Turk J Math 30 (2006) , 25 – 31. © TÜBİTAK

Quasi Separation Axioms

Mohammad S. Sarsak

Abstract

In [5], Maheshwari et al. introduced and studied some new separation axioms, namely, quasi semi T_i axioms where $i \in \{0, 1, 2\}$, the quasi semi $T_{1/2}$ axiom was then introduced and investigated by Gyu-Ihn et al. in [2]. In the present paper we introduce and study quasi T_i axioms, $i \in \{0, 1/2, 1, 2\}$ as a special variety of quasi semi T_i axioms, the class of quasi $T_{1/2}$ (respectively, quasi T_1) bitopological spaces is placed between quasi T_0 (respectively, quasi $T_{1/2}$) bitopological spaces and quasi T_1 (respectively, quasi T_2) bitopological spaces. Among several counter examples we introduce an example of a bitopological space which is quasi T_0 that fails to be quasi semi $T_{1/2}$, thus answering a question raised in [2].

Key words and phrases: bitopological spaces, quasi open sets, quasi semi-open sets, quasi T_i , quasi semi T_i , $i \in \{0, 1/2, 1, 2\}$.

1. Introduction

A bitopological space $(X; \tau_1, \tau_2)$ [3] is a non-empty set X with two topologies τ_1 and τ_2 on X. A subset A of a space (X, τ) is called semi-open in (X, τ) [4] if $A \subset \overline{IntA}$, the collection of all semi-open sets in a space (X, τ) will be denoted by SO (X, τ) . A subset A of a bitopological space $(X; \tau_1, \tau_2)$ is called quasi semi-open in $(X; \tau_1, \tau_2)$ [5] if $A = U \cup V$ where $U \in SO(X, \tau_1)$, $V \in SO(X, \tau_2)$, A is called quasi semi-closed in $(X; \tau_1, \tau_2)$ if $X \setminus A$ is quasi semi-open in $(X; \tau_1, \tau_2)$ and the quasi semi-closure qscl(A) of A is the intersection of all quasi semi-closed sets in $(X; \tau_1, \tau_2)$ that contain A. $QSO(X; \tau_1, \tau_2)$

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary 54D10, 54E55.

(respectively, $QSC(X; \tau_1, \tau_2)$) will denote the class of all quasi semi-open (respectively, quasi semi-closed) sets in $(X; \tau_1, \tau_2)$.

A space $(X; \tau_1, \tau_2)$ is called quasi semi T_0 [5] if for any two distinct points x, y of X there exists $A \in QSO(X; \tau_1, \tau_2)$ such that $x \in A, y \notin A$ or $y \in A, x \notin A$, or equivalently, if qscl{x} \neq qscl{y} for any two distinct points x, y of X, $(X; \tau_1, \tau_2)$ is called quasi semi T_1 if for any two distinct points x, y of X there exist $A, B \in QSO(X; \tau_1, \tau_2)$ such that $x \in A, y \notin A$ and $y \in B, x \notin B$, or equivalently, if the singleton subsets of X are quasi semi-closed in $(X; \tau_1, \tau_2)$ and $(X; \tau_1, \tau_2)$ is called quasi semi T_2 if for any two distinct points x, y of X there exist two disjoint sets $A, B \in QSO(X; \tau_1, \tau_2)$ such that $x \in A$ and $y \in B$.

A subset A is called quasi semi-generalized closed (briefly qsg-closed) in $(X; \tau_1, \tau_2)$ [2] if $qscl(A) \subset U$ whenever $A \subset U$ and $U \in QSO(X; \tau_1, \tau_2)$, a space $(X; \tau_1, \tau_2)$ is called quasi semi $T_{1/2}$ if every qsg-closed set in $(X; \tau_1, \tau_2)$ is quasi semi-closed in $(X; \tau_1, \tau_2)$, or equivalently, if every singleton subset of X is quasi semi-open or quasi semi-closed in $(X; \tau_1, \tau_2)$.

In the present paper, stronger axioms than quasi semi T_i , $i \in \{0, 1/2, 1, 2\}$ are given, that will be called quasi T_i , $i \in \{0, 1/2, 1, 2\}$. It is shown that every quasi T_i space is quasi semi T_i but not conversely, we also investigate some characterizations of quasi T_i spaces. Each of the implications quasi $T_2 \rightarrow$ quasi $T_1 \rightarrow$ quasi $T_{1/2} \rightarrow$ quasi T_0 is true while none of the reverse implications holds.

In [5], it was pointed out that every quasi semi T_2 space is quasi semi T_1 but not conversely. It was also pointed out in [2] that every quasi semi T_1 space is quasi semi $T_{1/2}$ but not conversely and that every quasi semi $T_{1/2}$ space is quasi semi T_0 . In this paper the outhors asked for an example of a quasi semi T_0 space that fails to be quasi semi $T_{1/2}$. Such an example is given in this paper.

Throughout this paper no separation axiom is assumed unless stated explicitly, for the notions not defined here we refer the reader to [1].

2. Quasi Separation Axioms

Definition 1 A subset A of a space $(X; \tau_1, \tau_2)$ is said to be quasi open in $(X; \tau_1, \tau_2)$ if $A = U \cup V$ for some $U \in \tau_1$ and $V \in \tau_2$. The complement of a quasi open set in $(X; \tau_1, \tau_2)$ is said to be quasi closed in $(X; \tau_1, \tau_2)$. QO $(X; \tau_1, \tau_2)$ (respectively, QC $(X; \tau_1, \tau_2)$) will denote the class of all quasi open (respectively, quasi closed) sets in $(X; \tau_1, \tau_2)$.

Definition 2 For a subset A of a space $(X; \tau_1, \tau_2)$, we define the quasi kernel of A (briefly, qker(A)) as follows: qker(A) = $\cap \{F : F \in QO(X; \tau_1, \tau_2), A \subset F\}$. A is said to be a quasi Λ - set in $(X; \tau_1, \tau_2)$ if A = qker(A), or equivalently, if A is the intersection of quasi open sets. A is said to be quasi λ -closed in $(X; \tau_1, \tau_2)$ if it is the intersection of a quasi Λ -set in $(X; \tau_1, \tau_2)$ and a quasi closed set in $(X; \tau_1, \tau_2)$, clearly, quasi Λ -sets and quasi closed sets are quasi λ -closed; complements of quasi λ -closed sets in $(X; \tau_1, \tau_2)$ are said to be quasi λ -open in $(X; \tau_1, \tau_2)$.

Definition 3 For a subset A of a space $(X; \tau_1, \tau_2)$, we define the quasi closure of A(briefly qcl(A)) as follows: qcl(A) = \cap { $F : F \in QC(X; \tau_1, \tau_2), A \subset F$ }, or equivalently, qcl(A) is the smallest quasi closed set in $(X; \tau_1, \tau_2)$ that contains A. Obviously, Ais quasi closed in $(X; \tau_1, \tau_2)$ if and only if A = qcl(A) and $x \in qcl(A)$ if and only if every set $U \in QO(X; \tau_1, \tau_2)$ containing x meets A. A is said to be quasi generalized closed (briefly qg-closed) in $(X; \tau_1, \tau_2)$ if $qcl(A) \subset U$ whenever $A \subset U$ and $U \in QO(X; \tau_1, \tau_2)$, or equivalently, if $qcl(A) \subset q \ker(A)$. The complement of a quasi generalized closed set in $(X; \tau_1, \tau_2)$ is said to be quasi generalized open (briefly qg-open) in $(X; \tau_1, \tau_2)$. $QGO(X; \tau_1, \tau_2)$ (respectively, $QGC(X; \tau_1, \tau_2)$) will denote the class of all quasi generalized open (respectively, quasi generalized closed) sets in $(X; \tau_1, \tau_2)$. Obviously, $QC(X; \tau_1, \tau_2)$ is a subclass of $QGC(X; \tau_1, \tau_2)$.

The following two propositions are analogous to Theorem 3.5 and Theorem 3.6 of [2], respectively; they have similar proofs.

Proposition 4 For a subset A of a space $(X; \tau_1, \tau_2)$, the following are equivalent: (i) A is quasi λ -closed in $(X; \tau_1, \tau_2)$. (ii) $A = L \cap qcl(A)$, where L is a quasi Λ -set in $(X; \tau_1, \tau_2)$. (iii) $A = qker(A) \cap qcl(A)$.

Proposition 5 A subset A of a space $(X; \tau_1, \tau_2)$ is quasi closed in $(X; \tau_1, \tau_2)$ if and only if A is both qg-closed and quasi λ -closed in $(X; \tau_1, \tau_2)$.

Definition 6 A space $(X; \tau_1, \tau_2)$ is said to be quasi T_0 if for any two distinct points x, y of X, there exists $A \in QO(X; \tau_1, \tau_2)$ such that $x \in A, y \notin A$ or $y \in A, x \notin A$, or equivalently, if $(X, \tau_1 \vee \tau_2)$ is T_0 , where $\tau_1 \vee \tau_2$ is the topology having for a subbase $\tau_1 \cup \tau_2$.

Definition 7 A space $(X; \tau_1, \tau_2)$ is said to be quasi $T_{1/2}$ if $QC(X; \tau_1, \tau_2) = QGC(X; \tau_1, \tau_2)$.

Definition 8 A space $(X; \tau_1, \tau_2)$ is said to be quasi T_1 if for any two distinct points x, y of X, there exist $A, B \in QO(X; \tau_1, \tau_2)$ such that $x \in A, y \notin A$ and $y \in B, x \notin B$, or equivalently, if $(X, \tau_1 \vee \tau_2)$ is T_1 .

Definition 9 A space $(X; \tau_1, \tau_2)$ is said to be quasi T_2 if for any two distinct points x, y of X, there exist two disjoint sets $A, B \in QO(X; \tau_1, \tau_2)$ such that $x \in A$ and $y \in B$.

The following proposition can be easily verified.

Proposition 10 For a space $(X; \tau_1, \tau_2)$, the following are equivalent:

(i) X is quasi T_0 .

(ii) $qcl\{x\} \neq qcl\{y\}$ for any two distinct points x, y of X.

(iii) $q \ker \{x\} \neq q \ker \{y\}$ for any two distinct points x, y of X.

(iv) For any two distinct points x, y of X, there exists $A \in QO(X; \tau_1, \tau_2) \cup QC(X; \tau_1, \tau_2)$ such that $x \in A, y \notin A$.

Theorem 11 For a space $(X; \tau_1, \tau_2)$, the following are equivalent:

(i) X is quasi T_0 .

(ii) Every singleton subset of X is quasi λ - closed in $(X; \tau_1, \tau_2)$.

Proof. (i) \rightarrow (ii): Let $x \in X$. By (i), it follows from Proposition 2.10 that for each $y \in X, y \neq x$, there exists $A_y \in QO(X; \tau_1, \tau_2) \cup QC(X; \tau_1, \tau_2)$ such that $x \in A_y, y \notin A_y$. Let $L = \cap \{A_y \in QO(X; \tau_1, \tau_2)\}, A = \cap \{A_y \in QC(X; \tau_1, \tau_2)\}$. Then L is a quasi Λ -set in $(X; \tau_1, \tau_2), A$ is quasi closed in $(X; \tau_1, \tau_2)$ and $\{x\} = L \cap A$ or $\{x\} = L$ or $\{x\} = A$. Thus $\{x\}$ is quasi λ - closed in $(X; \tau_1, \tau_2)$.

(ii) \rightarrow (i): Let x, y be two distinct points of X. By (ii), $\{x\} = L \cap A$, where L is a quasi Λ -set in $(X; \tau_1, \tau_2)$ and A is a quasi closed set in $(X; \tau_1, \tau_2)$. If $y \notin A$, then $X \setminus A$ is a quasi open set that contains y but not x. If $y \notin L$, then $y \notin A_y$ for some quasi open set A_y containing x. Thus X is quasi T_0 .

The proof of the following theorem is similar to that of Theorem 4.3 of [2].

Theorem 12 For a space $(X; \tau_1, \tau_2)$, the following are equivalent:

(i) X is quasi $T_{1/2}$.

- (ii) Every singleton subset of X is quasi open or quasi closed in $(X; \tau_1, \tau_2)$.
- (iii) Every subset of X is quasi λ -closed in $(X; \tau_1, \tau_2)$.

Definition 13 A subset A of a space $(X; \tau_1, \tau_2)$ is said to be a generalized quasi Λ -set in $(X; \tau_1, \tau_2)$ if $q \ker(A) \subset qcl(A)$.

Obviously, every quasi Λ -set is a generalized quasi Λ -set. However, the following result asserts that the converse holds only for spaces that are quasi $T_{1/2}$.

Corollary 14 For a space $(X; \tau_1, \tau_2)$, the following are equivalent:

(i) X is quasi $T_{1/2}$.

(ii) Every generalized quasi Λ -set in $(X; \tau_1, \tau_2)$ is a quasi Λ -set in $(X; \tau_1, \tau_2)$.

Proof. (i) \rightarrow (ii): Let A be a generalized quasi Λ -set in $(X; \tau_1, \tau_2)$. Since X is quasi $T_{1/2}$, it follows from Theorem 2.12 that A is quasi λ -closed in $(X; \tau_1, \tau_2)$. Thus by Proposition 2.4, $A = qker(A) \cap qcl(A)$, but A is a generalized quasi Λ -set, so A = qker(A), that is, A is a quasi Λ -set in $(X; \tau_1, \tau_2)$.

(ii) \rightarrow (i): Suppose that every generalized quasi Λ -set in $(X; \tau_1, \tau_2)$ is a quasi Λ -set in $(X; \tau_1, \tau_2)$ and that X is not quasi $T_{1/2}$. Then by Theorem 2.12 there exists a point x of X such that $\{x\}$ is neither quasi open nor quasi closed in $(X; \tau_1, \tau_2)$. Let $A = X \setminus \{x\}$. Since $\{x\}$ is not quasi closed, we have $q \ker(A) = X$. Since $\{x\}$ is not quasi open, we have qcl(A) = X. Thus $q \ker(A) \subset qcl(A)$, that is, A is a generalized quasi Λ -set in $(X; \tau_1, \tau_2)$. By assumption, A is a quasi Λ -set in $(X; \tau_1, \tau_2)$, that is, $A = q \ker(A)$ which is a contradiction.

Theorem 15 For a space $(X; \tau_1, \tau_2)$, the following are equivalent:

(i) X is quasi T_1 .

(ii) Every singleton subset of X is quasi closed in $(X; \tau_1, \tau_2)$.

(iii) Every subset of X is a quasi Λ -set in $(X; \tau_1, \tau_2)$.

(iv) Every singleton subset of X is a quasi Λ -set in $(X; \tau_1, \tau_2)$.

Proof. (i) \rightarrow (ii): Let x be a point of X. Since X is quasi T_1 , it follows that for each $y \in X, y \neq x$, then $y \notin qcl\{x\}$, i.e. $qcl\{x\} \subset \{x\}$, but $x \in qcl\{x\}$, so $qcl\{x\} = \{x\}$, that is, $\{x\}$ is quasi closed in $(X; \tau_1, \tau_2)$.

(ii) \rightarrow (iii): Let A be a subset of X. By (ii), $X \setminus \{x\}$ is quasi open in $(X; \tau_1, \tau_2)$ for each $x \notin A$ and therefore $A \subset qker(A) \subset \bigcap_{x \notin A} X \setminus \{x\} = A$. Thus A = qker(A), that is, A is a quasi Λ -set in $(X; \tau_1, \tau_2)$.

 $(iii) \rightarrow (iv)$: Clear.

(iv) \rightarrow (i): Let x, y be two distinct points of X. Then by (iii), $\{x\} = qker\{x\}$ and $\{y\} = qker\{y\}$. Thus, there exist A, $B \in QO(X; \tau_1, \tau_2)$ such that $x \in A, y \notin A$ and $y \in B, x \notin B$, that is, X is quasi T_1 .

Remark 16 From the definitions, Theorem 2.11, Theorem 2.12 and Theorem 2.15, the following implications seem obvious: quasi $T_2 \rightarrow$ quasi $T_1 \rightarrow$ quasi $T_{1/2} \rightarrow$ quasi T_0 , on the other hand, since every quasi open set is quasi semi open, the implication quasi $T_i \rightarrow$ quasi semi T_i holds for each $i \in \{0, 1/2, 1, 2\}$. However, none of the above seven implications is reversible as the following examples show.

Example 17 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a, c\}\}$. Then $(X; \tau_1, \tau_2)$ is quasi T_0 ; it is not quasi semi $T_{1/2}$ since $\{a\}$ is neither quasi semi open nor quasi semi closed in $(X; \tau_1, \tau_2)$.

Example 18 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{b\}\}$. Then $(X; \tau_1, \tau_2)$ is quasi $T_{1/2}$ and quasi semi T_2 ; however, it is not quasi T_1 since $\{a\}$ and $\{b\}$ are not quasi closed in $(X; \tau_1, \tau_2)$.

Example 19 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a, b\}\}$. Then $(X; \tau_1, \tau_2)$ is quasi semi $T_{1/2}$; it is not quasi $T_{1/2}$ since $\{b\}$ is neither quasi open nor quasi closed in $(X; \tau_1, \tau_2)$.

Example 20 Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, and \tau_2 = \{X, \phi, \{b, c\}\}$. Then $(X; \tau_1, \tau_2)$ is quasi semi T_0 ; it is not quasi T_0 since $qcl\{b\} = qcl\{c\} = \{b, c\}$.

Example 21 Let Z be the set of integers $\tau_1 = \{Z, \phi\} \cup \{Z \setminus A : A \text{ is a finite subset of the nonnegative integers}, and <math>\tau_2 = \{Z, \phi\} \cup \{Z \setminus A : A \text{ is a finite subset of the negative integers}}$. Then $(Z; \tau_1, \tau_2)$ is quasi T_1 ; it is obviously not quasi T_2 .

References

[1] R. Engelking, General Topology, Heldermann (Berlin, 1989).

- [2] Chae Gyu-Ihn, H. Maki, K. Aoki and Y. Mizuta, More on quasi semi open sets, Q & A in General Topology, 19 (2001), 11-16.
- [3] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [5] S. N. Maheshwari, Chae Gyu-Ihn and S. S. Thakur, Quasi semi-open sets, Univ. Ulsan Rep. 17(1) (1986), 133-137.

Mohammad S. SARSAK Department of Mathematics, Faculty of Science & Arts, The Hashemite University, P.O. Box 150459, Zarqa 13115, JORDAN e-mail: sarsak@hu.edu.jo

31

Received 14.07.2004