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Abstract

A tree is a connected (undirected) graph that contains no cycles. Trees play

an important role in Computer Science. There are many applications in this field.

Ordered binary decision diagrams are trees in the language of Boolean algebras.

For the applications, it is important to measure the complexity of a tree or of

a polynomial. The complexity of a polynomial over an arbitrary algebra can be

regarded as a valuation. The concept of the valuations of terms was introduced

by K. Denecke and S. L. Wismath in [5]. In [6], the author defined the depth of

a polynomial which is an example of a complexity measure for polynomials. In

this paper we study several other measures of the complexity of polynomials. In

each of these measures, we have a mapping v : Pτ (X,A) −→ IN from the set of

all polynomials of type τ over A to the set of natural numbers (including 0) which

assigns to each polynomial p a complexity number or a value v(p). We will refer to

such a function as a complexity or a cost function or a valuation and we study some

properties of these valuations.

Key Words: Polynomials, valuations of polynomials, Order Condition, Algebraic

Subpolynomial Condition, Subpolynomial Condition.

1. Introduction

We first introduce some definitions of polynomials of type τ over A. Let A and X be
disjoint sets and {fi | i ∈ I} be an indexed set of operation symbols where fi is ni-ary.
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We denote by Xn the n-element alphabet Xn = {x1, . . . , xn}. The polynomials of type
τ over A, for short polynomials, are inductively defined by the following steps:

(i) each x ∈ X is a polynomial, called a variable,

(ii) each a ∈ A is a polynomial, called a constant,

(iii) if p1, . . . , pni are polynomials, then fi(p1, . . . , pni) is a polynomial.

The set Pτ(Xn, A) is called the set of n-ary polynomials. Let Pτ(X,A) be the set

of all polynomials, i.e. Pτ (X,A) :=
∞⋃
n=1

Pτ (Xn, A). The set Wτ (X) of all terms of

type τ is a subset of Pτ (X,A). The set Pτ(X,A) is the base set of the absolutely
free algebra Pτ(X,A) := (Pτ (X,A); (f i)i∈I ), where the operations f i are defined by

f i(p1, . . . , pni) = fi(p1, . . . , pni).
We begin with a list of examples of some complexity measures for polynomials.
The minimum depth of a polynomial p is the length of the shortest path from the

root to a vertex in the tree, and is denoted by mindepth(p) and defined by

(i) mindepth(x) = 0, if x ∈ X,

(ii) mindepth(a) = 0, if a ∈ A,

(iii) mindepth(fi(p1, . . . , pni)) = min{mindepth(p1), . . . , mindepth(pni)}+ 1.

The maximum depth of a polynomial p is the length of the longest path from the root
to a vertex in the tree, denoted by maxdepth(p), and is defined by

(i) maxdepth(x) = 0, if x ∈ X,

(ii) maxdepth(a) = 0, if a ∈ A,

(iii) maxdepth(fi(p1, . . . , pni)) = max{maxdepth(p1), . . . , maxdepth(pni)}+ 1.

The variable count of a polynomial p is the total number of occurrences of variables
in p, denoted by varcount(p), and is defined by

(i) varcount(x) = 1, if x ∈ X,

(ii) varcount(a) = 0, if a ∈ A,
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(iii) varcount(fi(p1, . . . , pni)) =
ni∑
j=1

varcount(pj).

The constant count of a polynomial p is the total number of occurrences of constants
in p, denoted by constcount(p), and is defined by

(i) constcount(x) = 0, if x ∈ X,

(ii) constcount(a) = 1, if a ∈ A,

(iii) constcount(fi(p1, . . . , pni)) =
ni∑
j=1

constcount(pj).

The operation symbol count of a polynomial p is the total number of occurrences of
operation symbols in p, denoted by opcount(p), and is defined by

(i) opcount(x) = 0, if x ∈ X,

(ii) opcount(a) = 0, if a ∈ A,

(iii) opcount(fi(p1, . . . , pni)) =
ni∑
j=1

opcount(pj) + 1.

As an example we consider the tree type τ = (2, 2, 2) with binary operation symbols
f, g, h. For a polynomial p = f(g(g(x1 , x2), h(x1, x1)), a), as shown below in Figure,
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we have mindepth(p) = 1, maxdepth(p) = 3, varcount(p) = 4, constcount(p) = 1, and
opcount(p) = 4.

These complexity functions assign the same complexity values (either 0 or 1) to
all variables, all constants and all the operation symbols. For example, each constant
contributes a value of 1 in constcount, and a value 0 in varcount. So, it is reasonable to
have a cost function which variously weighs different operations.

Let w : {fi | i ∈ I} −→ IN be a function which assigns to each operation symbol fi
a weight w(fi). Then the complexity measure vw on Pτ(X,A) is inductively defined as
follows:

(i) vw assigns some constant values to each variable and to each constant;

(ii) vw(fi(p1, . . . , pni)) = w(fi) +
ni∑
j=1

vw(pj).

2. Generalized Complexity Functions

Next, we consider the basic properties of our examples of the complexity measures
on Pτ(X,A). In the previous section we have used several features of the algebra IN
including the addition operation and the order relation ≤ on IN. We used additional
ni-ary operations on IN for each i ∈ I. So, we regard the set IN as an algebra of the fixed
type τ , denoted by INτ .

Definition 2.1 Let a and b be fixed elements of IN and let INτ = (IN; (fIN
i )i∈I ) be an

algebra of type τ with the base set IN. Let v be the constant mapping v : X ∪ A −→ IN
defined by

(i) v(x) = a, for all x ∈ X,

(ii) v(a) = b, for all a ∈ A.

Then v has a unique extension, denoted by v, to the set Pτ(X,A) which is a homo-
morphism from the free algebra Pτ(X,A) into INτ , i.e. v : Pτ (X,A) −→ INτ , where

v(fi(p1, . . . , pni)) = fIN
i (v(p1), . . . , v(pni)). Such an extension v is called a valuation of

polynomials of type τ over A into INτ if the following conditions are satisfied:

(iii) v(p) ≥ v(x), for all x ∈ X and for all p ∈ Pτ(X,A),
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(iv) v(p) ≥ v(a), for all a ∈ A and for all p ∈ Pτ(X,A).

It follows immediately from the conditions (iii) and (iv) that when these conditions are
met it must be the case that the values a and b assigned to all variables and all constants,
respectively, must be equal. Thus the definition of a valuation requires that a = b.

The algebra INτ is called the valuation algebra of the valuation v.

The definition uses the order relation≤ on IN. More generally, we could use a valuation
structure Aτ = (A; (fAi )i∈I ,≤), where ≤ is a partial order on the set A. From this
definition and the examples in section 1, we have the following results.

Formindepth, the operations fIN
i are defined by fIN

i (a1, . . . , ani) := min{a1, . . . , ani}+
1. Then mindepth(p) = 0 if p = x ∈ X or p = a ∈ A, and the conditions (iii), (iv) are
also satisfied.

Formaxdepth, the operations fIN
i are defined by fIN

i (a1, . . . , ani) := max{a1, . . . , ani}+
1. Then maxdepth(p) = 0 if p = x ∈ X or p = a ∈ A, and the conditions (iii), (iv) are
also satisfied.

For varcount, the operations fIN
i are defined by fIN

i (a1, . . . , ani) :=
ni∑
j=1

aj , with

varcount(x) = 1 for x ∈ X and varcount(a) = 0 for a ∈ A, and the condition (iv) is also
satisfied. But the condition (iii) is not satisfied since varcount(a) < varcount(x).

For constcount, the operations fIN
i are defined by fIN

i (a1, . . . , ani) :=
ni∑
j=1

aj, with

constcount(x) = 0 for x ∈ X and constcount(a) = 1 for a ∈ A, and the condition (iii) is
also satisfied. But the condition (iv) is not satisfied since constcount(x) < constcount(a).

So varcount and constcount are not valuations of polynomials of type τ into INτ .

For opcount, the operations fIN
i are defined by fIN

i (a1, . . . , ani) :=
ni∑
j=1

aj + 1. Then

opcount(p) = 0 if p = x ∈ X or p = a ∈ A, and the conditions (iii), (iv) are also satisfied.

For the weighted complexity function vw in section 1, we assign v(x) = a for some

the fixed value a, v(a) = b for some the fixed value b, and take fIN
i (a1, . . . , ani) :=

w(fi) +
ni∑
j=1

aj.

Next, we consider the property of the operations fIN
i of the valuation algebra defined

by K. Denecke and S. L. Wismath in [5].
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The operations fIN
i of the valuation algebra are monotone, so the following Order

Condition (OC) is satisfied:
(OC) If aj ≤ bj for 1 ≤ j ≤ ni and fi is an ni-ary operation symbol of type τ , then for

the corresponding fIN
i we have fIN

i (a1, . . . , ani) ≤ fIN
i (b1, . . . , bni).

Proposition 2.2 For any valuation v of polynomials of type τ over A into INτ and any
polynomials p, p1, . . . , pn, we have

v(p(p1, . . . , pn)) ≥ v(p).

Here, p(p1, . . . , pn) denotes the superposition of the polynomial p with the polynomials
p1, . . . , pn.

Proof. We will prove the claim by induction on the complexity opcount(p) of the
polynomial p. If opcount(p) = 0, then p = xj for some j ∈ {1, . . . , n} or p = a for
some a ∈ A. If p = xj for some j ∈ {1, . . . , n}, then v(xj(p1, . . . , pn)) = v(pj) ≥ v(xj).
If p = a, then v(a(p1, . . . , pn)) = v(a) ≥ v(a). If p = fi(p′1, . . . , p′ni) and assume that
v(p′j(p1, . . . , pn)) ≥ v(p′j) for 1 ≤ j ≤ ni, then

v(p(p1, . . . , pn)) = v(fi(p′1, . . . , p
′
ni

)(p1, . . . , pn))

= v(fi(p′1(p1, . . . , pn), . . . , p′ni(p1, . . . , pn)))

= fIN
i (v(p′1(p1, . . . , pn)), . . . , v(p′ni(p1, . . . , pn)))

≥ fIN
i (v(p′1), . . . , v(p′ni))

= v(fi(p′1, . . . , p
′
ni))

= v(p).

2

Since any valuation v is a homomorphism from Pτ(X,A) to INτ , the image v(Pτ(X,A))

is a subalgebra of INτ and ker(v) is a congruence on Pτ(X,A), although not necessary a
fully invariant congruence. The next proposition shows when ker(v) is a fully invariant
congruence.

Proposition 2.3 Let v be a valuation of polynomials of type τ over A into INτ . The
kernel of v is a fully invariant congruence iff v is a constant function on Pτ (X,A).
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Proof. Let ker(v) be a fully invariant congruence. By definition, any two variables x
and y assigned the same value are in the same block of ker(v). Since ker(v) is a fully
invariant congruence, for every endomorphism ϕ on Pτ(X,A), we have (ϕ(x), ϕ(y)) ∈
ker(v). But for any two polynomials p1 and p2 there is an endomorphism ϕ which maps
x and y to p1 and p2, respectively. This shows that every pair (p1, p2) of polynomials is
in ker(v). Thus v is a constant function on Pτ (X,A). Conversely, let v be a constant
function. Then all polynomials have the same value. So ker(v) = Pτ (X,A) × Pτ (X,A)
is a fully invariant congruence. 2

A valuation of polynomials of type τ over A into INτ lets us to assign to any polynomial
of a given type a complexity value, since polynomial identities are pairs of polynomials,
and polynomial varieties of type τ are classes defined by sets of polynomial identities.
(For more details on polynomial identities and polynomial varieties, see [1].) So we can
measure the complexity of polynomial identities and polynomial varieties of type τ by
using our valuation functions. Let v be a valuation of polynomials of type τ over A
into INτ , and let S be some fixed non-empty subset of IN. For any set Σ of polynomial
identities, we define

NE
S (Σ) = {p1 ≈ p2 ∈ Σ | p1, p2 ∈ Pτ(X,A) and v(p1), v(p2) ∈ S}.

We denote the set of all polynomial equations p1 ≈ p2 of type τ over A by Pτ (X,A)2 and
denote its power set by P(Pτ (X,A)2). Then we have a mapping NE

S : P(Pτ(X,A)2) −→
P(Pτ (X,A)2). If Σ is all of Pτ (X,A)2, then NE

S (Pτ (X,A)2) is the set of all polynomial
identities when both polynomials have valuation in S. We have the following proposition.

Proposition 2.4 Let S be a fixed non-empty subset of IN. Then the mapping NE
S is a

kernel operator on P(Pτ (X,A)2) which preserves intersections and unions.

Proof. It is clear that NE
S (Σ) = Σ ∩ NE

S (Pτ (X,A)2) ⊆ Σ. Thus NE
S (Σ) is intensive.

If Σ1 ⊆ Σ2, then NE
S (Σ1) = Σ1 ∩NE

S (Pτ(X,A)2) ⊆ Σ2 ∩NE
S (Pτ(X,A)2) = NE

S (Σ2). So
NE
S is isotone. For idempotence, consider

NE
S (NE

S (Σ)) = (Σ ∩NE
S (Pτ(X,A)2) ∩NE

S (Pτ (X,A)2) = NE
S (Σ).
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Next, consider

NE
S (
⋂
{Σi | i ∈ I}) =

⋂
{Σi | i ∈ I} ∩NE

S (Pτ (X,A)2)

=
⋂
{Σi ∩NE

S (Pτ (X,A)2) | i ∈ I}

=
⋂
{NE

S (Σi) | i ∈ I},

and

NE
S (
⋃
{Σi | i ∈ I}) =

⋃
{Σi | i ∈ I} ∩NE

S (Pτ (X,A)2)

=
⋃
{Σi ∩NE

S (Pτ (X,A)2) | i ∈ I}

=
⋃
{NE

S (Σi) | i ∈ I}.

This finishes the proof. 2

In general, the set of fixed points of a kernel operator defined on a lattice forms a
sublattice of the given lattice. Our operator NE

S is defined on a complete lattice, the
power set P(Pτ (X,A)2); and since the generalized meet and join operation of this lattice
agree with

⋂
and

⋃
, so we have the following corollary.

Corollary 2.5 The set {Σ ∈ P(Pτ (X,A)2) | NE
S (Σ) = Σ} forms a complete lattice of

the power set lattice P(Pτ(X,A)2). 2

Next, we consider the interconnections between the valuations of polynomials of type
τ over A and polynomial equational theory. We denote the class of all algebras B of
type τ such that B contains a subalgebra A which has the same cardinality as A by KA.
Algebras from KA are called A- algebras. For any subclass K ⊆ KA and for any set
Σ ⊆ Pτ(X,A)2, we define

P IdK := {p1 ≈ p2 | p1, p2 ∈ Pτ(X,A) and for all B ∈ K ⊆ KA(B satisfies p1 ≈ p2 as a
polynomial identity)}

and

PModΣ := {B | B is an A-algebra and for all p1 ≈ p2 ∈ Σ(B satisfies p1 ≈ p2 as a
polynomial identity)}.
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It is shown in [1] that the pair of mappings (PMod, P Id) forms a Galois connection and
PModP Id and P IdPMod are closure operators. The subclasses K ⊆ KA with PModP Id
K = K form a complete lattice PLA(τ ) and the subsets Σ ⊆ Pτ(X,A)2 with P IdPMod
Σ = Σ form a complete lattice PEA(τ ). Both lattices are dually isomorphic. The classes
from PLA(τ ) are called polynomial varieties of type τ and the elements of PEA(τ ) are
called polynomial equational theories of type τ . Polynomial equational theories of type
τ can be described as sets of polynomial identities closed under a closure operator E
which describes the algebraic derivation concept; that is, under finitary applications of
the usual five derivation rules for polynomial identities, which are reflexivity, symmetry,
transitivity, the replacement rule and the substitution rule. We consider sets of the form
NE
S (Σ) where Σ = P Id K is closed, and in particular in whether such sets are closed

under these five derivation rules. At first, to ensure reflexivity we add all pairs (p, p)
of polynomials from the diagonal ∆Pτ(X,A). Thus we will consider the operator DNE

S ,

mapping any set Σ of polynomial identities to NE
S (Σ) ∪ ∆Pτ(X,A). It is clearly that

any set DNE
S (Σ) is closed under the first three derivation rules, that is, such sets form

equivalence relations. In the next section we examine the conditions on our valuations
which are needed to ensure closure under the replacement rule and the substitution rule.

3. The Subpolynomial Condition

In this section we consider another property of valuations defined by K. Denecke and
S. L. Wismath in [5]. We describe this property algebraically, as a condition on the
valuation algebra INτ , or as a condition on a valuation v. We will say that INτ satisfies
the Algebraic Subpolynomial Condition, (ASPC), if

∀i ∈ I ∀j ∈ {1, . . . , ni} ∀a1, . . . , ani ∈ IN (fIN
i (a1, . . . , ani) ≥ aj).

A valuation v is said to satisfy the Subpolynomial Condition (SPC) if any subpolynomial
p′ of a polynomial p has v(p′) ≤ v(p).

The following proposition shows that these two properties are connected.

Proposition 3.1 Let v be a valuation of polynomials of type τ over A into the algebra
INτ . If INτ satisfies (ASPC), then v satisfies (SPC).

Proof. Let v be a valuation of polynomials of type τ over A into the algebra INτ ,
where the algebra INτ satisfies (ASPC). We prove by induction on the complexity of the
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polynomial p that any subpolynomial of p has value less than or equal to the value of p.
If p = x ∈ X is a variable, then any subpolynomial of x is equal to x and has the same
value as x. If p = a ∈ A is a constant, then any subpolynomial of a is equal to a and
has the same value as a. If p = fi(p1, . . . , pni) and p′ is a subpolynomial of p different
from p, then p′ is a subpolynomial of pj for some j ∈ {1, . . . , ni}. In this case we have

v(p) = v(fi(p1, . . . , pni) = fIN
i (v(p1), . . . , v(pni)) ≥ v(pj), by the assumption that INτ

satisfies (ASPC). Thus by the induction hypothesis we conclude that v(pj) ≥ v(p′), and
by transitivity we get v(p) ≥ v(p′). 2

Lemma 3.2 Let v be a valuation of polynomials of type τ over A into INτ . If v satisfies
(SPC), then for every i ∈ I and all polynomials p1, . . . , pni we have

v(fi(p1, . . . , pni)) ≥ max{v(pj) | 1 ≤ j ≤ ni}.
Proof. Since each polynomial pj is a subpolynomial of fi(p1, . . . , pni), then by (SPC)
we get v(fi(p1, . . . , pni)) ≥ v(pj), 1 ≤ j ≤ ni. Thus v(fi(p1, . . . , pni)) ≥max{v(pj) | 1 ≤
j ≤ ni}. 2

Now we will consider that when DNE
S (P Id K) is a polynomial equational theory,

for K a polynomial variety of type τ . We have seen that these sets are always at least
equivalence relations. Let Sk = {m ∈ IN | m ≥ k}, with the corresponding sets NE

Sk
(P Id

K) and DNE
Sk

(P Id K).

Proposition 3.3 Let v be a valuation of polynomials of type τ over A into INτ , let K be
a polynomial variety of type τ over A, and let k ≥ 0. If v satisfies (SPC), then DNE

Sk
(P Id

K) is closed under the replacement derivation rule.

Proof. Let fi be an ni-ary operation symbol of type τ , and let p1 ≈ p′1, . . . , pni ≈ p′ni
be elements of DNE

Sk
(P Id K). We will show that fi(p1, . . . , pni) ≈ fi(p′1, . . . , p

′
ni

) is

also in DNE
Sk

(P Id K). If pj = p′j holds for all 1 ≤ j ≤ ni, then fi(p1, . . . , pni) =
fi(p′1, . . . , p

′
ni). Otherwise, we have at least one value 1 ≤ m ≤ ni for which pm 6= p′m,

and both v(pm), v(p′m) ≥ k. By the condition (SPC) which follows from (ASPC) we
have both v(fi(p1, . . . , pni)) ≥ k and v(fi(p′1, . . . , p′ni)) ≥ k. Since for all 1 ≤ j ≤ ni,
we have pj ≈ p′j ∈ P Id K, so fi(p1, . . . , pni) ≈ fi(p′1, . . . , p′ni) ∈ P Id K. Thus
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fi(p1, . . . , pni) ≈ fi(p′1, . . . , p′ni) is in DNE
Sk

(P Id K). 2

Proposition 3.4 Let v be any valuation of polynomials of type τ over A into INτ , let
K be a polynomial variety of type τ over A, and let k ≥ 0. If v satisfies (OC), then
DNE

Sk
(P Id V ) is closed under the substitution derivation rule.

Proof. Let p1 ≈ p2 be an element of the set DNE
Sk

(P Id K) with p1 6= p2, so
that p1 ≈ p2 ∈ P Id K and v(p1), v(p2) ≥ k. We will show that for any substitution
ϕ : X ∪A −→ Pτ (X,A), the polynomial identity ϕ̂(p1) ≈ ϕ̂(p2) is also in DNE

Sk
(P Id V ),

where ϕ̂ is the canonical endomorphism of Pτ (X,A) extending ϕ from X∪A to Pτ(X,A).
Since P Id K is a polynomial equational theory and closed under such substitutions, we
have ϕ̂(p1) ≈ ϕ̂(p2) ∈ P Id K. Next, we will prove that v(ϕ̂(p1)), v(ϕ̂(p2)) ≥ k. It will
suffice to prove that, for any polynomial p we have v(ϕ̂(p)) ≥ v(p). We prove this by
induction on p. First, if p = xj is a variable, then v(ϕ̂(p)) ≥ v(xj) = v(p), by the definition
of a valuation. If p = a is a constant, then v(ϕ̂(p)) ≥ v(a) = v(p), by the definition of a
valuation. Inductively, if p = fi(p1, . . . , pni) for some polynomials p1, . . . , pni for which
this claim holds, then

v(ϕ̂(p)) = v(ϕ̂(fi(p1, . . . , pni)))

= v(fi(ϕ̂(p1), . . . , ϕ̂(pni)))

≥ v(fi(p1, . . . , pni))

= v(p).

This finishes the proof. 2

Corollary 3.5 If v is a valuation which satisfies (OC) and (SPC), then the set
DNE

Sk
(PIdK) is a polynomial equational theory for any polynomial variety K and any

integer k ≥ 0. In particular, the set DNE
Sk

(τ ) is a polynomial equational theory.

2

The next proposition shows that the set Pk := {m ∈ IN | m ≥ k} ∩ im(v) forms
a subalgebra of the image algebra v(Pτ(X,A)) and has the ideal property, i.e. if fi is

423



LEERATANAVALEE

an ni-ary operation symbol of type τ , we have fIN
i (a1, . . . , ani) ∈ Pk when any one of

a1, . . . , ani is in Pk.

Proposition 3.6 Let v be a valuation of polynomials of type τ over A satisfying (SPC),
and let k ≥ 0. The set Pk := {m ∈ IN | m ≥ k} ∩ im(v), where im(v) is the image of v,
forms a subalgebra of the image algebra v(Pτ (X,A)) and have an ideal property.

Proof. Let fi be an ni-ary operation symbol for i ∈ I. Assume that a1, . . . , ani are
elements of Pk. Then aj ≥ k for every j ∈ {1, . . . , ni} and for every j ∈ {1, . . . , ni} there

is a polynomial pj such that aj = v(pj). The condition (SPC) gives fIN
i (a1, . . . , ani) ≥

aj ≥ k, so that fIN
i (a1, . . . , ani) ∈ {m ∈ IN | m ≥ k}. Moreover, fIN

i (a1, . . . , ani) =

fIN
i (v(p1), . . . , v(pni)) = v(fi(p1, . . . , pni)). This shows that fIN

i (a1, . . . , ani) is in the

image algebra. Therefore fIN
i (a1, . . . , ani) ∈ Pk. A similar argument shows that it is

enough, under (SPC), to have even one input aj ≥ k. 2

The ideal property is strong enough to guarantee closure of NE
S (P Id K) under the

replacement rule.

Proposition 3.7 Let v be a valuation of polynomials of type τ and let K be a polynomial
variety of type τ over A. If the set S is an ideal of INτ , then DNE

S (P Id K) is closed
under the replacement rule.

Proof. Let fi be an ni-ary operation symbol of type τ , and let p1 ≈ p′1, . . . , pni ≈ p′ni
be elements of DNE

S (P Id K). We will show that fi(p1, . . . , pni) ≈ fi(p′1, . . . , p′ni) is
also in DNE

S (P Id K). If pj = p′j holds for all 1 ≤ j ≤ ni, then fi(p1, . . . , pni) =
fi(p′1, . . . , p′ni). Otherwise, we have at least one value 1 ≤ m ≤ ni for which pm 6= p′m,

and both v(pm), v(p′m) ∈ S. By the ideal property of S, we have fIN
i (v(p1), . . . , v(pni)),

fIN
i (v(p′1), . . . , v(p′ni)) ∈ S. Since for all 1 ≤ j ≤ ni we have pj ≈ p′j ∈ P Id
K, so fi(p1, . . . , pni) ≈ fi(p′1, . . . , p′ni) ∈ P Id K. This means that fi(p1, . . . , pni) ≈
fi(p′1, . . . , p

′
ni) is in DNE

S (P Id K). 2

Next, suppose that p ≈ p′ and v(p), v(p′) ∈ S. Let ϕ : X ∪ A −→ Pτ(X,A) be a
substitution of type τ . We proved in Proposition 3.4 that for any valuation v satisfying
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(OC), we have v(ϕ̂(p)) ≥ v(p) and v(ϕ̂(p′)) ≥ v(p′), so it is sufficient for S to be closed
under the substitution rule.
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