The Pitch and the Pseudo Angle of Pitch of a Closed Piece of ($\mathrm{k}+1$)-Dimensional Ruled Surface in R_{ν}^{n}

Ayşe Altın

Abstract

In this paper, we define the closed piece of ruled surface, the pitch and the pseudo angle of pitch of a closed piece of ruled surface and calculate these values in Minkowski space $R_{\nu}^{n}=\left(R^{n},-\sum_{i=1}^{\nu} d x_{i}+\sum_{i=\nu+1}^{n} d x_{i}\right)$.

Key Words: Minkowski space, Ruled surface, Closed ruled surface, Pitch, Pseudo Angle of pitch.

1. Introduction

In Euclidean space R^{n}, a ruled surface which has periodic directrix curves is called closed ruled surface [1]. Since periodic timelike curves do not exist in R_{ν}^{n}, there is no closed ruled surface whose directrix curves are timelike. Therefore, in [2] we give similar formulas on a closed piece of a ruled surface, obtained by restricting the directrix curve of a ruled surface to a closed interval $[a, b]$ which is contained in the domain of the directrix curve. In the case the directrix curve is a periodic spacelike, the formulae are the same as in the Euclidean case when the length of the closed interval is equal to the period of the curve. Since the notion of angle is not defined in R_{ν}^{n}, in this paper we defined the notion of pseudo angle of pitch and which coincides with the definitions in [1-3] when the vectors are spacelike.

Let $\eta: I \rightarrow R_{\nu}^{n}$ be a curve, where $I \subset R$, and let $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ be a given orthonormal subset of $T_{\eta(t)}\left(R_{\nu}^{n}\right)$ at each point $\eta(t)$.

[^0]
ALTIN

The set $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ spans a k-dimensional subspace of the tangent space $T_{\eta(t)}\left(R_{\nu}^{n}\right)$ at the point $\eta(t)$ of R_{ν}^{n}. Let us denote this space by $E_{k}(t)$. Consider the set $M=\cup_{t \in I} E_{k}(t)$. Let us choose a parametrization for this set as

$$
\begin{equation*}
\varphi: I \times R^{k} \rightarrow R_{\nu}^{n}, \varphi\left(t, v_{1}, \ldots, v_{k}\right)=\eta(t)+\sum_{i=1}^{k} v_{i} e_{i}(t) \tag{1}
\end{equation*}
$$

If $\operatorname{rank}\left(\varphi_{t}, \varphi_{v_{1}}, \ldots, \varphi_{v_{k}}\right)=k+1$, then M is a $(k+1)$-dimensional submanifold of R_{ν}^{n}. This manifold is called $(k+1)$-dimensional ruled surface. The space $E_{k}(t)$ is called the generator space of the ruled surface at $\eta(t)$ and the curve η is called the directrix (base) curve of the ruled surface [7] . For the ruled surface M, a directrix curve may also be chosen other than η. The line, whose director vector is $e_{i}(t)$, that passes through $\eta(t)$ is said to be $i-t h$ generator line of the surface.

If $\operatorname{rank}\left(\eta^{\prime}(t), e_{1}(t), \ldots, e_{k}(t), e_{1}^{\prime}(t), \ldots, e_{k}^{\prime}(t)\right)=2 k+1$, then M is said to be the nondevelopable ruled surface [7]. A curve which intersects each space $E_{k}(t)$ orthogonally is said to be an orthogonal trajectory of M. Each generator space of a non-developable ruled surface has only one central point. These central points build up a curve which is called the striction line $[7]$. The surface which is obtained by restricting φ to $[a, b] \times R$, is called $[a, b]$-closed piece of $\mathrm{M}[2]$.

Adapting the algorithm of [7] to R_{ν}^{n}, if the initial basis

$$
\left\{e_{1}\left(t_{0}\right), e_{2}\left(t_{0}\right), \ldots, e_{k}\left(t_{0}\right)\right\}
$$

is given, then the basis $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ satisfying

$$
\begin{equation*}
<e_{i}(t), e_{j}(t)>=\varepsilon_{i} \delta_{i j} \text { and } \quad<e_{i}^{\prime}(t), e_{j}(t)>=0, \quad 1 \leq i, j \leq k \tag{2}
\end{equation*}
$$

is uniquely determined, where we denote the derivative of the vector field e_{v} along the curve η by e_{v}^{\prime} and $<,>$ denotes the scalar product in R_{ν}^{n}.

From now on, we assume that the orthonormal set $\left\{e_{1}(t), e_{2}(t), \ldots, e_{k}(t)\right\}$ in the equation (1) satisfies the equation in (2).

2. The Pitch and Pseudo Angle of Pitch

Theorem 2.1 Let M be a ruled surface of dimension $(k+1)$ in R_{ν}^{n}. For each point of M, there exists a unique orthogonal trajectory passes through P [3].

ALTIN

Proof. Let $P \in M$ and $P=\varphi\left(t_{0}, v_{10}, \ldots, v_{k 0}\right)$. Let us consider the curve

$$
\begin{equation*}
\beta: I \rightarrow M, \beta(t)=\eta(t)+\sum_{i=1}^{k} f_{i}(t) e_{i}(t) \tag{3}
\end{equation*}
$$

where f_{i} 's are a function from I into R . In order β to be an orthogonal trajectory passing through P, we need to have $\beta\left(t_{0}\right)=P$ and

$$
\begin{equation*}
f_{i}^{\prime}(t)=-\varepsilon_{i}<\eta^{\prime}(t), e_{i}(t)>. \tag{4}
\end{equation*}
$$

Hence we have

$$
f_{i}(t)=-\int \varepsilon_{i}<\eta^{\prime}(t), e_{i}(t)>d t+c_{i}
$$

If we denote the integral on the right by $F_{i}(t)$, i.e,

$$
\begin{equation*}
-\int \varepsilon_{i}<\eta^{\prime}(t), e_{i}(t)>d t=F_{i}(t) \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
f_{i}(t)=F_{i}(t)+c_{i} \quad 1 \leq i \leq k \tag{6}
\end{equation*}
$$

Since $\beta\left(t_{0}\right)=P$, then we have

$$
\beta\left(t_{0}\right)=\eta\left(t_{0}\right)+\sum_{i=1}^{k}\left(F_{i}\left(t_{0}\right)+c_{i}\right) e_{i}(t)=\eta\left(t_{0}\right)+\sum_{i=1}^{k} v_{i 0} e_{i}(t) .
$$

Therefore,

$$
F_{i}\left(t_{0}\right)+c_{i}=v_{i 0} .
$$

Hence

$$
c_{i}=-F_{i}\left(t_{0}\right)+v_{i 0}
$$

As a result we have

ALTIN

$$
\begin{equation*}
\beta(t)=\eta(t)+\sum_{i=1}^{k}\left(F_{i}(t)-F_{i}\left(t_{0}\right)+v_{i 0}\right) e_{i}(t) . \tag{7}
\end{equation*}
$$

Note also that

$$
\beta(t)=\eta(t)+\sum_{i=1}^{k}\left(-\int_{t_{0}}^{t} \varepsilon_{i}<\eta^{\prime}(u), e_{i}(u)>d u+v_{i 0}\right) e_{i}(t) .
$$

Definition 2.2 Let α be a regular curve in R_{v}^{n} and $\left\{V_{1}(t), V_{2}(t), \ldots, V_{r}(t)\right\}$ be Serre-Frenet frame at the point $\alpha(t)$. The functions $k_{i}: I \longrightarrow R$ defined by

$$
\begin{equation*}
k_{i}(t)=\varepsilon_{V_{i}(t)} \varepsilon_{V_{i+i}(t)}<V_{i}^{\prime}(t), V_{i+1}(t)>, \quad 1 \leq i \leq r-1 \tag{8}
\end{equation*}
$$

are called the curvature functions on α, where $\varepsilon_{V_{i}(t)}=<V_{i}(t), V_{i}(t)>=1$ or -1 . The real number $k_{i}(t)$ is called the i-th curvature at the point $\alpha(t)$ [4].

Being inspired from [5], we may define the pseudo angle of pitch of a closed ruled surface piece.

Definition 2.3 Let M be a non-developable $(k+1)$-dimensional ruled surface in R_{ν}^{n}. Since M is non-developable, we may take directrix curve η to be the striction line of the surface. Let us choose β to be the orthogonal trajectory which passes through the point $\eta(a)=\beta(a)$. The distance between $\eta(b)$ and $\beta(b)$ is called the pitch of $[a, b]$-closed piece of M. Let k_{1} be the curvature function on β. The integral $\int_{a}^{b} k_{1}(t) d t$ is called the pseudo angle of pitch of $[a, b]$-closed piece of M.

From now on, M will be taken as non-developable $(k+1)$-dimensional ruled surface in R_{ν}^{n}.

Let as denote by β the orthogonal trajectory passing through $\eta(a)$ then we have $v_{i 0}=0$. From (7), we get

$$
\beta(t)=\eta(t)+\sum_{i=1}^{k}\left(F_{i}(t)-F_{i}(a)\right) e_{i}(t) .
$$

ALTIN

Setting $t=b$,

$$
\begin{equation*}
\beta(b)=\eta(b)+\sum_{i=1}^{k}\left(F_{i}(b)-F_{i}(a)\right) e_{i}(b) . \tag{9}
\end{equation*}
$$

Theorem 2.4 Let L be the pitch of $[a, b]$-closed piece of M. Then

$$
\begin{equation*}
L_{=}=\sqrt{\left|\varepsilon_{1} L_{1}^{2}+\varepsilon_{2} L_{2}^{2}+\ldots+\varepsilon_{k} L_{k}^{2}\right|}, \tag{10}
\end{equation*}
$$

where $L_{i}=F_{i}(b)-F_{i}(a)=-\int_{a}^{b} \varepsilon_{i}<\eta^{\prime}(t), e_{i}(t)>d t$.
Proof. From the definition 2.3,

$$
L=\|\overrightarrow{\eta(b) \beta(b)}\|
$$

From (9)

$$
\overrightarrow{\eta(b) \beta(b)}=L_{1} e_{1}+L_{2} e_{2}+\ldots+L_{k} e_{k}
$$

The length of this vector renders the pitch of the $[a, b]$-closed piece of M. Thus we obtain (10).
L_{i} mentionad above is called the pitch on the $i-t h$ generator of the $[a, b]$-closed piece of M.

Remark. If β is the orthogonal trajectory starting from $\eta(a)$ ant $\tilde{\beta}$ is the orthogonal trajectory passing through a point $P=\eta(a)+\sum_{i=1}^{k} v_{i 0} e_{i}(a)$ in $E_{k}(a)$ then we have $\tilde{\beta}(t)=\beta(t)+\sum_{i=1}^{k} v_{i 0} e_{i}(t)$. Thus the pitch of [a,b]-closed ruled surface is the distance between the point $\tilde{\beta}(b)$ and $\eta(b)+\sum_{i=1}^{k} v_{i 0} e_{i}(b)$.

Theorem 2.5 If we employ $\theta_{[a, b]}$ to denote the pseudo angle of the pitch of $[a, b]$-closed piece of M, then

$$
\theta_{[a, b]}=\int_{a}^{b} \varepsilon_{V_{1}}(t) \varepsilon_{V_{2}}(t) \frac{2}{|A(t)|^{1 / 2}}\left(-\frac{\left(B(t)^{2}\right.}{A(t)}+C(t)\right) d t
$$

where

$$
A(t)=<\beta^{\prime}(t), \beta^{\prime}(t)>, \quad B(t)=<\beta^{\prime}(t), \beta^{\prime \prime}(t)>, \quad C(t)=<\beta^{\prime \prime}(t), \beta^{\prime \prime}(t)>
$$

ALTIN

Proof. From (1) a parametrization of M is

$$
\varphi: I \times R^{k} \rightarrow R_{\nu}^{n}, \varphi\left(t, v_{1}, \ldots, v_{k}\right)=\eta(t)+\sum_{i=1}^{k} v_{i} e_{i}(t)
$$

Since η is striction line of the surface we have

$$
\begin{equation*}
<\eta^{\prime}(t), e_{i}^{\prime}(t)>=0, \quad 1 \leq i \leq k \tag{11}
\end{equation*}
$$

Let β be the orthogonal trajectory passing through the point $\eta(a)$ and k_{1} be curvature function on β. From (8)

$$
\begin{equation*}
k_{1}(t)=\varepsilon_{V_{1}(t)} \varepsilon_{V_{2}(t)}<V_{1}^{\prime}(t), V_{2}(t)>. \tag{12}
\end{equation*}
$$

Adapting the algorithm in [6] to R_{ν}^{n}, we have

$$
\begin{equation*}
V_{1}(t)=\frac{\beta^{\prime}(t)}{\left\|\beta^{\prime}(t)\right\|}, \quad V_{2}(t)=-\frac{<\beta^{\prime}(t), \beta^{\prime \prime}(t)>}{<\beta^{\prime}(t), \beta^{\prime}(t)>} \beta^{\prime}(t)+\beta^{\prime \prime}(t) \tag{13}
\end{equation*}
$$

Differentiating (3), using (2), (4) and (11) we get
$<\beta^{\prime}(t), \beta^{\prime}(t)>=<\eta^{\prime}(t), \eta^{\prime}(t)>-\sum_{i=1}^{k} \varepsilon_{i}(t)\left(f_{i}^{\prime}(t)\right)^{2}+\sum_{i, j=1}^{k} f_{i}(t) f_{j}(t)<e_{i}^{\prime}(t), e_{j}^{\prime}(t)>=A(t)$
and

$$
\begin{gather*}
<\beta^{\prime}(t), \beta^{\prime \prime}(t)>=<\eta^{\prime}(t), \eta^{\prime \prime}(t)>-\sum_{i=1}^{k} \varepsilon_{i}(t) f_{i}^{\prime}(t) f_{i}^{\prime \prime}(t)+\sum_{i, j=1}^{k} f_{i}(t) f_{j}^{\prime}(t)<e_{i}^{\prime}(t), e_{j}^{\prime}(t)> \\
+\sum_{i, j=1}^{k} f_{i}(t) f_{j}(t)<e_{i}^{\prime}(t), e_{j}^{\prime \prime}(t)>=B(t) \tag{15}
\end{gather*}
$$

Now putting (14) and (15) in (13), we have

$$
V_{1}(t)=\frac{\beta^{\prime}(t)}{|A(t)|^{1 / 2}}, V_{2}(t)=-\frac{B(t)}{A(t)} \beta^{\prime}(t)+\beta^{\prime \prime}(t)
$$

ALTIN

and thus

$$
<V_{1}^{\prime}(t), V_{2}(t)>=\frac{2}{|A(t)|^{1 / 2}}\left(-\frac{(B(t))^{2}}{A(t)}+C(t)\right) .
$$

If we replace these in (10) we get

$$
k_{1}=\varepsilon_{V_{1}}(t) \varepsilon_{V_{2}}(t) \frac{2}{|A(t)|^{1 / 2}}\left(-\frac{(B(t))^{2}}{A(t)}+C(t)\right)
$$

This completes the proof.

References

[1] Altin, A.: The Pitch the Angel of Pitch of a Closed Ruled Surface of Dimension $(k+1)$ in E^{n}, Hacettepe Bulletin of Naturel Sci.and Engineering, Vol 25, 77-90, 1996.
[2] Altin, A.: The Pitch and the Angle of Pitch of a Closed Piece of Ruled Surface in R_{1}^{3}. (Submitted paper)
[3] Altın, A. and Turgut Vanlı, A.: The Pitch and Angle of Pitch of a Closed Non null Ruled Hypersurface Wich of the Base Curve is Spacelike in R_{1}^{k+1}. Turkish Journal of Mathematics. Vol 24, Number 4, (2000), p.327-334.
[4] Altın, A.: Harmonic Curvatures of Non Null Curves and Helix in R_{ν}^{n}. Hacettepe Bulletin of Natural Sciences and Engineering Series B, Vol 30 (2001), p.55-61.
[5] Altın, A.: The Angles Between Serre-Frenet Frames of the Curves in Euclidean Space.J.Indian Acad.Math.Vol.21,No. 1 (1999) p.59-63.
[6] Gluk, H.: Higher Curvatures of Curve in Euclidean Space,American Mth. Month.Vol 73 (1966),p.699-704.
[7] Juza, B.: Line de Striction sur une Generalization a Plusieurs Dimension d'une Surface Reglee, Czechock.Math.J. 12(87),143-250,1962.
[8] O'Neill, B.: Semi-Riemannian Geometry. New York-London: Academic Press. 1983.
Ayşe ALTIN
Received 09.03.2004
Hacettepe University, Science Faculty,
Mathematics Department,
06532 Beytepe Ankara-TURKEY
e-mail:ayse@hacettepe.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 53A, 53C.

