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Second-Order Nonlinear Three Point Boundary-Value
Problems on Time Scales

S. Gülşan Topal

Abstract

We consider a second order three point boundary value problem for dynamic
equations on time scales and establish criteria for the existence of at least two
positive solutions of an eigenvalue problem by an application of a fixed point theorem
in cones. Existence result for non-eigenvalue problem is also given by the monotone
method.

Key Words: Dynamic equations, cone, positive solutions, upper and lower solu-
tions.

1. Introduction

We are concerned with the three point boundary value problem

−y4∇(t) = λf(t, y(t)), t ∈ [a, b], (1.1)

αy(ρ(a)) − βy4(ρ(a)) = 0, y(σ(b)) − δy(η) = 0, (1.2)

where α, β ≥ 0 and α + β > 0, λ > 0, 0 < δ < 1, η ∈ (ρ(a), σ(b)). We likewise assume
that f : [a, b]× R→ R is left-dense continuous.

Throughout this paper we let T be any time scale (nonempty closed subset of R) and
[a, b] be subset of T such that [a, b] = {t ∈ T : a ≤ t ≤ b}.

Related works on differential equations, difference equations and dynamic equations
on time scale include [1–6, 9–15]. Three point boundary value problems on time scales
was studied in the references [2, 3, 6, 12], in this study we also generalized the boundary
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condition. Some preliminary definitions and dynamic theorems on time scales can also
be found in the books [7, 8] which are useful references for the time scales calculus.

Let G(t, s) be the Green’s function for the BVP. The

Ly ≡ −y∆∇(t) = 0, t ∈ [a, b], (1.3)

αy(ρ(a)) − βy4(ρ(a)) = 0, y(σ(b)) − δy(η) = 0. (1.4)

G(t, s) is given by

G(t, s) =
1
D

 G1(t, s), ρ(a) < s ≤ η;

G2(t, s), η < s < σ(b),

where

G1(t, s) =

 (β + α(s− ρ(a)))(σ(b) − δη − t(1− δ)), s < t

(β + α(t− ρ(a)))(σ(b) − δη − s(1 − δ)), s ≥ t

G2(t, s) =

 (β + α(s− ρ(a)))(σ(b) − t) + (t − s)(η + β − αρ(a))δ, s ≤ t

(β + α(t− ρ(a)))(σ(b) − s), s > t

and D = β(1 − δ) + α(σ(b) − ρ(a) − δ(η − ρ(a))).

Lemma 1.1 For h(t) ∈ C[ρ(a), σ(b)], the BVP

Ly ≡ −y∆∇(t) = h(t), t ∈ [a, b], (1.5)

αy(ρ(a)) − βy4(ρ(a)) = 0, y(σ(b)) − δy(η) = 0 (1.6)

has a unique solution

y(t) = β+α(t−ρ(a))
D

∫ σ(b)

ρ(a)
(σ(b) − s)h(s)∇s− δ(β+α(t−ρ(a)))

D

∫ η
ρ(a)

(η − s)h(s)∇s

−
∫ t
ρ(a)

(t− s)h(s)∇s.
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Lemma 1.2 Let 0 < δ < 1. If h(t) ∈ C[ρ(a), σ(b)], and h ≥ 0, then the unique solution
y of the problem (1.5), (1.6) satisfies

y(t) ≥ 0, t ∈ (ρ(a), σ(b)).

Proof. From the fact that y4∇(t) = −h(t) ≤ 0, we know that the graph of y(t) is

concave down on [ρ(a), σ(b)] and y4(t) monotone decreasing. Thus y4(t) ≤ y4(ρ(a)) =
α
β y(ρ(a)), where β 6= 0.

Case1. If y(ρ(a)) < 0, then y4(t) < 0 for t ∈ [ρ(a), σ(b)]. Thus y is a monotone
decreasing function, this is y(t) ≥ y(σ(b)).

1. If y(σ(b)) ≥ 0, then y(t) > 0. So this contradicts the assertion y(t) is a monotone
decreasing function.
2. If y(σ(b)) < 0, then we have that

y(η) =
1
δ
y(σ(b)) < 0,

y(σ(b)) = δy(η) ≥ y(η)

which contradicts the assertion that y(t) is monotone decreasing.

Case2. If y(ρ(a)) ≥ 0, then y4(ρ(a))) ≥ 0. So y(t) is monotone increasing on
[ρ(a), ρ(a) + ε).

1. If y(σ(b)) ≥ 0, then y(t) ≥ 0 on [ρ(a), σ(b)].
2. If y(σ(b)) < 0, then we have that

y(η) =
1
δ
y(σ(b)) < 0,

y(σ(b)) = δy(η) ≥ y(η)

which contradicts the assertion that the graph of y(t) is concave down on (ρ(a), σ(b)).

If β = 0, from the boundary conditions we obtain y(ρ(a)) = 0.
1. If y(σ(b)) ≥ 0, then the concavity of y implies that y(t) ≥ 0 for t ∈ [ρ(a), σ(b)].
2. If y(σ(b)) < 0, then

y(η) = 1
δ
y(σ(b)) < 0,

y(σ(b)) = δy(η) ≥ y(η).
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This contradicts with the concavity of y. 2

Lemma 1.3 If y4∇(t) ≤ 0, then y(σ(b))
σ(b) ≤

y(t)
t ≤

y(η)
η for all t ∈ [η, σ(b)].

Proof. Let h(t) := y(t)− t

σ(b)− ρ(a)
y(σ(b)). Thus, we have h(η) > 0 and h(σ(b)) = 0.

Since h4∇(t) ≤ 0 then h(t) ≥ 0 on [η, σ(b)]. So
y(σ(b))
σ(b)

≤ y(t)
t

. For the function h(t),

since h(η) > 0, h(σ(b)) = 0 and h4∇(t) ≤ 0 then the function h(t) is decreasing on

[η, σ(b)]. So
y(t)
t
≤ y(η)

η
for all t ∈ [η, σ(b)]. 2

Lemma 1.4 Let 0 < δ < 1. If h(t) ∈ C[ρ(a), σ(b)], and h ≥ 0, then the unique solution
y of (1.5), (1.6) satisfies

inf
t∈[η,σ(b)]

y(t) ≥ γ‖y‖,

where

γ := min{ δ(σ(b)− η)
σ(b)− δη − ρ(a)(1− δ)

,
δη

σ(b)
}.

Proof. By the second boundary condition we know that y(η) ≥ y(σ(b)). Pick
t0 ∈ (ρ(a), σ(b)) such that y(t0) = ‖y‖. If t0 < η < σ(b), then

min
t∈[η,σ(b)]

y(t) = y(σ(b))

and

y(σ(b)) − y(η)
σ(b)− η

≤ y(η) − y(t0)
η − t0

.

Therefore

min
t∈[η,σ(b)]

y(t) ≥ δ(σ(b) − η)
σ(b) − δη − ρ(a)(1 − δ)

‖y‖.
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If η ≤ t0 < σ(b), again we have y(σ(b)) = mint∈[η,σ(b)] y(t). From the Lemma 1.3, we

have y(η)
η
≥ y(t0)

t0
.

Combining with the boundary condition δy(η) = y(σ(b)), we conclude that

y(σ(b))
δη

≥ y(t0)
t0
≥ y(t0)

σ(b)
=
‖y‖
σ(b)

.

This is

min
t∈[η,σ(b)]

y(t) ≥ δη

σ(b)
‖y‖.

2

2. A Fixed Point Theorem

Let B be a Banach space, and P a closed, nonempty subset of B. P is a cone
provided (i) αu + βv ∈ P for all u, v ∈ P and all α, β ≥ 0, and (ii) u,−u ∈ P imply
u = θ(θ is zero of P ).

We refer to [9] for a discussion of the fixed point index that we use below. In particular,
we will make frequent use of the following lemma.

Lemma 2.1 Let B be a Banach space, and let P ⊂ B be a cone in B. Assume r > 0 and
that Φ : Pr → P is compact operator such that Φx 6= x for x ∈ ∂Pr := {x ∈ P : ‖x‖ = r}.
Then, the following assertions hold:

(i) If ‖x‖ ≤ ‖Φx‖, for all x ∈ ∂Pr, then i(Φ, Pr, P ) = 0.

(ii)If ‖x‖ ≥ ‖Φx‖, for all x ∈ ∂Pr, then i(Φ, Pr, P ) = 1.

Thus, if there exist r1 > r2 > 0 such that condition (i) holds for x ∈ ∂Pr1 and (ii) holds
for x ∈ ∂Pr2 (or (ii) and (i)), then, from the additivity properties of the index, we know
that

i(Φ, Pr1 , P ) = i(Φ, Pr1\Int(Pr2 ), P ) + i(Φ, Pr2 , P ).

As consequence i(Φ, Pr1\Int(Pr2 ), P ) 6= 0, from where we assure the existence of a
nonzero fixed point of operator Φ whose norm is between r1 and r2.
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3. An Existence Theorem For 1.1− 1.2

We will assume that
(A1) f : [a, b]× R is continuous with respect to ξ and f(t, ξ) for ξ ∈ R+, where R+

denotes the set of nonnegative real numbers.

Define the nonnegative extended real numbers f0, f
0, f∞ and f∞ by

f0 := limx−→0+ inf mint∈[a,b]
f(t,x)
x

f0 := limx−→0+ sup maxt∈[a,b]
f(t,x)
x

f∞ := limx−→∞ inf mint∈[a,b]
f(t,x)
x

f∞ := limx−→∞ sup maxt∈[a,b]
f(t,x)
x .

It is not difficult to show that the eigenvalue problem (1.1), (1.2) having a solution is
equivalent to the fixed point equation

y = Φλ(y), y ∈ B = C[a, b], (3.1)

having a solution, where the operator Φλ is defined by

Φλy(t) = λ

∫ σ(b)

ρ(a)

G(t, s)f(s, y(s))∇s. (3.2)

Now, consider the Banach space B with maximum norm and the cone P in B given
by

P = {y ∈ B : y(t) ≥ 0, t ∈ [a, b] and inf
t≥η

y(t) ≥ γ‖y‖}.

It is obvious that P is a cone in B. Moreover, by Lemma 1.4 Φλ(P ) ⊂ P . It is also easy
to see that Φλ : P −→ P is completely continuous.

Now, we are ready to obtain criteria for the existence of least two positive solutions
of the eigenvalue problem (1.1), (1.2).

Theorem 3.1 If (A1) holds and either

(a) 1
γKf∞

< λ < 1
Lf0 or

(b) 1
γKf0

< λ < 1
Lf∞
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is satisfied, where K = mint∈[a,b]

∫ σ(b)

ρ(a)

G(t, s)∇s, L = maxt∈[a,b]

∫ σ(b)

ρ(a)

G(t, s)∇s, then

the eigenvalue problem (1.1), (1.2) has two positive solutions on [ρ(a), σ(b)].

Proof. Assume (a) holds. Since

λ <
1

Lf0
,

there is an ε > 0 so that

L(f0 + ε)λ ≤ 1.

Using the definition of f0 , there is an r1 > 0, sufficiently small, so that

max
t∈[a,b]

f(t, x)
x

< f0 + ε

for 0 < x ≤ r1.
It follows that f(t, x) < (f0 + ε)x for 0 < x ≤ r1, t ∈ [a, b].

Assume that u ∈ ∂Pr1 , then

Φλu(t) < λ(f0 + ε)‖u‖
∫ σ(b)

ρ(a)

G(t, s)∇s

≤ λ(f0 + ε)‖u‖L
≤ ‖u‖,

for t ∈ [a, b].
Next, we use the assumption

1
γKf∞

< λ.

First, we consider the case when f∞ <∞. In this case pick an ε1 > 0 so that

γλK(f∞ − ε1) ≥ 1.

Using the definition of f∞, there is an r > r1 sufficiently large , so that

min
t∈[a,b]

f(t, x)
x

> f∞ − ε1,
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for x ≥ r.
It follows that f(t, x) > (f∞ − ε1)x for x ≥ r, t ∈ [a, b]. We now show that there is

an r2 ≥ r such that if u ∈ ∂Pr2 , then ‖Φλu‖ > ‖u‖.
Pick r2 ≥ δr > r1. Now assume u ∈ ∂Pr2 and consider

Φλu(t) > λ(f∞ − ε1)
∫ σ(b)

ρ(a)

G(t, s)u(s)∇s

≥ λ(f∞ − ε1)γ‖u‖
∫ σ(b)

ρ(a)

G(t, s)∇s

≥ λ(f∞ − ε1)γK‖u‖
≥ ‖u‖,

for t ∈ [a, b].
Finally, we consider the case f∞ = ∞. In this case the hypothesis becomes λ > 0.

Choose M > 0 sufficiently large so that

λMγK ≥ 1,

for any t ∈ [a, b].
So there exists r > r1 so that f(t, x) > Mx for x ≥ r and for all t ∈ [a, b]. Now

define r2 as before and assume u ∈ ∂Pr2

Φλu(t) > λM

∫ σ(b)

ρ(a)

G(t, s)u(s)∇s

≥ λMγ‖u‖K
≥ ‖u‖,

for t ∈ [a, b] .
Therefore by Lemma 2.1, Φλ has a fixed point u with r1 < ‖u‖ < r2, and, in

consequence, condition (a) yields the existence of a positive solution on [a, b] of such
problem.

The proof of part (b) is similar. 2

Theorem 3.2 Let the assumption (A1) hold.

(a) If f0 = 0 or f∞ = 0, then there is a λ0 > 0 such that for all λ ≥ λ0 the problem
(1.1), (1.2) has a positive solution.

(b) If f0 = f∞ = 0, then there is a λ0 > 0 such that for all λ ≥ λ0 the problem
(1.1), (1.2) has two positive solutions.
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(c) If f0 =∞ or f∞ =∞, then there is a λ0 such that for all 0 < λ ≤ λ0 the problem
(1.1), (1.2) has a positive solution.

(d) If f0 = f∞ = ∞, then there is a λ0 such that for all 0 < λ ≤ λ0 the problem
(1.1), (1.2) has two positive solutions.

Proof.
(a) Let t0 ∈ (ρ(a), σ(b)) and for all p > 0 define

m(p) = min{
∫ σ(b)

ρ(a)

G(t0, s)f(s, u(s))∇s, u ∈ ∂Pp}.

It can be shown that m(p) > 0 for all p > 0. We now show that for any p0 > 0 that
for all λ ≥ λ0, where λ0 := p0

m(p0) , we have that if u ∈ ∂Pp0 , then ‖Φλu‖ ≥ ‖u‖. To prove

this let u ∈ ∂Pp0 . Then for λ ≥ λ0,

Φλu(t0) = λ

∫ σ(b)

ρ(a)

G(t0, s)f(s, u(s))∇s

≥ λm(p0) ≥ λ0m(p0) = p0 = ‖u‖.

Hence it follows that ‖Φλu‖ ≥ ‖u‖ for all u ∈ ∂Pp0 and λ ≥ λ0.
We now show that the condition f0 = 0 implies that given any p0 > 0 there is an h0

such that 0 < h0 < p0 and for any u ∈ ∂Ph0 it follows that ‖Φλu‖ ≤ ‖u‖, for all λ ≥ λ0.
To prove this fix λ ≥ λ0 and pick ν0 > 0 so that

ν0λL ≤ 1 (3.3)

Since

f0 := lim
x−→0+

sup max
t∈[a,b]

f(t, x)
x

= 0,

there is an h0 < p0 such that

max
t∈[a,b]

f(t, x)
x

≤ ν0,

for 0 < x ≤ h0. Hence we have that

f(t, x) ≤ ν0x, (3.4)
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for t ∈ [ρ(a), σ(b)], 0 ≤ x ≤ h0.
Let u ∈ ∂Ph0 and consider

Φλu(t) = λ

∫ σ(b)

ρ(a)

G(t, s)f(s, u(s))∇s

≤ λ

∫ σ(b)

ρ(a)

G(t, s)ν0u(s)∇s

≤ λν0‖u‖L ≤ ‖u‖.

It follows that if u ∈ ∂Ph0 , then ‖Φλu‖ ≤ ‖u‖ and hence, the problem (1.1), (1.2) has a
positive solution and the first part of (a) has been proven.

We now prove the second part of (a) of this theorem. Fix λ ≥ λ0, where λ0 = p0
m(p0) .

Pick ν0 so that (3.3) holds. Since f∞ = 0, there is a H0 > p0 so that

max
t∈[a,b]

f(t, x)
x

≤ ν0

for x ≥ H0. Hence we have that

f(t, x) ≤ ν0x

for t ∈ [ρ(a), σ(b)].

We consider two cases. The first case is that f(t, u) is bounded on [ρ(a), σ(b)]× R+.
In this case there is a positive number N such that

|f(t, u)| ≤ N

for t ∈ [ρ(a), σ(b)], u ∈ R+. Choose H1 ≥ H0 so that

NλL ≤ H1.

Then u ∈ ∂PH1 , we have

Φλu(t) = λ

∫ σ(b)

ρ(a)

G(t, s)f(s, u(s))∇s

≤ λNL ≤ H1 = ‖u‖.

It follows that if u ∈ ∂PH1 , then ‖Φλu‖ ≤ ‖u‖. Since at the beginning of the proof of this
theorem we proved that if u ∈ ∂Pp0 , then ‖Φλu‖ ≥ ‖u‖, and since p0 < H1 it follows from

Lemma 2.1 that Φλ has a fixed point and hence the problem (1.1), (1.2) has a positive
solution.
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Next we consider the case where f(t, u) is unbounded on [ρ(a), σ(b)]× R+. Let

g(h) := max{f(t, y) : t ∈ [ρ(a), σ(b)], 0 ≤ y ≤ h}.

The function g(h) is non-decreasing and

lim
h→∞

g(h) =∞.

Choose H2 ≥ H0 so that

g(H2) ≥ g(h), for 0 ≤ h ≤ H2.

Then for u ∈ ∂PH2 , we have

Φλu(t) = λ

∫ σ(b)

ρ(a)

G(t, s)f(s, u(s))∇s

≤ λg(H2)
∫ σ(b)

ρ(a)

G(t, s)∇s

≤ λν0H2L ≤ H2 = ‖u‖.

It follows that the problem (1.1), (1.2) has a positive solution u0(t) satisfying p0 ≤ ‖u0‖ ≤
H2 and the proof of part (a) of this theorem is complete.

(b) Clearly if f0 = f∞ = 0, then by the proof of part (a) we get for any p0 > 0 that
for each fixed λ ≥ λ0 := p0

m(p0)
there are numbers h0 < p0 < H2 such that there are two

positive solutions of the problem (1.1), (1.2) satisfying h0 ≤ ‖u1‖ ≤ p0 ≤ ‖u2‖ ≤ H2.
The proof of part (c) will be easy to see when we prove part (d) so we will only prove

part (d) here.
(d) Assume f0 = f∞ =∞ and 0 < r1 < r2 are given numbers. Let

Mi := max{f(t, y) : (t, y) ∈ [ρ(a), σ(b)]× [0, ri]} for i = 1, 2.

Then if u ∈ ∂Pri , it follows that

Φλu(t) ≤Miλ

∫ σ(b)

ρ(a)

G(t, s)∇s.

It follows that we can pick λ0 > 0 sufficiently small so that for all 0 < λ ≤ λ0

‖Φλu‖ ≤ ‖u‖, for all u ∈ ∂Pri , i = 1, 2.

Fix λ ≤ λ0. Choose M > 0 sufficiently large so that
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γMλK ≥ 1 (3.5)

where t0 ∈ (ρ(a), σ(b)). Since f0 =∞, there is x1 < r1 such that

min
t∈[a,b]

f(t, x)
x

≥M

for 0 < x ≤ x1. Hence we have that

f(t, x) ≥Mx

for t ∈ [ρ(a), σ(b)]. We next show that if u ∈ ∂Px1 , then ‖Φλu‖ ≥ ‖u‖. To show this
assume u ∈ ∂Px1 . Then

Φλu(t0) = λ

∫ σ(b)

ρ(a)

G(t0, s)f(s, u(s))∇s

≥ λM

∫ σ(b)

ρ(a)

G(t0, s)u(s)∇s

≥ λMγ‖u‖K ≥ ‖u‖.

Hence we have shown that if u ∈ ∂Px1 , then ‖Φλu‖ ≥ ‖u‖.
Next, we use the assumption that f∞ =∞. Since f∞ =∞ there is x2 > r2 such that

min
t∈[a,b]

f(t, x)
x

≥M

for x ≥ x2 and M is chosen so that (3.5) holds. It follows that

f(t, x) ≥Mx

for t ∈ [ρ(a), σ(b)]. We show that if u ∈ ∂Px3 , then ‖Φλu‖ ≥ ‖u‖. To show this assume
u ∈ ∂Px1 . Then

Φλu(t0) = λ

∫ σ(b)

ρ(a)

G(t0, s)f(s, u(s))∇s

≥ λM

∫ σ(b)

ρ(a)

G(t0, s)u(s)∇s

≥ λMγ‖u‖K ≥ ‖u‖.
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Hence we have shown that if u ∈ ∂Px3 , then ‖Φλu‖ ≥ ‖u‖. It follows from Lemma 2.1
that the operator Φλ has two fixed point u1(t) and u2(t) satisfying

x1 < ‖u1‖ < r1 < r2 < ‖u2‖ < x3.

2

4. Lower and Upper Solutions

We define the set

D := {y : y4∇ is continuous on [ρ(a), b]}.

For any u, v ∈ D, we define the sector [u, v] by

[u, v] := {w ∈ D : u ≤ w ≤ v}.

Definition 4.1 A real valued function u(t) ∈ D on [ρ(a), σ(b)] is a lower solution for
(1.1), (1.2) if

−u4∇(t) ≤ λf(t, u(t))for t in [a, b]

αu(ρ(a)) − βu4(ρ(a)) = 0 and u(σ(b)) ≤ δu(η).

Similarly, a real valued function v(t) ∈ D on [ρ(a), σ(b)] is an upper solution for
(1.1), (1.2) if

−v4∇(t) ≥ λf(t, v(t))for t in [a, b]

αv(ρ(a)) − βv4(ρ(a)) = 0 and v(σ(b)) ≥ δv(η).

We will prove that when the lower and upper solutions are given in the well order, i. e.
u ≤ v, problem (1.1), (1.2) admits lying between both functions.

Theorem 4.1 Assume that the condition (A1) is satisfied and u and v are respectively
lower and upper solutions for the BVP (1.1)–(1.2) such that u ≤ v on [ρ(a), σ(b)]. Then
the BVP (1.1), (1.2) has a solution y ∈ [u, v] on [ρ(a), σ(b)].

21



TOPAL

Proof. Consider the BVP

−y∆∇(t) = λF (t, y(t)), t ∈ [a, b], (4.1)

αy(ρ(a)) − βy4(ρ(a)) = 0, y(σ(b)) = δy(η), (4.2)

where,

F (t, ξ) =



f(t, v(t)) − ξ − v(t)
1 + |ξ| , ξ ≥ v(t),

f(t, ξ), u(t) ≤ ξ ≤ v(t),

f(t, u(t)) +
ξ − u(t))
1 + |ξ| , ξ ≤ u(t)

for t ∈ [a, b].

Clearly, the function F is bounded for t ∈ [a, b] and ξ ∈ R, and is continuous in ξ. Thus,
by Theorem 3.1, there exists a solution y(t) of the three point BVP (4.1)–(4.2).

We claim y(t) ≤ v(t) for t ∈ [a, b]. If not, from the boundary conditions we know that
y(t) − v(t) has a positive maximum at some c ∈ [a, b]. Consequently, we must have

(y − v)4(c) ≤ 0 and (y − v)4∇(c) ≤ 0. On the other hand,

−y4∇(c) = F (c, y(c)) = λf((c), β(c)) − λy(c)−v(c)
1+|y(c)|

< λ(f(c), v(c)) ≤ −v4∇(c).

Hence, we have

(y − v)4∇(c) > 0

which is a contradiction. It follows that y(t) ≤ v(t) on [a, b].

Since y(σ(b)) = δy(η) ≤ δv(η) ≤ v(σ(b)), we have that y(σ(b)) ≤ v(σ(b)). If a is left

scattered, then (y− v)(ρ(a)) = β
α(a−ρ(a))+β (y− v)(a). So, we get (y− v)(ρ(a)) ≤ 0. Thus

we have y(t) ≤ v(t) on [ρ(a), σ(b)].

Similarly, u ≤ y on [ρ(a), σ(b)]. Thus y(t) is a solution of (1.1), (1.2) and lies between
u and v. 2
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Theorem 4.2 Assume that the condition (A1) is satisfied and u and v are lower and
upper solutions of the (1.1), (1.2) on [ρ(a), σ(b)]. If f(t, y) is strictly decreasing y for each
t ∈ [a, b]. Then u ≤ v on [ρ(a), σ(b)].

Proof. We claim that u ≤ v for t ∈ [ρ(a), σ(b)]. If not from the boundary conditions
we know that u−v has a positive maximum at some c in [ρ(a), b]. Consequently, we know

that (u − v)4(c) ≤ 0 and (u− v)4∇(c) ≤ 0. On the other hand,

−u4∇(c) = f(c, u(c)) < f(c, v(c)) ≤ −v4∇(c).

Hence, we have

(u− v)4∇(c) > 0.

which is a contradiction. It follows that u(t) ≤ v(t) on [ρ(a), b].
Since u(σ(b)) ≤ δu(η) ≤ δv(η) ≤ v(σ(b)), we have that u(σ(b)) ≤ v(σ(b)). So, we get
u(t) ≤ v(t) on [ρ(a), σ(b)]. 2
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