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Abstract

One of the most important methods in analysis of large data sets is clustering.

These methods are not only major tools to uncover the underlying structures of a

given data set, but also promising tools to uncover local input-output relations

of a complex system. The goal of this paper is to present a new approach to

fuzzy clustering by using L1-norm space by means of a maximum entropy inference

method, where, firstly, the resulting formulas have more beautiful form and clearer

physical meaning than those obtained by means of FCM method and secondly,

the obtained criteria by this new method are very robust. In order to solve the

cluster validity problem and choosing the number of clusters in fuzzy clustering, we

introduce a structure strength function as clustering criterion. With the proposed

structure strength function, we also discuss the global minimum problem in terms

of simulating methods.

Key Words: Fuzzy c-means, Maximum Entropy, Structure Strength, Number of
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1. Introduction

One of the most important problems in the analysis of multivariate data is the
identification of one or more relationships among the data and uncovering the underlying
structure. One of the most applicable methods to research involving multivariate data,
∗This paper has been supported by Research Institute for Fundamental Sciences, Tabriz, Iran.
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medical research, genetics and other fields, are clustering methods. These methods
are not only major tools that can be used to uncover the underlying structures of a
given data set, but also promising tools to uncover the local input-output relations of a
complex system. Therefore, the clustering problem is an optimization problem, where
N objects with p characteristics are divided into C homogeneous groups, such that the
distance between observations within a subgroup is smaller than the distance between
observations belonging to different sub-groups [4, 6]. Among the existing clustering
methods, the method of fuzzy C-means proposed by Bezdek [1] is one of the most active
and applicable data analysis methods in recent years. Now, the first section of this paper
briefly introduces the FCM method. In the second section, maximum entropy-based fuzzy
clustering by using L1-norm space is presented. The third section present the structure
strength function and the DSR algorithm. The final section summarizes our findings.

2. Fuzzy C-means Clustering Method

Among existing clustering methods, one of the most active and applicable clustering
methods is FCM. Let Xij denote the jth random variable for the ith object, and xi =
{xi1, . . . , xip}, are p characteristics of the ith observation. One of the criteria to improve
initial partitions is the minimization of the relation

Jm =
n∑
i=1

c∑
k=1

p∑
j=1

umik||xij − vkj||2, 1 ≤ m <∞, (1)

where Jm is called the loss function (within-group sum-of-squared error); vkj is interpreted
as the prototype (or mean) of jth random variable in the kth cluster; m is a fuzzy
parameter; and uik denotes the grade of membership of the ith object in the kth group
and satisfies the following conditions:

1) uik ∈ {0, 1} , 1 ≤ i ≤ n, 1 ≤ k ≤ c

2)
c∑

k=1

uik = 1, 1 ≤ i ≤ n

3) 0 <
n∑
i=1

uik < n, 1 ≤ k ≤ c,

where the second condition is called the normalization constraint. For m = 1, FCM
converges in theory to the traditional k-means solution [4, 6]. To minimize (1) sub-
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ject to
∑C

k=1 uik = 1 by using Lagrangian multiplier methods, a considered point was
demonstrated to be a local minimum solution of (1) if and only if

v
(r)
kj =

1∑n
i=1 (u(r−1)

ik )
m

n∑
i=1

(u(r−1)
ik )

m
xij, k = 1, . . . , c

u
(r)
ik =

1∑c
s=1(d

(r−1)
ik

d
(r−1)
sk

)
2

m−1

i = 1, . . . , n, k = 1, . . . , c

where dik =
∑p
j=1(xij − vkj)2.

The iterative FCM algorithm is stopped if

max |u(r+1)
ik − u(r)

ik | < ε,

where ε is a small positive integer and r denotes number of iterations [1, 7, 11]. Though,
FCM is a more applicable method, there are some objections against FCM:

1) Due to using Euclidean distance based on L2-norm space, the presence of outliers
in the data set degrades the quality of the computed clustering centers [7, 8, 9].

2) The physical meaning of the fuzziness parameter m and a way of choosing its optimal
value is not well understood.

3) FCM deals with local minimum solutions only: it does not possess a mechanism
with which one can get global minimum solutions.

4) There is no easy way to determine the number of clusters.

To solve these problems, in the next section, a new fuzzy clustering method by means of
maximum entropy inference and using L1-norm space is proposed.

3. Maximum Entropy-Based Fuzzy Clustering by Using L1-norm Space

To express maximum entropy-based fuzzy clustering, we first introduce the entropy
criterion. Let X be a random variable with probability mass function P (x) = P (X = x),
and set of possible values {xi, i = 1, . . . , n}. The entropy of random variable X is
denoted by H(X) and is defined by

H(X) = −
∑

P (x) logP (x).
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Therefore, the structure of maximum entropy inference based on grades of membership
{uik} maximizes

{−
n∑
i=1

c∑
k=1

uik log uik}. (2)

As mentioned before, FCM tries to find set of prototypes and uik, that minimize the loss
function with respect to normalization constraint. The goal of maximum entropy-based
fuzzy clustering by using L1-norm space is to maximize (2) with respect to

L =
n∑
i=1

c∑
k=1

p∑
j=1

uik||xij − vkj||

and the normalization constraint. Here, L is a loss function (the within-group sum-of-
absolute error), n is number of data pairs, c is the number of clusters, and vkj and uik are
the same as (1). To maximize (2) subject to the above conditions, we use the Lagrange
multiplier rule. The Lagrange function is

L(uik, vkj, σ, λ) = −
n∑
i=1

c∑
k=1

uik loguik

+ σ(
n∑
i=1

c∑
k=1

uikdik − L) + λ(
c∑

k=1

uik − 1), (3)

where dik =
∑p

j=1 ||xij − vkj|| [9]. Therefore, we see that with maximum-entropy based
inference, the fuzzy clustering problem becomes one of finding a set of prototypes which
minimize the loss function and membership assignment that satisfy the normalization
constraint and maximize the Lagrange function.
Since vkj is fixed, the Lagrange function is maximized via

uik =
e
−dik
2σ2∑c

s=1 e
−dsk
2σ2

.

But maximizing (3) with respect to vkj, k = 1, . . . , c, j = 1, . . . , p, uik being fixed, is
equivalent to minimizing

L =
c∑

k=1

p∑
j=1

Lkj, ⊥ Lkj =
n∑
i=1

u2
ik|xij − vkj|. (4)
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To minimize (4), at least two different methods may be used.
Method 1: Note that

Lkj =
n∑
i=1

|u2
ikxij − u2

ikvkj|.

Suppose that yi = u2
ikxij, a = vkj and zi = u2

ik, we have,

Lkj =
n∑
i=1

|yi − azi|. (5)

Let bi = yi
zi

. To minimize (5) with respect to a, the following algorithm can be used.
Rearrange bi in an ascending order. Then,

|b(1)|+ |b(2)|+ . . .+ |b(k−1)| <
1
2
T

|b(1)|+ |b(2)|+ . . .+ |b(k−1)|+ |bK)| >
1
2
T,

where T =
∑ |bi| and b(1), b(2), . . . , b(n) are set as order statistics for bi. The value of a

minimizing (5) is y(k)

z(k)
[2, 8].

Method 2: By noting (4), we learn that

Lkj =
n∑
i=1

u2
ik|xij − vkj| =

n∑
i=1

wik(xij − vkj)2,

where

wik =
u2
ik

|xij − vkj|
.

In this case, minimizing (3) is changed to the minimization of the weighted sum of squares.
Clearly, the optimum solution is given as

vkj =
∑n

i=1wikxij∑N
i=1 wik

.

Because of the dependence of wik and herewith uik, on vkj, numerical methods must be
used. Thus with the above in mind, we can formulate an algorithm to find the maximum
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entropy-based fuzzy clustering as follows:
1) If the membership assignment {uik} are fixed, then the centroid vectors {vkj} are a
solution which locally minimize (3) if and only if

v
(r)
k =

∑n
i=1 u

(r−1)
ik xij∑n

i=1 u
(r−1)
ik

. (6)

2) If the centroid vectors {vkj} are fixed, then the grades of membership that minimize
(3) by satisfying

∑c
k=1 uik = 1 are

u
(r)
ik =

e
−(d(r−1)

ik
)
2

2σ2∑c
s=1 e

−(d(r−1)
sk

)
2

2σ2

∀i, k, (7)

where r denotes the number of iteration. The procedure stops when |u(r+1)
ik − u(r)

ik | < ε.

3.1. Structure Strength and Data Structure Recognition Algorithm

One of the most important subjects in clustering is determining the number of clusters
a problem known as cluster validation. This subject is widely discussed in [1], [5] and
[11]. Some proposed criterion, such as partition coefficient, partition entropy and others
strictly depend on the parameter m. That is, all proposed criteria are invalid when m is
very large or small. In this paper, a new concept for determining the number of clusters
is introduced and is called structure strength. The existence of data structure means that
knowledge of a part allows us to guess the rest of the whole; therefore the process of
structure strength is knowledge discovering. The structure strength of a system will be
expressed by the following formula:

S = structure strength
= (the effectiveness of the classification)
+ (the accuracy of the classification).

For instance, if the number of observations and the number of clusters is n and k,
respectively, and the loss function is L(k), then the structure strength will be

S(k) = αE + (1− α)A = α log
(
N

k

)
+ (1− α) log

(
L(1)
L(k)

)
. (8)

436



GHORBANI

The first term decreases when k increases; but the second term increases with decreas-
ing L(k). On the other hand, clustering is inherently a structure recognition approach;
its purpose is to find the strongest structure. Therefore, the search for the strongest
structure is a process that maximizes S(k) as the clustering criterion. Also, Geman and
Geman [3] have proved that if σ2 is inversely proportional to the logarithmic function
of iteration, the global minimization of the loss function can be achieved. Therefore the
data structure recognition algorithm is:
1) calculate L(1).
2) for k = 1, . . . , C initialize uik for each i, k and let r = 1, 2, . . . .
3) calculate {vkj} using (6) and {uik} using (7).

4) if max{i,k} |u(r)
ik − u

(r−1)
ik | < ε, then calculate S(k) using (8), ELSE r=r+1.

5) if S(k) < S(k − 1) stop, ELSE go to 2.

4. Conclusion

In this paper, a maximum entropy-based fuzzy clustering algorithm by using L1-norm
space has presented. Here, resulting formulas and criteria have very beautiful forms and
a clearer physical meaning than those obtained by means of FCM. Unlike FCM, the
criteria obtained in the present method were based on global minimum. Also, unlike
traditional methods, where number of clusters is already known, in this method, data
structure recognition by using the cluster strength function has been used for choosing
the number of clusters.
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