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Abstract

In [5], Maheshwari et al. introduced and studied some new separation axioms,

namely, quasi semi Ti axioms where i ∈ {0 , 1 , 2}, the quasi semi T1/2 axiom was

then introduced and investigated by Gyu-Ihn et al. in [2]. In the present paper we

introduce and study quasi Ti axioms, i ∈ {0 , 1/2 , 1 , 2} as a special variety of quasi

semi Ti axioms, the class of quasi T1/2 (respectively, quasi T1) bitopological spaces

is placed between quasi T0 (respectively, quasi T1/2) bitopological spaces and quasi

T1 (respectively, quasi T2) bitopological spaces. Among several counter examples

we introduce an example of a bitopological space which is quasi T0 that fails to be

quasi semi T1/2, thus answering a question raised in [2].

Key words and phrases: bitopological spaces, quasi open sets, quasi semi-open

sets, quasi Ti, quasi semi Ti, i ∈ {0 , 1/2 , 1 , 2}.

1. Introduction

A bitopological space (X; τ1 , τ2) [3] is a non-empty set X with two topologies τ1 and
τ2 on X. A subset A of a space (X, τ) is called semi-open in (X, τ) [4] if A ⊂ IntA, the
collection of all semi-open sets in a space (X, τ) will be denoted by SO(X, τ). A subset A
of a bitopological space (X; τ1, τ2) is called quasi semi-open in (X; τ1, τ2) [5] ifA = U∪V
where U ∈ SO (X, τ1), V ∈ SO (X, τ2), A is called quasi semi-closed in (X; τ1, τ2) if
X\A is quasi semi-open in (X; τ1, τ2) and the quasi semi-closure qscl(A) of A is the
intersection of all quasi semi-closed sets in (X; τ1, τ2) that contain A. QSO (X; τ1, τ2)

2000 AMS Mathematics Subject Classification: Primary 54D10, 54E55.

25



SARSAK

(respectively, QSC (X; τ1, τ2)) will denote the class of all quasi semi-open (respectively,
quasi semi-closed) sets in (X; τ1, τ2).

A space (X; τ1, τ2) is called quasi semi T0 [5] if for any two distinct points x, y of X
there exists A ∈ QSO (X; τ1, τ2) such that x ∈ A, y /∈ A or y ∈ A, x /∈ A, or equivalently,
if qscl{x} 6= qscl{y} for any two distinct points x, y of X, (X; τ1, τ2) is called quasi semi
T1 if for any two distinct points x, y of X there exist A,B ∈ QSO (X; τ1, τ2) such that
x ∈ A, y /∈ A and y ∈ B, x /∈ B, or equivalently, if the singleton subsets of X are quasi
semi-closed in (X; τ1, τ2) and (X; τ1, τ2) is called quasi semi T2 if for any two distinct
points x, y of X there exist two disjoint sets A,B ∈ QSO (X; τ1, τ2) such that x ∈ A and
y ∈ B.

A subset A is called quasi semi-generalized closed (briefly qsg-closed) in (X; τ1, τ2) [2]
if qscl(A) ⊂ U whenever A ⊂ U and U ∈ QSO (X; τ1, τ2), a space (X; τ1, τ2) is called
quasi semi T1/2 if every qsg-closed set in (X; τ1, τ2) is quasi semi-closed in (X; τ1, τ2),
or equivalently, if every singleton subset of X is quasi semi-open or quasi semi-closed in
(X; τ1, τ2).

In the present paper, stronger axioms than quasi semi Ti , i ∈ {0 , 1/2 , 1 , 2} are
given, that will be called quasi Ti, i ∈ {0 , 1/2 , 1 , 2}. It is shown that every quasi Ti
space is quasi semi Ti but not conversely, we also investigate some characterizations of
quasi Ti spaces. Each of the implications quasi T2 → quasi T1 → quasi T1/2 → quasi T0

is true while none of the reverse implications holds.

In [5], it was pointed out that every quasi semi T2 space is quasi semi T1 but not
conversely. It was also pointed out in [2] that every quasi semi T1 space is quasi semi
T1/2 but not conversely and that every quasi semi T1/2 space is quasi semi T0. In this
paper the outhors asked for an example of a quasi semi T0 space that fails to be quasi
semi T1/2. Such an example is given in this paper.

Throughout this paper no separation axiom is assumed unless stated explicitly, for
the notions not defined here we refer the reader to [1].

2. Quasi Separation Axioms

Definition 1 A subset A of a space (X; τ1, τ2) is said to be quasi open in (X; τ1, τ2) if
A = U∪V for some U ∈ τ1 and V ∈ τ2. The complement of a quasi open set in (X; τ1, τ2)
is said to be quasi closed in (X; τ1, τ2). QO (X; τ1, τ2) (respectively, QC (X; τ1, τ2)) will
denote the class of all quasi open (respectively, quasi closed) sets in (X; τ1, τ2).
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Definition 2 For a subset A of a space (X; τ1, τ2), we define the quasi kernel of A
(briefly, qker(A)) as follows: qker(A) = ∩{F : F ∈ QO(X; τ1, τ2), A ⊂ F }. A is said to
be a quasi Λ− set in (X; τ1, τ2) if A = qker(A), or equivalently, if A is the intersection
of quasi open sets. A is said to be quasi λ-closed in (X; τ1, τ2) if it is the intersection
of a quasi Λ-set in (X; τ1, τ2) and a quasi closed set in (X; τ1, τ2), clearly, quasi Λ-sets
and quasi closed sets are quasi λ-closed; complements of quasi λ-closed sets in (X; τ1, τ2)
are said to be quasi λ-open in (X; τ1, τ2).

Definition 3 For a subset A of a space (X; τ1, τ2), we define the quasi closure of A
(briefly qcl(A)) as follows: qcl(A) = ∩{F : F ∈ QC(X; τ1, τ2), A ⊂ F}, or equivalently,
qcl(A) is the smallest quasi closed set in (X; τ1, τ2) that contains A. Obviously, A
is quasi closed in (X; τ1, τ2) if and only if A = qcl(A) and x ∈ qcl(A) if and only
if every set U ∈ QO(X; τ1, τ2) containing x meets A. A is said to be quasi gener-
alized closed (briefly qg-closed) in (X; τ1, τ2) if qcl(A) ⊂ U whenever A ⊂ U and
U ∈ QO(X; τ1, τ2), or equivalently, if qcl(A) ⊂ q ker(A). The complement of a quasi
generalized closed set in (X; τ1, τ2) is said to be quasi generalized open (briefly qg-open)
in (X; τ1, τ2). QGO(X; τ1, τ2) (respectively, QGC(X; τ1, τ2)) will denote the class of all
quasi generalized open (respectively, quasi generalized closed) sets in (X; τ1, τ2). Obvi-
ously, QC(X; τ1, τ2) is a subclass of QGC(X; τ1, τ2).

The following two propositions are analogous to Theorem 3.5 and Theorem 3.6 of [2],
respectively; they have similar proofs.

Proposition 4 For a subset A of a space (X; τ1, τ2), the following are equivalent:
(i) A is quasi λ−closed in (X; τ1, τ2).

(ii) A = L ∩ qcl(A), where L is a quasi Λ-set in (X; τ1, τ2).
(iii) A = qker(A) ∩ qcl(A).

Proposition 5 A subset A of a space (X; τ1, τ2) is quasi closed in (X; τ1, τ2) if and
only if A is both qg-closed and quasi λ−closed in (X; τ1, τ2).

Definition 6 A space (X; τ1, τ2) is said to be quasi T0 if for any two distinct points
x, y of X, there exists A ∈ QO (X; τ1, τ2) such that x ∈ A, y /∈ A or y ∈ A, x /∈ A,
or equivalently, if (X, τ1 ∨ τ2) is T0, where τ1 ∨ τ2 is the topology having for a subbase
τ1 ∪ τ2.

27



SARSAK

Definition 7 A space (X; τ1, τ2) is said to be quasi T1/2 if QC(X; τ1, τ2) =QGC(X; τ1, τ2).

Definition 8 A space (X; τ1, τ2) is said to be quasi T1 if for any two distinct points x,
y of X, there exist A, B ∈ QO(X; τ1, τ2) such that x ∈ A, y /∈ A and y ∈ B, x /∈ B, or
equivalently, if (X, τ1 ∨ τ2) is T1.

Definition 9 A space (X; τ1, τ2) is said to be quasi T2 if for any two distinct points x,
y of X, there exist two disjoint sets A, B ∈ QO(X; τ1, τ2) such that x ∈ A and y ∈ B.

The following proposition can be easily verified.

Proposition 10 For a space (X; τ1, τ2), the following are equivalent:
(i) X is quasi T0.
(ii) qcl{x} 6= qcl{y} for any two distinct points x, y of X.
(iii) q ker {x} 6= q ker {y} for any two distinct points x, y of X.
(iv) For any two distinct points x, y of X, there exists A ∈ QO(X; τ1, τ2)∪QC(X; τ1, τ2)

such that x ∈ A, y /∈ A.

Theorem 11 For a space (X; τ1, τ2), the following are equivalent:
(i) X is quasi T0.
(ii) Every singleton subset of X is quasi λ− closed in (X; τ1, τ2).

Proof. (i)→(ii): Let x ∈ X. By (i), it follows from Proposition 2.10 that for each
y ∈ X, y 6= x, there exists Ay ∈ QO(X; τ1, τ2) ∪QC(X; τ1, τ2) such that x ∈ Ay, y /∈ Ay.
Let L = ∩{Ay ∈ QO(X; τ1, τ2)}, A = ∩{Ay ∈ QC(X; τ1, τ2)}. Then L is a quasi Λ-set in
(X; τ1, τ2), A is quasi closed in (X; τ1, τ2) and {x} = L ∩ A or {x} = L or {x} = A.
Thus {x} is quasi λ− closed in (X; τ1, τ2).

(ii)→ (i): Let x, y be two distinct points of X. By (ii), {x} = L ∩ A, where L is a
quasi Λ-set in (X; τ1, τ2) and A is a quasi closed set in (X; τ1, τ2). If y /∈ A, then X\A
is a quasi open set that contains y but not x. If y /∈ L, then y /∈ Ay for some quasi open
set Ay containing x. Thus X is quasi T0. 2

The proof of the following theorem is similar to that of Theorem 4.3 of [2].

Theorem 12 For a space (X; τ1, τ2), the following are equivalent:
(i) X is quasi T1/2.
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(ii) Every singleton subset of X is quasi open or quasi closed in (X; τ1, τ2).
(iii) Every subset of X is quasi λ−closed in (X; τ1, τ2).

Definition 13 A subset A of a space (X; τ1, τ2) is said to be a generalized quasi Λ-set
in (X; τ1, τ2) if q ker(A) ⊂ qcl(A).

Obviously, every quasi Λ-set is a generalized quasi Λ−set. However, the following
result asserts that the converse holds only for spaces that are quasi T1/2.

Corollary 14 For a space (X; τ1, τ2), the following are equivalent:
(i) X is quasi T1/2.

(ii) Every generalized quasi Λ-set in (X; τ1, τ2) is a quasi Λ-set in (X; τ1, τ2).

Proof. (i)→(ii): Let A be a generalized quasi Λ-set in (X; τ1, τ2). Since X is quasi
T1/2, it follows from Theorem 2.12 that A is quasi λ−closed in (X; τ1, τ2). Thus by
Proposition 2.4, A = qker(A)∩qcl(A), but A is a generalized quasi Λ-set, so A = qker(A),
that is, A is a quasi Λ-set in (X; τ1, τ2).

(ii)→(i): Suppose that every generalized quasi Λ-set in (X; τ1, τ2) is a quasi Λ−set in
(X; τ1, τ2) and that X is not quasi T1/2. Then by Theorem 2.12 there exists a point x of
X such that {x} is neither quasi open nor quasi closed in (X; τ1, τ2). Let A = X\{x}.
Since {x} is not quasi closed, we have q ker(A) = X. Since {x} is not quasi open, we
have qcl(A) = X. Thus q ker(A) ⊂ qcl(A), that is, A is a generalized quasi Λ-set in
(X; τ1, τ2). By assumption, A is a quasi Λ-set in (X; τ1, τ2), that is, A = q ker(A) which
is a contradiction. 2

Theorem 15 For a space (X; τ1, τ2), the following are equivalent:
(i) X is quasi T1.

(ii) Every singleton subset of X is quasi closed in (X; τ1, τ2).
(iii) Every subset of X is a quasi Λ-set in (X; τ1, τ2).
(iv) Every singleton subset of X is a quasi Λ-set in (X; τ1, τ2).

Proof. (i)→(ii): Let x be a point of X. Since X is quasi T1, it follows that for each
y ∈ X, y 6= x, then y /∈ qcl{x}, i.e. qcl{x} ⊂ {x}, but x ∈ qcl{x}, so qcl{x} = {x}, that
is, {x} is quasi closed in (X; τ1, τ2).

(ii) → (iii): Let A be a subset of X. By (ii), X\{x} is quasi open in (X; τ1, τ2) for
each x /∈ A and therefore A ⊂ qker(A) ⊂ ∩

x/∈A
X\{x} = A. Thus A = qker(A), that is, A

is a quasi Λ-set in (X; τ1, τ2).
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(iii)→(iv): Clear.

(iv)→(i): Let x, y be two distinct points of X. Then by (iii), {x} = qker{x} and
{y} = qker{y}. Thus, there exist A, B ∈ QO(X; τ1, τ2) such that x ∈ A, y /∈ A and
y ∈ B, x /∈ B, that is, X is quasi T1. 2

Remark 16 From the definitions, Theorem 2.11, Theorem 2.12 and Theorem 2.15, the
following implications seem obvious: quasi T2 → quasi T1 → quasi T1/2 → quasi T0,
on the other hand, since every quasi open set is quasi semi open, the implication quasi
Ti → quasi semi Ti holds for each i ∈ {0 , 1/2 , 1 , 2}. However, none of the above seven
implications is reversible as the following examples show.

Example 17 Let X = {a, b, c}, τ1 = {X, φ, {a, b}} and τ2 = {X, φ, {a, c}}. Then
(X; τ1, τ2) is quasi T0; it is not quasi semi T1/2 since {a} is neither quasi semi open nor
quasi semi closed in (X; τ1, τ2).

Example 18 Let X = {a, b, c}, τ1 = {X, φ, {a}} and τ2 = {X, φ, {b}}. Then (X; τ1, τ2)
is quasi T1/2 and quasi semi T2; however, it is not quasi T1 since {a} and {b} are not
quasi closed in (X; τ1, τ2).

Example 19 Let X = {a, b, c}, τ1 = {X, φ, {a}} and τ2 = {X, φ, {a, b}}. Then (X; τ1, τ2)
is quasi semi T1/2; it is not quasi T1/2 since {b} is neither quasi open nor quasi closed in
(X; τ1, τ2).

Example 20 Let X = {a, b, c}, τ1 = {X, φ, {a}}, and τ2 = {X, φ, {b, c}}. Then (X; τ1, τ2)
is quasi semi T0; it is not quasi T0 since qcl{b} = qcl{c} = {b, c}.

Example 21 Let Z be the set of integers τ1 = {Z, φ} ∪ {Z\A : A is a finite subset of
the nonnegative integers}, and τ2 = {Z, φ} ∪ {Z\A : A is a finite subset of the negative
integers}. Then (Z; τ1, τ2) is quasi T1; it is obviously not quasi T2.
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