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Abstract

In this paper, we study the geometry of the semi-invariant submanifolds of a

Riemannian product manifold. Fundamental properties of these type submanifolds

such as the integrability of the distributions D, D⊥ and mixed-geodesic property are

studied. Finally, necessary and sufficient conditions are given on a semi-invariant

submanifold of Riemannian product manifold to be D-geodesic and D⊥-geodesic.

Key Words: Riemannian Product Manifold, Real Space Form, Locally Riemannian

Product and Curvature-Invariant Submanifold.

1. Introduction

The geometry of a submanifold (M, g) of a Riemannian product manifold
(M̄1×M̄2, ḡ1× ḡ2) has been studied by many geometers. In particularly, Matsumoto ([4])
proved that (M, g) is a locally Riemannian product manifold of Riemannian manifolds
(M1 , g1) and (M2, g2), if (M, g) is an invariant submanifold of a Riemannian product man-
ifold (M̄1×M̄2 , ḡ1×ḡ2). Then, Senlin Xu and Yilong Ni ([5]) updated of the Matsumoto’s
Theorem and proved that (M1, g1) and (M2, g2) are pseudo-umbilical submanifolds of
(M̄1 , ḡ1) and (M̄2 , ḡ2), respectively, if (M, g) is an invariant pseudo-umbilical submani-
fold of (M̄1×M̄2 , ḡ1× ḡ2). They also demonsrated that M is isometric to the production
of its two totally-geodesic submanifolds (M1, g1) and (M2, g2) which are submanifolds of
(M̄1 , ḡ1) and (M̄2, ḡ2), respectively.

In [1], we have shown that (M, g) is a pseudo-umbilical submanifold of
(M̄1×M̄2, ḡ1× ḡ2), if (M1, g1) and (M2, g2) are pseudo-umbilical submanifolds of (M̄1, ḡ1)
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and (M̄2, ḡ2), respectively. Moreover, necessary and sufficient conditions are given on
an invariant submanifold of a Riemannian product manifold to be curvature-invariant
submanifold and totally geodesic submanifold.

As was done in [6], we generalize the geometry of invariant submanifolds of a Rieman-
nian product manifold to the geometry of semi-invariant submanifolds of a Riemannian
product manifold. We show that a semi-invariant submanifold (M, g) of a Riemannian
product manifold (M̄1×M̄2, ḡ1× ḡ2) is a locally Riemannian product manifold if and only
ifAFD⊥D = 0 which is equivalent to∇f = 0, or Bh(TM,D) = 0. Furthermore, necessary
and sufficient conditions are given on distributionsD and D⊥ of a semi-invariant submani-
fold M to be integrable. Finally, we studied totally-umbilical semi-invariant submanifolds
in any positively or negatively curved Riemannian product manifold (M̄1 × M̄2, ḡ1× ḡ2).

In this paper, we further our work with a study of the integrability conditions of
distributions D and D⊥ from a different point of view. Necessary and sufficient condi-
tions are given of semi-invariant submanifold to be D-geodesic(D⊥-geodesic) and mixed-
geodesic submanifold. Moreover, we have studied semi-invariant submanifolds which are
curvature-invariant in any positively or negatively curved Riemannian product manifold
(M̄1 × M̄2, ḡ1 × ḡ2). Moreover, we have constructed an example for semi-invariant sub-
manifold of Riemannian product manifold to illustrate our results.

2. Preliminaries

In this section, we give the definitions and terminology used throughout this paper.
We recall some necessary facts and formulas from the theory of submanifolds in any
Riemannian manifold. For an arbitrary submanifold M of any Riemannian manifold M̄ ,
The Gauss and Weingarten formulas are respectively given by formulas

∇̄XY = ∇XY + h(X, Y ) (1)

and

∇̄XV = −AVX +∇⊥XV (2)

for anyX, Y ∈ Γ(TM) and V ∈ Γ(TM⊥), where ∇̄, ∇ denote the Levi-Civita connections
on M̄ and M , respectively. Moreover, h : Γ(TM) × Γ(TM) −→ Γ(TM⊥) is the second
fundamental form ofM in M̄ ,∇⊥ is the normal connection on the normal bundle Γ(TM⊥)
and AV is the shape operator of M with respect to V . Furthermore, AV and h are related
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by formula

g(AV X, Y ) = g(h(X, Y ), V ) (3)

for any X, Y ∈ Γ(TM) and V ∈ Γ(TM⊥), where g denotes the Riemannian metric on M
as well as M̄ .

Now, we denote the Riemannian curvature tensors of the connections ∇̄ and ∇ by R̄
and R, respectively. Then the equations of Gauss, Codazzi and Ricci are, respectively,
given by formulas

g(R̄(X, Y )Z,W ) = g(R(X, Y )Z,W ) + g(h(X,W ), h(Y, Z))

− g(h(X,Z), h(Y,W )), (4)

g(R̄(X, Y )ξ, η) = g(R̄(X, Y )⊥ξ, η)− g([Aξ, Aη]X, Y ) (5)

and

{R̄(X, Y )Z}⊥ = (∇̄Xh)(Y, Z) − (∇̄Y h)(X,Z) (6)

for any X, Y, Z,W ∈ Γ(TM) and ξ, η ∈ Γ(TM⊥), where {R̄(X, Y )Z}⊥ denotes the
normal component of R̄(X, Y )Z and the covariant derivative ∇̄h is defined by

(∇̄Xh)(Y, Z) = ∇⊥Xh(Y, Z) − h(∇XY, Z) − h(∇XZ, Y )

for any X, Y, Z ∈ Γ(TM). We recall that M is said to be curvature-invariant submanifold
if R̄(X, Y )Z ∈ Γ(TM), i.e., we have {R̄(X, Y )Z}⊥ = 0 for any X, Y, Z ∈ Γ(TM)[8].

Definition 2.1 Let M be an n-dimensional submanifold of any Riemannian manifold
M̄ . The mean-curvature vector field H of M is defined by formula

H =
1
n

n∑
j=1

h(ej , ej),

where, {ej}, 1 ≤ j ≤ n, is a locally orthonormal basis of Γ(TM). If a submanifold M

has one of the conditions

h = 0, H = 0, h(X, Y ) = g(X, Y )H, g(h(X, Y ), H) = λg(X, Y ), λ ∈ C∞(M,R),

then it is said to be totally geodesic, minimal, totally-umbilical and pseudo-umbilical
submanifold, respectively[2].
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3. The Riemannian Product of the Riemannian Manifolds

Let (M̄1 , ḡ1) and (M̄2, ḡ2) be the Riemannian manifolds with dimensions n1, n2,
respectively and M̄1×M̄2 be the Riemannian product manifold of Riemannian manifolds
M̄1 and M̄2. We denote the projections mappings of Γ(T (M̄1 × M̄2)) onto Γ(TM̄1) and
Γ(TM̄2) by π∗ and σ∗, respectively. Then we have

π∗ + σ∗ = I, π2
∗ = π∗, σ2

∗ = σ∗, and π∗ × σ∗ = σ∗ × π∗ = 0.

The Riemannian metric tensor of the Riemannian product manifold M̄ = M̄1 × M̄2

is given by
g(X, Y ) = ḡ1(π∗X, π∗Y ) + ḡ2(σ∗X, σ∗Y ),

for any X, Y ∈ Γ(TM̄). From the definition of g, M̄1 and M̄2 are totally-geodesic
submanifolds of M̄1 × M̄2. Setting F = π∗ − σ∗, then we can easily see that F 2 = I

and g satisfies

g(FX, Y ) = g(X, FY ), (7)

for any X, Y ∈ Γ(TM̄). Thus F defines an almost Riemannian product structure on M̄ .
Furthermore, we denote the Levi-Civita connection on M̄ by ∇̄, then we have

(∇̄XF )Y = 0 (8)

for any X, Y ∈ Γ(TM̄) (For the more detail, we refer the readers to [5]).
In the rest of this paper, we denote the Riemannian product manifold

(M̄1 × M̄2, ḡ1 ⊗ ḡ2) by (M̄, g).

4. Semi-Invariant Submanifolds of A Riemannian Product Manifold

Definition 4.1 Let M be an immersed submanifold of a Riemannian product manifold
M̄ . Let us assume that M has two distributions such as D and D⊥ such that TM =
D ⊕ D⊥, D is an invariant distribution, i.e., F (D) = D and D⊥ is an anti-invariant
distribution, i.e., F (D⊥) ⊂ TM⊥. Then we recall that M is semi-invariant submanifold
of the Riemannian product manifold M̄ [6].

In the rest of this paper, we suppose that M is a semi-invariant submanifold of a
Riemannian product manifold M̄ . Now, we denote the orthogonal complement of F (D⊥)
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in TM⊥ by V ; then we have direct sum

TM⊥ = F (D⊥) ⊕ V. (9)

In this case, we infer that V is an invariant vector bundle with respect to F . On the
other hand, for each X tangent to M , FX can be written as follows:

FX = fX + ωX, (10)

where fX and ωX are the tangential part and normal part of FX, respectively. Also,
for each vector field ξ normal to M , Fξ can be written as follows:

Fξ = Bξ +Cξ, (11)

where Bξ and Cξ are the tangential part and normal part of Fξ, respectively.
We denote dimensions of the invariant distribution D and anti-invariant distribution

D⊥ by p and q, respectively. Then for q = 0 (resp. p = 0), semi-invariant submanifold
becomes an invariant (resp. an anti-invariant) submanifold. A proper semi-invariant
submanifold is a semi-invariant submanifold which is neither an invariant submanifold
nor an anti-invariant submanifold.

Now, we give an example for semi-invariant submanifold of Riemannian product
manifold to illustrate our results.

Example 4.2 In R7 = R3 × R4 consider the submanifold

M : x1 − x3 = 0, x2 + x5 = 0, x7 =
1
2
log(1 + (x6 − x4)2), x6 6= x4.

It is easy to check that M is a semi-invariant submanifold of R7. In fact that

TM = Span{U1 =
∂

∂x1
+

∂

∂x3
, U2 =

∂

∂x2
− ∂

∂x5
,

U3 = (1 + (x6 − x4)2)
∂

∂x4
− (x6 − x4)

∂

∂x7
,

U4 = (1 + (x6 − x4)2)
∂

∂x6
+ (x6 − x4)2)

∂

∂x7
}

and

TM⊥ = Span{ξ1 =
∂

∂x1
− ∂

∂x3
, ξ2 =

∂

∂x2
+

∂

∂x5

ξ3 = (x6 − x4)
∂

∂x4
− (x6 − x4)

∂

∂x6
+ (1 + (x6 − x4)2)

∂

∂x7
}.
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By direct calculations, we get

FU1 = U1, FU3 = −U3, FU4 = −U4, and FU2 = ξ2.

Then take as the distributions D = Span{U1, U3, U4} and D⊥ = Span{U2}.

Theorem 4.3 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then the anti-invariant distribution D⊥ is integrable if and only if the
shape operator of M satisfies

AFWZ = 0

for any Z,W ∈ Γ(D⊥).

Proof. By using (1), (2), (8), (10) and (11), we obtain

∇̄ZFW = F ∇̄ZW
−AFWZ +∇⊥ZFW = f∇ZW + ω∇ZW + Bh(Z,W ) +Ch(Z,W ), (12)

for any Z,W ∈ Γ(D⊥). From the tangential part of (12) we have

−AFWZ = f∇ZW +Bh(Z,W ). (13)

Replacing vector fields Z by W in (13), we get

−AFZW = f∇WZ + Bh(W,Z). (14)

Taking into account (13), (14) and the symmetry of h, we conclude

−AFWZ +AFZW = f [Z,W ].

Furthermore, it was proven in [6] that the shape operator of M satisfies

AFWZ = −AFZW

for any Z,W ∈ Γ(D⊥). Thus we have

f [Z,W ] = 2AFZW.

Then [Z,W ] ∈ Γ(D⊥) if and only if AFZW = 0. This completes the proof of the Theo-
rem. 2
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Theorem 4.4 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then the invariant distribution D is integrable if and only if the shape
operator of M satisfies

FAFZX = AFZFX

for any X ∈ Γ(D) and Z ∈ Γ(D⊥).

Proof. By using (1), (2), (7) and the symmetry of h, then we have

g([X, Y ], Z) = g(∇XY −∇YX,Z) = g(∇̄XY − ∇̄YX,Z)

= g(∇̄Y Z,X)− g(∇̄XZ, Y ) = g(∇̄Y FZ, FX)− g(∇̄XFZ, FY )

= −g(AFZY, FX) + g(AFZX, FY ) = g(FAFZX − AFZFX, Y )

for any X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). Therefore, we obtain that [X, Y ] ∈ Γ(D) if and
only if FAFZX = AFZFX. This completes the proof of the Theorem. 2

Definition 4.5 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . M is said to be D-geodesic (resp. D⊥-geodesic) submanifold, if the second
fundamental form of M satisfies h(X, Y ) = 0, for any X, Y ∈ Γ(D) (resp. h(Z,W ) = 0
for any Z,W ∈ Γ(D⊥)).

Theorem 4.6 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then
i) The invariant distribution D is integrable and its leaves are totally-geodesic in M if
and only if

g(h(X, Y ), FZ) = 0

for any X, Y ∈ Γ(D) and Z ∈ Γ(D⊥).
ii) The invariant distribution D is integrable and its leaves are totally-geodesic in M̄ if
and only if M is D-geodesic submanifold.

Proof. i) From (1), (2) and (10) we have

g(h(X, Y ), FZ) = g(∇̄XY, FZ) = g(∇̄XFY, Z) = g(∇XfY, Z)

for any X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). Now, we suppose that the distribution D is
integrable and its leaves are totally-geodesic in M , then we have

∇XY ∈ Γ(D)
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which is equivalent to g(h(X, Y ), FZ) = 0.
Conversely, if g(h(X, Y ), FZ) = 0, then we obtain

g(∇XfY, Z) = 0

for all X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). It follows that ∇XfY ∈ Γ(D).
ii) We assume that the distribution D is integrable and its leaves are totally-geodesic in
M̄ ; then we have ∇̄XY ∈ Γ(D) for any X, Y ∈ Γ(D). Thus we get

g(h(X, Y ), ξ) = g(∇̄XY, ξ) = 0

for any ξ ∈ Γ(TM⊥), that is, M is a D-geodesic semi-invariant submanifold.
Conversely, let M be D-geodesic a proper semi-invariant submanifold of M̄ . Then for

each X, Y ∈ Γ(D) and ξ ∈ Γ(TM⊥), we have

g(∇̄XY, ξ) = g(h(X, Y ), ξ) = 0

which proves our assertion. 2

Theorem 4.7 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then there exists no proper semi-invariant submanifolds which are curvature-
invariant in any positively or negatively curved Riemannian product manifold M̄ .

Proof. We denote the Riemannian curvature tensor of M̄ by R̄. Then by a direct
calculation, we infer that R̄ satisfies

R̄(FX, FY )Z = R̄(X, Y )Z (15)

for any X, Y, Z ∈ Γ(TM̄). On the other hand, because M̄ is a real space form, we have

R̄(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y }, (16)

for any X, Y, Z ∈ Γ(TM̄). Thus from (15) and (16) we have

R̄(X, Y )Z = c{g(FY, Z)FX − g(FX, Z)FY }
= R(X, Y )Z +Ah(X,Z)Y −Ah(Y,Z)X

+ (∇̄Xh)(Y, Z) − (∇̄Y h)(X,Z) (17)
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for any X, Y, Z ∈ Γ(TM). Taking X,Z ∈ Γ(D) and Y ∈ Γ(D⊥) in (17), then we infer

−cg(FX, Z)FY = (∇̄Xh)(Y, Z) − (∇̄Y h)(X,Z),

which proves our assertion. 2

Theorem 4.8 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then M is a locally Riemannian product, if M is totally-geodesic subman-
ifold.

Proof. By using the assertion (i) and (ii) of Theorem 4.6, Theorem 4.3 and (12) we ob-
tain that both distributions D and D⊥ are integrable and their leaves are totally-geodesic
in M . Thus M is a locally Riemannian product. 2

Definition 4.9 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . We call that M is mixed-geodesic submanifold, if the second fundamental
form of M satisfies h(X,Z) = 0 for any X ∈ Γ(D) and Y ∈ Γ(D⊥).

Theorem 4.10 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄. Then M is mixed-geodesic submanifold if and only if the shape operator of
M satisfies

AξFX ∈ Γ(D)

for any X ∈ Γ(D) and ξ ∈ Γ(TM⊥).

Proof. By using (1), (2) and ∇̄ is Levi-Civita connection, we infer

g(h(FX, Y ), ξ) = g(∇̄Y FX, ξ) = −g(∇̄Y ξ, FX)

= g(AξY, FX) = g(AξFX, Y )

for any X ∈ Γ(D), Y ∈ Γ(D⊥) and ξ ∈ Γ(TM⊥). Thus we get h(FX, Y ) = 0 if and only
if AξFX ∈ Γ(D). 2

Now, we denote the integral manifolds of the distributions D and D⊥ by M1 and M2,
respectively.
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Theorem 4.11 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then M1 is totally-geodesic in M if and only if the second fundamental
form of M satisfies

h(FY,X) ∈ Γ(V )

for all X, Y ∈ Γ(D).

Proof. By using (1), (2), (3) and (7), we derive

g(∇XY, Z) = g(∇̄XY, Z) = g(∇̄XFY, FZ)

= g(h(FY,X), FZ)

for any X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). Thus we have ∇XY ∈ Γ(D) if and only if
h(FY,X) ∈ Γ(V ). 2

From Theorem 4.11 we have

Corollary 4.12 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then M1 is totally-geodesic in M , if M is D-geodesic submanifold in M̄ .

Theorem 4.13 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . M2 is totally-geodesic in M if and only if

h(FX, Z) ∈ Γ(V )

for all Z ∈ Γ(D⊥) and X ∈ Γ(D).

Proof.

g(∇ZW,X) = g(∇̄ZW,X) = −g(∇̄ZX,W ) = −g(∇̄ZFX, FW )

= −g(h(Z, FX), FW )

for all Z,W ∈ Γ(D⊥) and X ∈ Γ(D). It follows that M2 is totally-geodesic in M if and
only if h(Z, FX) ∈ Γ(V ). 2

From Theorem 4.13 we have the following Corollary.

Corollary 4.14 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then each leaf D⊥ is totally-geodesic in M , if M is a mixed-geodesic
submanifold of M̄ .
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Theorem 4.15 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then M2 is totally-geodesic submanifold in M̄ if and only if

h(Z, U) ∈ Γ(V ) for any Z ∈ Γ(D⊥) U ∈ Γ(TM), (18)

and

∇⊥ZFW ∈ Γ(F (D⊥)) for any Z,W ∈ Γ(D⊥). (19)

Proof. Suppose M2 is totally-geodesic in M̄ . Then we have ∇̄ZW ∈ Γ(D⊥), for any
Z,W ∈ Γ(D⊥). By using (1) and (2) and (7), we obtain

g(h(Z, U), FW ) = g(∇̄ZU, FW ) = −g(∇̄ZW,FU)

= −g(∇̄ZW, fU)− g(∇̄ZW,ωU) = 0,

that is, h(Z, U) ∈ Γ(V ) for any Z,W ∈ Γ(D⊥), U ∈ Γ(TM).
In the same way, we obtain

g(∇⊥ZFW, V ) = g(∇̄ZFW, V ) = g(∇̄ZW,FV ) = 0, (20)

that is, ∇⊥ZFW ∈ Γ(F (D⊥)) for all Z,W ∈ Γ(D⊥), V ∈ Γ(V ).
Conversely, (18) and (19) are satisfied. By using (1), (2) and (7), we obtain

g(∇̄ZW,X) = −g(∇̄ZX,W ) = −g(∇̄ZFX, FW )

= −g(h(Z, FX), FW ) = 0

g(∇̄ZW,FU) = g(h(Z,W ), FU) = 0

and
g(∇̄ZW, V ) = g(∇̄ZFW, FV ) = g(∇⊥ZFW, FV ) = 0

for any Z,W, U ∈ Γ(D⊥), X ∈ Γ(D) and V ∈ Γ(V ). This completes the proof of the
Theorem. 2

Theorem 4.16 Let M be a proper semi-invariant submanifold of Riemannian product
manifold M̄ . Then M2 is totally-geodesic in M̄ if and only if M is D⊥-geodesic and

g(h(X,Z), FW ) = 0

for any Z,W ∈ Γ(D⊥) and X ∈ Γ(D).
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Proof. Let us assume that M2 is totally-geodesic in M̄ . Then we have ∇̄ZW ∈ Γ(D⊥).
By using (1), (2), (7) and taking account of ∇̄ is Levi-Civita connection, we obtain

g(h(X,Z), FW ) = g(∇̄ZX, FW ) = −g(∇̄ZFW,X)

= g(∇̄ZW,FX) = 0.

Similarly, because M2 is totally-geodesic in M̄ , from Theorem 4.15 we have

g(h(Z,W ), V ) = g(∇̄ZW, V ) = g(∇̄ZFW, FV )

= g(∇⊥ZFW, FV ) = 0

for any Z,W ∈ Γ(D⊥), X ∈ Γ(D) and V ∈ Γ(V ), that is, M is D⊥-geodesic submanifold.
Conversely, we assume that g(h(X,Z), FW ) = 0 and M is D⊥-geodesic submanifold.

Then we have

g(∇̄ZW,FX) = −g(∇̄ZFX,W ) = −g(∇̄ZX, FW )

= −g(h(Z,X), FW ) = 0

and

g(∇̄ZW, ξ) = g(h(Z,W ), ξ) = 0

for any Z,W ∈ Γ(D⊥), X ∈ Γ(D) and ξ ∈ Γ(TM⊥). Thus we conclude that M2 is
totally-geodesic in M̄ . This completes the proof of the Theorem. 2
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