Corrigendum Uniqueness of Primary Decompositions [Turkish J. Math. 27 (2003), 425-434]

P. F. Smith

In [1], the statement of Theorem 6 needs to be amended and also the comment following the proof of Theorem 15 . We also take this opportunity to give a clearer proof of Theorem 6. I am grateful to Mr. A. R. Woodward for bringing these matters to my attention.

Theorem 6 Let R be any ring and let N be a submodule of an R-module M such that N has a primary decomposition. Then the following statements are equivalent for a prime ideal P of R.
(i) P is an associated prime ideal of N.
(ii) $P=(N: L)$ for some submodule L of M with $L \nsubseteq N$.
(iii) $P=\{r \in R: r R m \subseteq N\}$ for some element $m \in M \backslash N$.

Proof. (i) \Rightarrow (iii) Let $N=K_{1} \cap \ldots \cap K_{n}$ be a normal decomposition of N where K_{i} is a P_{i}-primary submodule of M for some prime ideal P_{i} of R for each $1 \leq i \leq n$. Let $1 \leq i \leq n$ and let $H_{i}=K_{1} \cap \ldots \cap K_{i-1} \cap K_{i+1} \cap \ldots \cap K_{n}$. There exists a positive integer $k(i)$ such that $P_{i}^{k(i)} M \subseteq K_{i}$ and hence $P_{i}^{k(i)} H_{i} \subseteq N$. Since $H_{i} \nsubseteq N$ there exists an integer $1 \leq t(i) \leq k(i)$ such that $P_{i}^{t(i)} H_{i} \subseteq N$ but $P_{i}^{t(i)-1} H_{i} \nsubseteq N$. Let $L_{i}=P_{i}^{t(i)-1} H_{i}$. Then L_{i} is a submodule of M such that $L_{i} \nsubseteq N$ and $P_{i} L_{i} \subseteq N$.

Let $m \in L_{i} \backslash N$ and let $A=\{r \in R: r R m \subseteq N\}$. Then A is an ideal of R and $P_{i} \subseteq A$. On the other hand, $A m \subseteq N \subseteq K_{i}$. If $m \in K_{i}$ then $m \in N$, a contradiction. Thus $A \subseteq P_{i}$ and it follows that $P_{i}=A$.
(iii) \Rightarrow (ii) Clear.
(ii) \Rightarrow (i) As before.

In the remark after Theorem 15 it is claimed that if P is a prime ideal of a $P I$-ring then for any ideal A of R such that $A \nsubseteq P$ there exist a finitely generated left ideal C and an ideal $B \nsubseteq P$ such that $B \subseteq C \subseteq A$. Although this is clearly true for commutative rings and for left Noetherian $P I$-rings, it is not true in general, as the following example shows.

Example There exists a PI-ring R which contains a prime ideal P such that for some ideal $A \nsubseteq P$ there do not exist a finitely generated left ideal C and an ideal $B \nsubseteq P$ such that $B \subseteq C \subseteq A$.

Proof. Let \mathbb{Z} denote the ring of rational integers and X the Prüfer p-group for any prime p. Let

$$
R=\left[\begin{array}{ll}
\mathbb{Z} & X \\
0 & \mathbb{Z}
\end{array}\right]
$$

denote the ring of "matrices

$$
\left[\begin{array}{ll}
a & x \\
0 & b
\end{array}\right]
$$

where $a, b \in \mathbb{Z}, x \in X$, and addition and multiplication in R are the usual matrix addition and multiplication, respectively. Let

$$
P=\left[\begin{array}{ll}
0 & X \\
0 & \mathbb{Z}
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ll}
\mathbb{Z} & X \\
0 & 0
\end{array}\right]
$$

Then A is an ideal of R which is not contained in the prime ideal P of R. Let C be any finitely generated left ideal of R such that $C \subseteq A$. It is easy to check that

$$
C \subseteq\left[\begin{array}{ll}
\mathbb{Z} & Y \\
0 & 0
\end{array}\right]
$$

for some finitely generated (and so finite) submodule Y of X. Let B be any ideal of R such that $B \subseteq A$ and $B \nsubseteq P$. There exists an element

$$
b=\left[\begin{array}{ll}
a & x \\
0 & 0
\end{array}\right] \in B
$$

where $0 \neq a \in \mathbb{Z}, x \in X$. Now $X=a X$ gives that

$$
\left[\begin{array}{cc}
0 & X \\
0 & 0
\end{array}\right] \subseteq b R \subseteq B
$$

Hence $B \nsubseteq C$. Thus R has the required properties.

Finally note that in Corollary $16, H_{n}=M$ or H_{n} is a P-primary submodule containing N for each positive integer n.

References

[1] P.F. Smith, Uniqueness of primary decompositions, Turkish J. Math. 27 (2003), 425-434.
P. F. SMITH

Received 17.02.2004
Department of Mathematics
University of Glasgow
Glasgow, G12 8QW, Scotland, UK
e-mail: pfs@maths.gla.ac.uk

