Corrigendum Uniqueness of Primary Decompositions [Turkish J. Math. 27 (2003), 425–434]

P. F. Smith

In [1], the statement of Theorem 6 needs to be amended and also the comment following the proof of Theorem 15. We also take this opportunity to give a clearer proof of Theorem 6. I am grateful to Mr. A. R. Woodward for bringing these matters to my attention.

Theorem 6 Let R be any ring and let N be a submodule of an R-module M such that N has a primary decomposition. Then the following statements are equivalent for a prime ideal P of R.

- (i) P is an associated prime ideal of N. (ii) P = (N : L) for some submodule L of M with $L \nsubseteq N$.
- (iii) $P = \{r \in R : rRm \subseteq N\}$ for some element $m \in M \setminus N$.

Proof. (i) \Rightarrow (iii) Let $N = K_1 \cap \ldots \cap K_n$ be a normal decomposition of N where K_i is a P_i -primary submodule of M for some prime ideal P_i of R for each $1 \leq i \leq n$. Let $1 \leq i \leq n$ and let $H_i = K_1 \cap \ldots \cap K_{i-1} \cap K_{i+1} \cap \ldots \cap K_n$. There exists a positive integer k(i) such that $P_i^{k(i)}M \subseteq K_i$ and hence $P_i^{k(i)}H_i \subseteq N$. Since $H_i \notin N$ there exists an integer $1 \leq t(i) \leq k(i)$ such that $P_i^{t(i)}H_i \subseteq N$ but $P_i^{t(i)-1}H_i \notin N$. Let $L_i = P_i^{t(i)-1}H_i$. Then L_i is a submodule of M such that $L_i \notin N$ and $P_iL_i \subseteq N$.

Let $m \in L_i \setminus N$ and let $A = \{r \in R : rRm \subseteq N\}$. Then A is an ideal of R and $P_i \subseteq A$. On the other hand, $Am \subseteq N \subseteq K_i$. If $m \in K_i$ then $m \in N$, a contradiction. Thus $A \subseteq P_i$ and it follows that $P_i = A$.

(iii) \Rightarrow (ii) Clear.

427

SMITH

(ii)
$$\Rightarrow$$
 (i) As before.

In the remark after Theorem 15 it is claimed that if P is a prime ideal of a PI-ring then for any ideal A of R such that $A \nsubseteq P$ there exist a finitely generated left ideal C and an ideal $B \nsubseteq P$ such that $B \subseteq C \subseteq A$. Although this is clearly true for commutative rings and for left Noetherian PI-rings, it is not true in general, as the following example shows.

Example There exists a PI-ring R which contains a prime ideal P such that for some ideal $A \nsubseteq P$ there do not exist a finitely generated left ideal C and an ideal $B \nsubseteq P$ such that $B \subseteq C \subseteq A$.

Proof. Let \mathbb{Z} denote the ring of rational integers and X the Prüfer *p*-group for any prime *p*. Let

$$R = \left[\begin{array}{cc} \mathbb{Z} & X \\ \\ 0 & \mathbb{Z} \end{array} \right]$$

į

denote the ring of "matrices

$$\left[\begin{array}{rrr}a & x\\ & \\0 & b\end{array}\right],$$

where $a, b \in \mathbb{Z}, x \in X$, and addition and multiplication in R are the usual matrix addition and multiplication, respectively. Let

$$P = \begin{bmatrix} 0 & X \\ & \\ 0 & \mathbb{Z} \end{bmatrix} \quad and \quad A = \begin{bmatrix} \mathbb{Z} & X \\ & \\ 0 & 0 \end{bmatrix}$$

Then A is an ideal of R which is not contained in the prime ideal P of R. Let C be any finitely generated left ideal of R such that $C \subseteq A$. It is easy to check that

$$C \subseteq \left[\begin{array}{cc} \mathbb{Z} & Y \\ & \\ 0 & 0 \end{array} \right]$$

for some finitely generated (and so finite) submodule Y of X. Let B be any ideal of R such that $B \subseteq A$ and $B \nsubseteq P$. There exists an element

428

$$b = \left[\begin{array}{cc} a & x \\ & \\ 0 & 0 \end{array} \right] \in B$$

where $0 \neq a \in \mathbb{Z}$, $x \in X$. Now X = aX gives that

$$\left[\begin{array}{cc} 0 & X \\ & \\ 0 & 0 \end{array}\right] \subseteq bR \subseteq B.$$

Hence $B \nsubseteq C$. Thus R has the required properties.

Finally note that in Corollary 16, $H_n = M$ or H_n is a *P*-primary submodule containing N for each positive integer n.

References

[1] P.F. Smith, Uniqueness of primary decompositions, Turkish J. Math. 27 (2003), 425-434.

P. F. SMITHDepartment of MathematicsUniversity of GlasgowGlasgow, G12 8QW, Scotland, UKe-mail: pfs@maths.gla.ac.uk

Received 17.02.2004

429