y(t) =
∫ b

a

G(t, s)g(s)∆s.

Let Λ be a differential operator generated by the differential expression Ly and the
boundary conditions Uj(y) = 0, 1 ≤ j ≤ 2n. Then the domain of definition D(Λ) of
the operator Λ consists of all functions y ∈ Ω[a, b) satisfying the boundary conditions
(19), and Λy = Ly for all y ∈ D(Λ). Existence of the Green’s function G(t, s) for (21)
means that the corresponding operator Λ has an inverse Λ−1 given by

(Λ−1g)(t) =
∫ b

a

G(t, s)g(s)∆s, t ∈ [ρn(a), σn−1(b)], (22)

for all bounded right-dense continuous functions g : [a, b)→ R.

Suppose that the boundary conditions (19) are self-adjoint with respect to Ly. Then
(20) implies that the operator Λ is self-adjoint (symmetric):

〈Λy, z〉 = 〈y,Λz〉 for all y, z ∈ D(Λ).

It easily follows that the operator Λ−1 (provided it exists) is also symmetric:〈
Λ−1f, g

〉
=
〈
f,Λ−1g

〉
for all f, g ∈ Crd[a, b). (23)

Now (22) and (23) yield that the Green’s function G(t, s), provided it exists, of the
self-adjoint bundary value problem (21) must be symmetric, i.e.

G(t, s) = G(s, t) for t, s ∈ [a, b).

Example 16 Consider the second order self-adjoint differential expression Ly(t) as given
in (12). It is easy to see that the boundary conditions

αy(a) − βy[1](a) = 0, γy(b) + δy[1](b) = 0, (24)
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where α, β, γ, δ are real numbers such that | α | + | β |6= 0 and | γ | + | δ |6= 0, are self-
adjoint with respect to the differential expression Ly(t). Denote by ϕ and ψ the solutions
of the equation

−
[
p0(t)y∇(t)

]∆
+ p1(t)y(t) = 0, t ∈ [a, b),

under the initial conditions

ϕ(a) = β, ϕ[1](a) = α;

ψ(b) = δ, ψ[1](b) = −γ,

and set

ω = Wt(ϕ, ψ) = ϕ(t)ψ[1](t) − ϕ[1](t)ψ(t),

the Wronskian of solutions ϕ and ψ, which is independent of t. If ω 6= 0, then the Green’s
function of the BVP (12), (24) exists and is given by (see [3])

G(t, s) = − 1
ω

{
ϕ(t)ψ(s), t ≤ s,
ϕ(s)ψ(t), s ≤ t.

Obviously, G(t, s) is symmetric: G(t, s) = G(s, t).

Remark 3 In [2] it is shown (Example 18) that in the case T = Z the Green’s function
of

Ly(t) = y∆2∇2
(t) (25)

with the boundary conditions

y(a) = y∆(a) = y∆2
(b) = y∆2∇(b) = 0 (26)

is not symmetric. Notice that the expression (25) is in the form (13) with p0(t) ≡ 1 and
p1(t) = p2(t) ≡ 0, since in the case T = Z the operators ∆ and ∇ commute. However,
the boundary conditions (26) are not self-adjoint. This is why the Green’s function turned
out to be nonsymmetric. The boundary conditions

y(a) = y∆(a) = y∆∇(b) = y∆∇2
(b) = 0,

in contrast to the boundary conditions (26), are self-adjoint. Note also that if we replace
in the self-adjoint boundary conditions for T = R the real derivative with the delta or
nabla derivative, the resulting boundary conditions need not be self-adjoint.

379



GUSEINOV

References

[1] Anderson, D. R. and Hoffacker, J.: Green’s function for an even order mixed derivative

problem on time scales, Dynam. Systems Appl., 12 (2003), 9-22.

[2] Anderson, D. R. and Hoffacker, J.: A stacked delta-nabla self-adjoint problem of even order,

Math. Comput. Modelling, 38 (2003), 481-494.

[3] Atici, F. M. and Guseinov, G. Sh.: On Green’s functions and positive solutions for boundary

value problems on time scales, J. Comput. Appl. Math., 141 (2002), 75-99.

[4] Aulbach, B. and Hilger, S.: Linear dynamic processes with inhomogeneous time scale,

Nonlinear Dynamics and Quantum Dynamical Systems, (Gaussig, 1990) volume 59 of Math.

Res., 9-20. Akademie Verlag, Berlin, 1990.

[5] Bohner, M. and Peterson, A.: Dynamic Equations on Time Scales: An Intruduction with

Applications, Birkhaüser, Boston, 2001.
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