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On Finitary Permutation Groups

Ali Osman Asar

Abstract

In this work we give some sufficient conditions under which the structure of a
transitive group of finitary permutations on an infinite set can be determined from
the structure of a point stabilizer. Also, we give some sufficient conditions for the
existence of a proper subgroup having an infinite orbit in a totally imprimitive p-
group of finitary permutations. These results, with the help of some known results,
give sufficient conditions for the nonexistence of a perfect locally finite minimal non

FC - (p-group).

Key Words: Finitary permutation, primitive, almost primitive, totally imprimi-
tive.

1. Introduction

Let G be a transitive subgroup of FSym(Ω), where Ω is infinite. Many authors have
investigated G by imposing suitable conditions on a point stabilizer (see, for example,[1],
[2], [4], [7], [9]). Also another problem which might be interesting is finding sufficient
conditions under which G can have a proper subgroup having an infinite orbit. In view
of the important reduction theorems given in [3] and [8], any solution of the last problem
means a solution for the following well known problem: Does there exist a perfect minimal
non FC - (p-group)? The aim of this work is to obtain some sufficient conditions about
the problems described above.

Let Ω be a (possibly infinite)set and let Sym(Ω) be the symmetric group on Ω. For
each x ∈ Sym(Ω) the set supp(x) = {i ∈ Ω : x(i) 6= i} is called the support of x
and if supp(x) is finite, then x is called a finitary permutation. The set of all the finitary
permutations on Ω forms a subgroup which is denoted by FSym(Ω). Let G be a subgroup
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of Sym(Ω) and a ∈ Ω. Then Ga = {g ∈ G : g(a) = a} is called the stabilizer of a in
G and G(a) = {g(a) : a ∈ G} is called the orbit of G containing a. More generally
if ∆ is a nonempty subset of Ω, then G∆ = {g ∈ G : g(i) = i for all i ∈ ∆} and
G{∆} = {g ∈ G : g(∆) = ∆} are called the pointwise and the setwise stabilizers of ∆.

Furthermore if g(∆) = ∆ or g(∆) ∩ ∆ = ∅, for every g ∈ G, then ∆ is called a block
for G. A block ∆ which is not equal to G and contains at least two elements is called
non-trivial.

Finally a group G is called a minimal non FC - group if G is not an FC - group but
every proper subgroup of G is an FC - group.

The main results of this work are stated below.

Theorem 1.1 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite. Let
F be a finite non-abelian subgroup of G and let ∆ be a non-trivial block such that
supp(F ) ⊆ ∆. Let S be a normal solvable subgroup of G{∆} of derived length d ≥ 0.

Then 〈Sx : x ∈ G〉 6= G.

Theorem 1.2 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite.Then the
following hold:

(a) A point stabilizer cannot be solvable.

(b) If G satisfies the normalizer condition, then it is a p-group and G′ is a minimal
non FC - group.

If in Theorem 1.2(a) G is barely transitive (see[4] for the definition of a barely tran-
sitive group), then the result follows from [1, Theorem] or [4, Theorem 1]. Furthermore
Theorem 1.2(b) is not true if the normalizer condition is satisfied only by a point stabi-
lizer. Indeed in the example given at the end of Section 2 it is shown that in Wiegold’s
group[16, p.468] a point stabilizer satisfies the normalizer condition but the commutator
subgroup of it, which is a perfect proper subgroup of the group, is not a minimal non FC
- group.

Theorem 1.3 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite. Then
the following hold:

(a) If a point stabilizer is locally solvable, then G is locally solvable.

(b) If a point stabilizer is locally nilpotent - by - solvable, then G is a p-group for some
prime p.
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Pinnock[12] shows that if a transitive subgroup of FSym(Ω) is either locally(nilpotent
- by - abelian) or locally supersolvable, then it is a p - group. These results can be
generalized as follows:

Corollary 1.4 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite.Then the
following hold:

(a) If a point stabilizer is locally (nilpotent - by - abelian), then G is a p-group for some
prime p.

(b) If a point stabilizer is locally supersolvable then G is a p-group for some prime p.

Theorem 1.5 Let G be a totally imprimitive p - subgroup of FSym(Ω), where Ω is
infinite. Suppose that for every non-normal finite subgroup F of G there exists y ∈
G \ NG(F ) such that yp ∈ CG(F ). Then G contains a proper subgroup that has an
infinite orbit.

Corollary 1.6 Let G be a totally imprimitive p - subgroup of FSym(Ω), where Ω is
infinite. Suppose that for every non-normal finite subgroup F of G there exists y ∈
G \ NG(F ) such that yp ∈ FCG(F ). Then G contains a proper subgroup that has an
infinite orbit.

Corollary 1.7 Let G be a totally imprimitive p - subgroup of FSym(Ω), where Ω is
infinite. Suppose that there exists an infinite properly ascending chain of non-trivial
blocks ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆k ⊂ . . . for G such that the following holds: For each k ≥ 1
< F xk : x ∈ G > is the largest normal subgroup of G that is contained in G{∆k}, where

Fk = {x ∈ G : supp(x) ⊆ ∆k}. Then G contains a proper subgroup that has an infinite
orbit.

Corollary 1.8 Let G be a totally imprimitive p - subgroup of FSym(Ω), where Ω is
infinite. Suppose that there exists an infinite properly ascending chain of non-trivial
blocks ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆k ⊂ . . . for G such that the following holds: For each k ≥ 1
there exists yk ∈ G \ G∆k such that < yk > ∩G{∆k} ≤ G∆k . Then G contains a proper

subgroup that has an infinite orbit.

Corollary 1.8 can be used to prove the following:
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Corollary 1.9 ([6, Theorem 3]) Let G be a totally imprimitive p - subgroup of FSym(Ω),
where Ω is infinite. Suppose that G =< x ∈ G : xp = 1 >. Then G cannot be a minimal
non FC - group.

Proof. Assume that G is a minimal non FC - group. Then every orbit of every proper
subgroup of G is finite by [5, Lemma 8.3D] or [16, Theorem 1]. Let X = {x ∈ G : xp = 1}.
Assume that G =< X >. Let ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆k ⊂ . . . be an infinite properly ascend-
ing chain of non-trivial blocks for G. By hypothesis for each k ≥ 1 there exists an x ∈ X
such that x ∈ G\G{∆k} and < x > ∩G{∆k} = 1. But then G contains a proper subgroup

that has an infinite orbit by Corollary 1.8, which is a contradiction. 2

Remark 1.10 An easy induction shows that the group G of Corollary 1.9 cannot be
generated by a subset of finite exponent.

Theorem 1.5 together with the important reduction theorems given in [3, Theorem 1]
or [8, Theorem] gives the following:

Theorem 1.11 Let G be a locally finite p - group that is also a minimal non FC- group.
Assume that for every finite non-normal subgroup F of G there exists y ∈ G \ NG(F )
such that yp ∈ FCG(F ). Then G cannot be perfect.

The notation and the definitions are standard and may be found in [5], [10], [11] and
[13]. Finally for a nonempty subset X we define exp(X) to be the maximum of the set
{o(x) : x ∈ X}, if it exists, otherwise we set it equal to ∞.

2. Proofs of Theorems 1, 2, 3

Let G be a transitive subgroup of FSym(Ω), where Ω is infinite. If G has no non-
trivial blocks, then it is called primitive, and if G has non-trivial blocks, then it is called
imprimitive. If G is primitive, then it is isomorphc to Alt(Ω) or FSym(Ω) by [5, Lemma
8.3A] or [10, Theorem 2.3]. Next suppose that G is imprimitive. Then any non-trivial
block is finite. If G has a maximal non-trivial block ∆, then Σ = {x(∆) : x ∈ G} has a
system of blocks for G. It is easy to see that G acts primitively on Σ, and so it has an
epimorphic image which isomorphic to Alt(Ω) or FSym(Ω) by [5, Lemma 8.3A] or [10,
Theorem 2.3] or [14, Proposition]. In the remaining case there exists a strictly increasing
infinite ascending chain
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∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆k ⊂ . . . (1)

of finite blocks for G such that Ω =
⋃∞
k=1 ∆k. In this case, both of Ω and G are

countably infinite. Let k ≥ 1 and put Σk = {x(∆k) : x ∈ G}. For each g ∈ G the
equality ḡ(x(∆k)) = (gx)(∆k) defines a permutation ḡ on Σk and the correspondence
g → ḡ defines a representation of G into FSym(Σk). Let Nk denote the kernel of this
representation. Then

N1 ≤ N2 ≤ · · · ≤ Nk ≤ . . . (2)

is an ascending chain of proper normal subgroups of G such that G =
⋃∞
k=1Nk and each

Nk is isomorphic to a restricted direct product of isomorphic copies of a finite epimorphic
image of itself. In particular, each Nk is an FC - group (see [5, Lemma 8.3B(i)] or [11,
Theorem 2.4]). The two cases of the imprimitive case are called almost primitive and
totally imprimitive by P.M. Neumann. In the rest of this work these will be used without
further explanation.

Most of the basic properties of infinite finitary permutation groups can be found in
[5], [10], [11] and [6]. Some of them are collected in Lemmas 1, 2, 3 for the convenience
of the reader.

Lemma 2.1 Let G be a transitive subgroup of FSym(Ω) for some set Ω. Let ∆ be a
non-trivial block for G and let H be a non-trivial subgroup of G such that supp(H) ⊆ ∆.
Then the following hold:

(a) Let Γ = supp(H) then GΓ ≤ CG(H);

(b) NG(H) ≤ G{∆};

(c) H ∩G∆ = 1 and G∆ ≤ CG(H);

(d) Hx ≤ G∆ and so [Hx, H ] = 1 for all x ∈ G \G{∆};

(e) If x ∈ G \G{∆}, then H ′ ≤ [H, x]

Proof. (a) Let h ∈ H and x ∈ GΓ. If i ∈ Γ then h(i) ∈ Γ and hence x(h(i)) = h(x(i))
since x(i) = i. If i /∈ Γ then x(i) /∈ Γ and hence h(x(i)) = x(i) = x(h(i)). (b) and (c) are

left to the reader. (d) Let h ∈ H and x ∈ G \G{∆}. Then ∆ ∩ x(∆) = ∆ ∩ x−1(∆) = ∅.

105



ASAR

Let i ∈ ∆, then x−1hx(i) = x−1h(x(i)) = x−1x(i) = i and so x−1hx ∈ G∆. Hence it fol-
lows that Hx ≤ G∆ and so [H,Hx] = 1 by (c). (e) See the proof of [5, Lemma 8.3C(i)]. 2

Lemma 2.2 Let G be a totally imprimitive subgroup of FSym(Ω) and a ∈ Ω, where Ω
is infinite. Then the following hold:

(a) Every orbit of Ga is finite;

(b) If K ≤ G and K(a) is finite then [K : K ∩Ga] is finite.

Proof. (a) Put H = Ga and choose b ∈ Ω. By (1) there exists a finite block ∆ such
that a, b ∈ ∆. Then H ≤ G{∆}. Hence H(b) ⊆ H(∆) = ∆ and so H(b) is finite. (b) This

follows from the fact that [K : Ka] = |K(a)| and K ∩Ga = Ka. 2

Lemma 2.3 Let G be a subgroup of FSym(Ω), where F is a finite subgroup of G and ∆
is a block for G such that supp(F ) ⊆ ∆. Then the following hold:

(a) U = {u ∈ G{∆} : supp(u) ⊆ ∆} is a normal subgroup of G{∆} with F ⊆ U .

(b) Let y ∈ G and let t be the smallest positive integer such that yt ∈ G{∆}. Assume

that yt normalizes F. Then F<y> = F × F y × · · · × F yt−1
.

Proof. (a) Clearly F ⊆ U . For any u, v ∈ U and x ∈ G{∆} it is easy to check that

uv−1, ux ∈ U.
(b) Since yt normalizes F it follows that F<y> =< F y

k

: 0 ≤ k ≤ t − 1 >. Since

y, y2 , . . . , yt−1 are not contained in G{∆}, F y
k ≤ G∆ and [F, F y

k

] = 1 for all 1 ≤ k ≤ t−1

and so F∩ < F y
k

: 1 ≤ k ≤ t − 1 >= 1 by Lemma 2.1. Also the above properties hold

if F is replaced by F y
k

for any 1 ≤ k ≤ t − 1. Therefore F<y> is the direct product of

F, F y, . . . , F y
t−1
. 2

Lemma 2.4 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite. Let F
be a finite non-abelian subgroup of G and let ∆ be a non-trivial block for G such that
supp(F ) ⊆ ∆. If A is a normal abelian subgroup of G{∆}, then < Ax : x ∈ G >≤ G{∆}.
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Proof. Put H = G{∆}. Let x ∈ G \H. Then F ≤ Hx by Lemma2.1(d) and Ax C Hx.

If there is an a ∈ Ax \ H then F ′ ≤ [F, a] and then Ax ≤ CG(F ′) ≤ H by Lemma 2.1,
which is a contradiction. Hence it follows that Ax ≤ H for any x ∈ G and so the assertion
follows. 2

Lemma 2.5 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite and K be
an ascendant subgroup of G. If K has an infinite orbit on Ω, then K is a transitive
normal subgroup of G.

Proof. Assume that K(i) is infinite for some i ∈ Ω but K is not normal in G. Then
there exist ascendant subgroups K1 and K2 of G such that K < K1 < K2, K �K1 �K2

but K is not normal in K2. Since K � K1 K(i) is a block for the action of K1 on
K1(i). So if K(i) 6= K1(i), then there exists x ∈ K1 such that x(K(i)) ∩ K(i) = ∅
and so K(i) ⊆ supp(x) which is impossible since supp(x) is finite. Hence it follows that
K(i) = K1(i) and so K acts transitively on K1(i). Similarly K1 acts transitively on K2

and so K1(i) = K2(i) which yields that K(i) = K2(i). Continuing in this way it follows
that K(i) = Ω and so K is transitive on Ω. Now since K1(i) and K2(i) are transitive
subgroups of FSym(Ω) having the property that K �K1 �K2 it follows from [11, The-
orem 3.3] that K �K2 which is a contradiction. 2

Proof of Theorem 1.1 Let G be a transitive subgroup of FSym(Ω), where Ω is
infinite. Let F be a non-abelian subgroup of G and let ∆ be a non-trivial block such that
supp(F ) ⊆ ∆. Then G cannot be primitive. First suppose that G has a maximal block Γ
with ∆ ⊆ Γ. Put Σ = {x(Γ) : x ∈ G}. Let K be the kernel of the representation of G into
FSym(Σ). Then G/K is isomorphic to Alt(Σ) or FSym(Σ) by [5, Lemma 8.3(B)] or [14,
Proposition]. Then also (G/K)Γ is isomorphic to Alt(Σ \ Γ) or FSym(Σ \ Γ). Moreover
it is easy to see that (G/K)Γ = G{Γ}/K. Therefore G{Γ}/K contains a unique subgroup

of index ≤ 2 which is isomorphic to the simple group Alt(Σ \ Γ). Since G{∆} has finite

index in G{Γ} it follows that Alt(Σ\Γ) is isomorphic to a subgroup of G{∆}K/K. Hence

it follows that any solvable normal subgroup of G{∆} is contained in K.

Next suppose that G is totally imprimitive. Put H = G{∆}. First suppose that

G = G′. We use induction on d. By Lemma 2.4 the assertion is true for d ≤ 1.
So suppose that d > 1 and the assertion is true for smaller derived lengths. Put

L =< (S(d−1))
x

: x ∈ G >. Again L ≤ H by Lemma 2.4. Let M be the kernel of

the representation of G into FSym(Λ), where Λ = {x(∆) : x ∈ G} and put Ḡ = G/M .
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Then L ≤ M . Clearly Ḡ is totally imprimitive and the derived length of S̄ is less than

d. Let F1 be a finite non-abelian subgroup of Ḡ and Γ be a non-trivial block for Ḡ

such that ∆ ⊆ Γ and supp(F1) ⊆ Γ. There exist 1 = x1, x2, . . . , xr ∈ G such that
Γ = {x1(∆), x2(∆), . . . , xr(∆)}. Put ∆1 = x1(∆) ∪ x2(∆) ∪ · · · ∪ xr(∆). Then ∆1 is

a block for G and Ḡ{Γ} = G{∆1}. Put T̄ = ḠΓ. Then Ḡ{Γ}/T̄ is a finite group and

T̄ ≤ Ḡxi(∆) for all i ≥ 1. Thus Ḡ{Γ} = X̄T̄ for some finite subgroup X̄ of Ḡ{Γ}. Since

Ḡ{Γ} is an FC − group we may suppose that X̄ is normal in Ḡ{Γ}.

Put DS = S ∩ T . Since T ≤ G{∆}, DS � T and S/DS is finite. Now DS ∩ CT̄ (X̄)

is normalized by X̄T̄ = Ḡ{Γ} and [DS : DS ∩ CT̄ (X̄)] is finite since CT̄ (X̄) ∩ T has

finite index in G{Γ}. Since the derived length of DS ∩ CT̄ (X̄) is less than d, it follows

by induction hypothesis that R̄ =< (DS ∩ CT̄ (X̄))x̄ : x ∈ G >6= Ḡ. Clearly every

orbit of R on Ω is finite by Lemma 2.5 and [11, Theorem 1] since G = G′. Since T̄

and CT̄ (X̄) have finite index in Ḡ{Γ}, [Ḡ{Γ} : CT̄ (X̄) ∩ T ] = m for some m ≥ 1. Thus

[S̄ : S̄∩(CT̄ (X̄)∩ T̄ )] = [S̄ : DS∩CT̄ (X̄)] ≤ m and hence |S̄R̄/R̄| ≤m . Since G is totally
imprimitive it is the union of an ascending chain of proper normal subgroups. Therefore
there exists a proper normal subgroup N of G such that R̄ ≤ N̄ and S̄R̄/R̄ ≤ N̄ , since
every orbit of R is finite. Clearly then < Sx : x ∈ G >6= G.

Now suppose that G′ < G. If G′S 6= G then we are done. So suppose that G′S = G.
Let W = G′ and S1 = S ∩W . Then U =< Sx1 : x ∈ G′ >6= W by the above paragraph.
Since every orbit of U is finite there exists a non-trivial block Π for G containing ∆ such
that U ≤ G{Π}. Let B be the kernel of the representation of G into FSym(Y ), where

Y = {x(Π) : x ∈ G}. Put Ḡ = G/B. Since H̄ = S̄(H̄)∩W̄ and S̄∩W̄ = 1, it follows that

S̄ ≤ Z(H̄). Put V = G{Π}. Then [V : H ] is finite. Let A be the largest normal subgroup

of V contained in H . Then V/A is finite. Put Z̄ = Z(Ā). Then [S̄ : S̄ ∩ Z̄ ] is finite.

Since Z̄ � V̄ , if X =< Zx : x ∈ G > then X̄ 6= Ḡ by Lemma 2.4. Now consider Ḡ/X̄.

Then S̄X̄/X̄ is finite. Also Ḡ/X̄ is an ascending union of proper normal subgroups.

Therefore S̄X̄/X̄ is contained in a proper normal subgroup of Ḡ/X̄ , which implies that S
is contained in a proper normal subgroup of G. This completes the proof of the theorem.

2

As an easy consequence of the above proof one can verify the following easily: Suppose

that in Theorem 1.1 G is perfect. Let Wd = {S ≤ G{∆} : S �G{∆} and S(d) = 1}. Then

< Sx : S ∈Wd and x ∈ G >6= G.
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Proof of Theorem 1.2 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite.
(a) Let a ∈ Ω and suppose that Ga is solvable. By [5, Lemma 8.3B(i)]or [10, Theorem
2.3] G cannot be primitive. First suppose that G is almost primitive. Then G has
a maximal non-trivial block Γ containing a. Then, as in the proof of Theorem 1.1, G
contains a normal subgroup K such that G/K is isomorphic to Alt(Σ) or FSym(Σ), where
Σ = {x(Γ) : x ∈ G} and then (G/K)Γ is isomorphic to Alt(Σ \ {Γ}) or FSym(Σ \ {Γ}).
But since GaK/K has finite index in (G/K)Γ, this gives a contradiction.

Next suppose that G is totally imprimitive. Then G contains a non-abelian finite
subgroup F and a non-trivial block ∆ such that supp(F ) ∪ {a} ⊆ ∆. Clearly Ga has
finite index in G{∆} and so G{∆} contains a normal solvable subgroup S of finite index.

By Theorem 1.1 M =< Sx : x ∈ G >6= G. Since G{∆}/M is finite G{∆} is contained in

a proper normal subgroup N of G. In particular Ga ≤ N . Since Gb is conjugate to Ga
for any b ∈ Ω it follows that G =< Gb : b ∈ Ω >≤ N , which is a contradiction. 2

(b) Suppose that G satisfies the normalizer condition. Then G is locally nilpotent by
[13, 12.2.2] and so it is a p - group for some prime p by [15, Theorem 1]. It is easy to see
that G′ is transitive and hence perfect by [11, Theorem 1]. Let H be a proper subgroup
of G′. If every orbit of H is finite, then H is an FC - group by [5, Lemma 8.3(D)] or [16,
Theorem 1]. So suppose that H(a) is infinite for some a ∈ Ω. Then H is normal in G by
Lemma 2.5, since it is ascendant in G by assumption. This implies that H(a) is a block
for G and so H(a) = Ω since any non-trivial block for G is finite. In particular then H

is transitive on Ω. But now G′ ≤ H by [5, Lemma 8.3C] or [11, Theorem1], which is a
contradiction. This completes the proof of the theorem.

Proof of Theorem 1.3 Let G be a transitive subgroup of FSym(Ω), where Ω is infinite.
Let a ∈ Ω and suppose that Ga satisfies (a) or (b) of the theorem. Then it follows as in
the proof of Theorem 1.2 that G can be neither primitive nor almost primitive. Therefore
we may assume that G is totally imprimitive. Then G =

⋃∞
k=1Nk by (2). For each k ≥ 1

[Nk : Nk ∩Ga] is finite by Lemma 2.2(b). Let Mk be the largest normal subgroup of Nk
contained in Nk ∩Ga. Then Nk/Mk is finite.

(a) Suppose that Ga is locally solvable. Then Mk is locally solvable. In fact then
Mk is solvable since Nk is isomorphic to a subgroup of the direct product of isomorphic
copies of a finite group as was explained in the introduction. Let Sk be the product of all
the normal solvable subgroups of Nk for all k ≥ 1. Then Sk is normal in G and NkSk/Sk
is finite since Mk ≤ Sk. Define S =< Sk : k ≥ 1 >. Then S is locally solvable. Also
S �G and G/S is an FC -group since G/S =

⋃∞
k=1NkS/S and each NkS/S is finite. In
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this case G/S cannot be represented as a group of finitary permutations on an infinite
set by [5, Lemma 8.3D] or [16, Theorem 1] and so S must be transitive by [11, Lemma
2.1]. This implies that G′ ≤ S and so G is locally solvable, which completes the proof of
(a).

(b) Suppose that Ga is locally nilpotent-by-solvable of derived length t ≥ 0, say.
Then G is locally solvable by (a). Let η(Ga) be the Hirsh - Plotkin radical of Ga. Then
Ga/η(Ga) is solvable of derived length ≤ t. Clearly if G′ is locally nilpotent then the
assertion follows from [15, Theorem 1] and [12, Lemma 2.1], since G′ is transitive on Ω.
Therefore it suffices to show that G′ is locally nilpotent. Without loss of generality we
may suppose that G = G′.

Since Ga is locally nilpotent-by-solvable of derived length t and Mk ≤ Ga it follows
that Mk/η(Mk) is solvable of derived length ≤ t. Also η(Mk) ≤ η(Nk) for all k ≥ 1.
Define K =< η(Nk) : k ≥ 1 >. Then K is a locally nilpotent normal subgroup of G.
So if K is transitive on Ω, then G = G′ ≤ K and thus G is locally nilpotent. Assume if
possible that K is not transitive. Then every orbit of K, being a block for G, must be
finite.

Let a ∈ Ω, ∆ = K(a) and Σ = {x(∆) : x ∈ G}. Let L be the kernel of the

representation of G into FSym(Σ). Then K ≤ L. Put Ḡ = G/L. Then Ḡ is transitive on

Σ, in fact it is totally imprimitive since G is locally solvable. Now Ḡ =
⋃∞
k=1 Nk, and for

each k ≥ 1, Mk is a solvable normal subgroup of finite index of Nk with derived length

≤ t. Therefore each Nk contains a characteristic subgroup of finite index with derived

length ≤ t2 by [4, Lemma 4]. But since Ḡ is perfect, it follows that each Nk is solvable

of derived length ≤ t2 + 1 for all k ≥ 1 and thus G is solvable, which is a contradiction.2

Proof of Corollary 1.4 (a) Let a ∈ Ω and put H = Ga. Suppose that H is locally
(nilpotent-by-abelian). Then G is locally solvable by Theorem 1.3(a), which implies that
G is totally imprimitive and hence countably infinite. Let F1 ≤ F2 ≤ · · · ≤ Fi ≤ . . . be
an ascending chain of finite subgroups of H whose union is equal to H . By hypothesis
F ′ is nilpotent for each i ≥ 1. Since

H ′ = (
∞⋃
i=1

Fi)′ =
∞⋃
i=1

F ′i ,

and (Fi)′ ≤ (Fi+1)′ for all i ≥ 1, it follows that H ′ is locally nilpotent and so H is locally
nilpotent-by-abelian. Therefore by Theorem 1.3(b) G is a p-group for some prime p.
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(b) Suppose that Ga is locally supersolvable. Since a supersolvable group is nilpotent-
by-abelian by [13, 5.4.10], Ga is locally (nilpotent-by-abelian) and so G is a p - group for
some prime p by (a), which was to be shown. 2

Example Let G be the 2 - group constructed by Wiegold in [16, p. 468]. Then G is
a totally imprimitive subgroup of FSym(N). By Lemma 2.2(a) every orbit of a point
stabilizer is finite and so it is an FC-group. We show that G′ is not a minimal non FC-
group, which will show that the condition of Theorem 1.2(b) cannot be restricted to a
point stabilizer. We will adopt the description of Wiegold’s group given in [5, Exercise
8.3.1]. Thus for each k ≥ 1 let Tk be the subset of FSym(N) defined by

Tk = {xk,n : n = 1, 2, 3, . . .}, where xk,n =
∏2k−1−1
i=0 (i + n2k, i+ 2k + 2k − 1)

for each n ≥ 0. Thus for example,

T1 = {(01), (23), (45), . . .}, T2 = {(02)(13), (46)(57), (8 10)(9 11), . . .}
T3 = {(04)(15)(26)(37), (8 12)(9 13)(10 14)(11 15), . . .}.

For each k ≥ 1 let Gk =< T1, . . . , Tk >. Then G =
⋃∞
k=1Gk. Clearly G is a transitive

2 -subgroup of FSym(N). It is easy to see that each Gk is normal in G and every orbit
of it is finite. Furthermore each Tk is a set of disjoint involutions which are conjugate in
G (see [16, p. 468]).

Next we show that G′ is not a minimal non FC- group. Let X =< x ∈ G′ :
x2 = 1 >. Then X � G. Let k ≥ 1. Then for each n ≥ 0 there exists g ∈ G such
that xk,n = g−1xk,0g ∈ Tk, and hence xk,0xk,n = xk,0g

−1xk,0g ∈ X for all n ≥ 0
since any two elements of Tk commute which implies that xk,n ∈ xk,0X. Clearly it

follows form this that G/X =< xk,0X : k ≥ 1 >. We claim that G/X is abelian.
Let k, t ≥ 1. Clearly xt,0xk,0xt,0xk,0 ∈ X as above. Hence it follows that xk,0xt,0X =

(xk,0xt,0)(xt,0xk,0xt,0xk,0X = xt,0xk,0X which shows that G/X is abelian and so G′ ≤ X.

Since X ≤ G′ it follows that G′ = X and so G′ cannot be a minimal non FC -group
by Corollary 1.9. Note that G′ 6= G since G′ is generated by even permutations and so
T1 ∩G′ = ∅.
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3. Proofs of Theorems 4, 5

Lemma 3.1 Let G be a totally imprimitive subgroup of FSym(Ω), where Ω is infinite,

and let A be a generating subset for G. Then there exists a ∈ A such that < a >G is not
abelian.
Proof. Assume that < a >G is abelian for all a ∈ A. Let F be a non-abelian finite
subgroup of G and let ∆ be a non-trivial block for G such that supp(F ) ⊆ ∆. Since

< A >= G and G{∆} 6= G, there exists a ∈ A \G{∆}. Then F ′ ≤ [F, a] ≤< a >G and so

< a >G≤ G{∆} by Lemma 2.1(b), which is a contradiction. 2

Lemma 3.2 Let G be a subgroup of FSym(Ω), F a subgroup of G and ∆ be a non-trivial
block for G such that supp(F ) ⊆ ∆. Let y ∈ G \ G{∆} and let t be the smallest positive

integer such that yt ∈ G{∆}. Assume that yt ∈ FCG(F ). Then there exists x ∈ F such

that (yx−1)t ∈ CG(F ), and t is the smallest positive integer with this property.

Proof. By hypothesis there exists h ∈ F and c ∈ CG(F ) such that yt = ch. Also

y(∆), . . . , yt−1(∆) are pairwise disjoint by the choice of t. Let x ∈ F and i ∈ ∆. We

claim that (yx)k(i) = yk(x(i)) for all 1 ≤ k ≤ t. Assume that it holds for 1 ≤ k < t.
Then

(yx)k+1(i) = (yx)((yx)k(i)) = (yx)((yk(x(i))) = y(yk(x(i))) = yk+1(x(i))

since yk(x(i)) /∈ ∆ and supp(F ) ⊆ ∆. Thus the induction is complete. Now letting k = t

and x = h−1 we get

(yh−1)t(i) = yt(h−1(i)) = (yth−1)(i) = c(i).

Since i is any element of ∆ it follows that (yh−1)t |∆= c |∆. Hence (yh−1)t = (c |∆)d

where d ∈ FSym(Ω \∆) which implies that (yh−1) ∈ CG(F ). Also it is clear from the
induction that t is the smallest such number. 2

Proof of Theorem 1.5 Let G be a totally imprimitive p - subgroup of FSym(Ω), where
Ω is infinite. Suppose that every orbit of every proper subgroup of G is finite. Assume
that for every non-normal finite subgroup F of G there exists y ∈ G \NG(F ) such that

yp ∈ CG(F ). By Lemma 3.1 there exists c1 ∈ G such that < c1 >
G is not abelian. Put

F1 =< c1 > and let Λ1 be a member of (1) containing supp(F1). Let U1 be the normal
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closure of F1 in G{∆}. Then supp(U1) ⊆ ∆1 by Lemma 2.3(a) and also NG(U1) = G{Λ1}

by Lemma 2.1(a). By the hypothesis there exists c2 ∈ G \G{Λ1} such that cp2 ∈ CG(U1).

In particular, cp2 centralizes F1 since F1 ⊆ U1. Therefore

F<c2>1 =< c1 > × < c1 >
c2 × · · · × 〈c1〉c

p−1
2 ,

by Lemma 2.3(b). Next, put F2 = F<c2>1 < c2 >=< F1, c2 >. Let Λ2 be a member of
(1) containing supp(F2) and U2 be the normal closure of supp(F2) in G{Λ2}. Then, as

in the first case, there exists c3 ∈ G \ G{Λ2} such that cp3 ∈ CG(U2) and so F<c3>2 =

F2 × F c32 × · · · × F
cp−1
3

2 . Put F3 = F<c3>2 < c3 >=< F2, c3 >. Continuing in this way we
obtain properly increasing infinite chains

Λ1 ⊂ Λ2 ⊂ . . . and F1 ⊂ F2 ⊂ . . .
of non-trivial blocks Λi and finite subgroups Fi =< c1, c2, . . . ci > of G such that
ci+1 ∈ G \ G{Λi}for every i ≥ 1. Obviously Ω =

⋃∞
k=1 Λk. Put F =

⋃∞
i=1 Fi. Clearly

F = G since the orbit of F containing any element of supp(c1) is infinite by the choice of
the ci.

We claim that < c1 >
F is abelian. It suffices to show that < c1 >

Fi is abelian for
all i ≥ 1. This is obvious for i = 1 since F1 =< c1 >. Assume that it holds for some
i ≥ 1.We must show that it holds for i + 1. Thus < c1 >

Fi is abelian by assumption.
Now

Fi+1 = (F<ci+1>
i ) < ci+1 > and F

<ci+1>
i = Fi × F ci+1

i × · · · × F c
p−1
i+1
i .

Hence we can write Fi+1 as Fi+1 = (Fi × F
ci+1
i × · · · × F

cp−1
i+1
i ) < ci+1 >. Let

x, y ∈ Fi+1. It suffices to show that [cx1 , c
y
1 ] = 1. Now there exists a0, a1, . . . , ap−1

and b0, b1, . . . , bp−1 ∈ Fi and 0 ≤ r, s ≤ p− 1 such that

x = (a0a
ci+1
1 . . . a

cp−1
i+1
p−1 )cri+1 and y = (b0b

ci+1
1 . . . b

cp−1
i+1
p−1 )csi+1.

Since ca0
1 ∈ Fi and [Fi, F

cui+1
i ] = 1 for 1 ≤ u ≤ p − 1 by Lemma 2.1(d), it is easy to

see that cx1 = c
a0c

r
i+1

1 . Similarly cy1 = c
b0c

s
i+1

1 . Now [cx1 , c
y
1] = 1 if r 6= s by Lemma

2.1(d), since [F
cri+1
i , F

csi+1
i ] = 1 due to the fact that 0 ≤ r, s ≤ p − 1. If r = s, then

[cx1 , c
y
1] = [ca0

1 , c
b0
1 ]c

r
i+1 = 1 since < c1 >

Fi is abelian. This completes the induction and so
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it follows that < c1 >
F is abelian. But since < c1 >

G is not abelian this contradicts the
fact that F = G and so the proof is complete. 2

Proof of Corollary 1.6 Let F be a non-normal finite subgroup of G and ∆ be a
minimal block such that supp(F ) ⊆ ∆. By hypothesis there exists y ∈ G \ G{∆} such

that yp ∈ FCG(F ). By Lemma 3.2 there exists x ∈ F such that (yx)p ∈ CG(F ). Also
yx /∈ G{∆} since x ∈ G{∆}. Thus it follows that yx /∈ NG(F ) but (yx)p ∈ CG(F ) since

NG(F ) ≤ G{∆} by Lemma 2.1. Since F is any finite non-normal subgroup of G applying

Theorem 1.5 yields a proper subgroup of G that has an infinite orbit. 2

Proof of Corollary 1.7 Let k ≥ 1 and H = G{∆k}. Let Mk be the kernel of the

representation of G into FSym(Σk), where Σk = {x(∆k) : x ∈ G}. Then Mk is the

largest normal subgroup of G contained in H and so Mk =< FGk > by hypothesis.

Put Ḡ = G/Mk. Let R be a proper normal subgroup of G such that R̄ 6= 1. Since

R̄ is nilpotent Ω1(Z(R̄)) 6= 1 and so it is not contained in H̄ by definition of Mk.

Choose z̄ ∈ Ω1(Z(R̄)) \ H̄ such that o(z̄) = p. Then z /∈ H but zp ∈ Mk. Since

Mk =< FGk >=
∏
x∈G F

x ≤ FkG∆k it follows that zp ∈ FkCG(Fk).

Let now F be any finite non - normal subgroup of G. There exists k ≥ 1 such that
supp(F ) ⊆ ∆k and so by the above paragraph there there exists y ∈ G \NG(F ) such that
yp ∈ FCG(F ). Therefore Corollary 1.6 yields a proper subgroup of G that has an infinite
orbit. 2

Proof of Corollary 1.8 Let F be a non - normal finite subgroup of G. There exists
a k ≥ 1 such that supp(F ) ⊆ ∆k. By hypothesis there exists y ∈ G \ G{∆k} such that

yp ∈ G∆k ≤ CG(F ). Since NG(F ) ≤ G{∆k}, the hypothesis of Theorem 1.5 is satisfied

and so G contains a proper subgroup having an infinite orbit. 2

Proof of Theorem 1.11 Let G be a locally finite p - group that is also a minimal no FC
- group. Then every proper subgroup of G is an FC-group. Assume that G is perfect and
satisfies the hypothesis of the theorem. Then Z(G/Z(G)) = 1. Put Ḡ = G/Z(G). Then

Z(Ḡ) = 1. Since G is locally nilpotent, it has a proper normal subgroup N̄ 6= 1. Then

since Z(N̄) 6= 1, we can choose ā ∈ Z(N̄) with o(ā) = p. Put Ω = {(ā)x̄ : x ∈ G}. Clearly

Ω is infinite and the conjugation action of Ḡ on Ω defines a finitary permutation group
on Ω by [3, Theorem1] or [8, Theorem]. Let K be the kernel of this representation. Then
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Ḡ/K̄ is isomorphic to a totally imprimitive p -subgroup of FSym(Ω). Since Ḡ/K̄ ∼= G/K

we may consider G/K instead of Ḡ/K̄.

Now we show that G/K satisfies the hypothesis of Corollary 1.6. By hypothesis
for every non-normal finite subgroup F of G there exists y ∈ G \ NG(F ) such that
yp ∈ FCG(F ). Let X/K be a finite non - normal subgroup of G/K and let T be a finite
subgroup of X such that X = TK. Let ∆ be a non-trivial block for G/K such that
supp(X/K) ⊆ ∆. Put L/K = (G/K){∆}. Let V be the normal closure of T in L. Then

V is a finite normal subgroup of L and X ≤ VK. Thus L/K = NL/K(V K/K) since

supp(V K/K) ⊆ ∆. In particular NG(V ) = L. By hypothesis there exists y ∈ G \ L
such that yp ∈ V CG(V ). Then yK /∈ L/K but ypK ∈ (V K/K)CG/K(X/K) since

X/K ≤ VK/K. Thus it follows that G/K satisfies the hypothesis of Corollary 1.6. But
then G/K contains a proper subgroup having an infinite orbit, which is impossible by
[5, Lemma 3.8D] or [16, Theorem 1] since G/K is a minimal non FC - group. This
contradiction completes the proof of the theorem. 2

The author is grateful to the referee for a careful reading of the manuscript and
pointing out some errors.
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