p-Elastica in the 3-Dimensional Lorentzian Space Forms

Nevin Gürbüz

Abstract

R Huang worked the p-elastic in a Riemannian manifold with constant sectional curvature [1]. In this work, we solve the Euler-Lagrange equation by quadrature and study the Frenet equation of the p-elastica by using the Killing field in the three dimensional Lorentzian space forms.

1. Introduction

Definition 1.1 Let L be a 3-dimensional Lorentzian space. If $\left(x_{1}, x_{2}, x_{3}\right)$ and (y_{1}, y_{2}, y_{3}) are the components of X and Y with respect to an allowable coordinate system, then

$$
\left.\langle X, Y\rangle\right|_{L}=x_{1} y_{1}+x_{2} y_{2}-x_{3} y_{3}
$$

which is called a Lorentzian inner product. Furthermore, a Lorentz exterior product $X \times Y$ is given by

$$
X \times Y=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{2} y_{1}-x_{1} y_{2}\right)
$$

Then, for any $x \in L^{3}$ it holds ([2])

$$
\langle X \times Y, X \times Y\rangle=\langle X, Y\rangle^{2}-\langle X, X\rangle\langle Y, Y\rangle
$$

[^0]
GÜRBÜZ

Definition 1.2 A semi-Riemannian manifold M has constant curvature if its sectional curvature function is constant. If M constant curvature C, then ([3])

$$
R_{x y} z=C\{\langle z, x\rangle y-\langle z, y\rangle x\} .
$$

Definition 1.3 The norm of $\vec{X} \in R_{1}^{3}$ is denoted by $\overrightarrow{\|X\|}$ and defined as ([3])

$$
\overrightarrow{\|X\|}=\sqrt{|\langle\vec{X}, \vec{X}\rangle|}
$$

Theorem 1.1 Let $\gamma(s)$ be a unit speed curve in R_{1}^{3}, s the arclength parameter. Consider the Frenet frame $\left\{T=\gamma^{\prime}, N, B\right\}$ attached to the curve $\gamma=\gamma(s)$ such that is T is the unit tangent vector field, N is the principal normal vector field and $B=T \times N$ is the binormal vector field. The Frenet -Serret formulas is given by

$$
\left[\begin{array}{c}
\nabla_{T} T=T^{\prime} \tag{1.1}\\
\nabla_{T} N=N^{\prime} \\
\nabla_{T} B=B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \varepsilon_{2} \kappa & 0 \\
-\varepsilon_{1} \kappa & 0 & -\varepsilon_{3} \tau \\
0 & \varepsilon_{2} \tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

where $\langle T, T\rangle=\varepsilon_{1},\langle N, N\rangle=\varepsilon_{2},\langle B, B\rangle=\varepsilon_{3} . \nabla$ is the semi Riemannian connection on M and $\kappa=\kappa(s)$ and $\tau=\tau(s)$ are the curvature and the torsion functions of γ, respectively.

2. Killing Fields

This section is taken from [4], [5]. Let $\gamma(t)$ be a nonnull immersed curve in three dimensional Lorentzian space form M with sectional curvature C. Let us consider a variation of $\gamma, \gamma=\gamma(w, t):(-\varepsilon, \varepsilon) \times I \longrightarrow M$ with $\gamma(0, t)=\gamma(t)$. Associated with γ are two vector fields along $\gamma, W(w, t)=(\partial \gamma / \partial w)(w, t)$ and $V(w, t)=(\partial \gamma / \partial t)(w, t)$. $W=(\partial \gamma / \partial w)(0, t)$ is the variation vector field along γ and $V=(\partial \gamma / \partial t)$ velocity vector field. $T=T(t)$ will be denoted the unit tangent vector field and the speed of γ will be $v=|\langle V, V\rangle|^{1 / 2}$. The curvature of γ is defined by $\kappa(t)=\left|\left\langle\nabla_{T} T, \nabla_{T} T\right\rangle\right|^{1 / 2}$. We will use the notation $W=W(w, t), v=v(w, t)$. If s denote the arclength parameter of the t-curves, we write $v(w, s), \kappa(w, s)$, etc., for the corresponding reparametrizations. Then $s \in[0, L]$, where L is the length of γ. With a direct computation is given following lemma.

GÜRBÜZ

Lemma 2.1 By the above notation, the following formulas holds:
(1) $[W, V]=[W, v T]=0$
(2) $(\partial v / \partial w)(0, t)=-\varepsilon_{1} g v$ with $g=\left\langle\nabla_{T} W, T\right\rangle$
(3) $\left(\partial \kappa^{2} / \partial w\right)(0, t)=2 \varepsilon_{2}\left\langle\nabla_{T}^{2} W, \nabla_{T} T\right\rangle+4 \varepsilon_{1} g \kappa^{2}+2 \varepsilon_{2}\left\langle R(W, T) T, \nabla_{T} T\right\rangle=0$.
(4) $\left(\partial \tau^{2} / \partial w\right)(0, t)=-2 \varepsilon_{2}\left\langle\begin{array}{c}(1 / \kappa) \nabla_{T}^{3} W-\left(\kappa^{\prime} / \kappa^{2}\right) \nabla_{T}^{2} W+\varepsilon_{1}\left(\varepsilon_{2} \kappa+(C / \kappa)\right) \nabla_{T} W \\ -\varepsilon_{1}\left(C \kappa^{\prime} / \kappa^{2}\right) W, \tau B\end{array}\right\rangle$
where \langle,$\rangle denotes the Lorentzian metric of M$ and $\kappa^{\prime}=(\partial \kappa / \partial w)(0, t)$.
Let M be a complete, simply connected, Lorentzian space form and γ a nonnull immersed curve in M. Killing vector fields along γ are charecterized by the equations

$$
\begin{equation*}
\frac{\partial v}{\partial w}(0, t)=\frac{\partial \kappa^{2}}{\partial w}(0, t)=\frac{\partial \tau^{2}}{\partial w}(0, t)=0 \tag{2.2}
\end{equation*}
$$

W is a Killing vector field along γ if and only if it satisfies the following conditions:
(1) $\left\langle\nabla_{T} W, T\right\rangle=0$
(2) $\left\langle\nabla_{T}^{2} W, N\right\rangle+\varepsilon_{1} C\langle W, N\rangle=0$
(3) $\left\langle(1 / \kappa) \nabla_{T}^{3} W-\left(\kappa^{\prime} / \kappa^{2}\right) \nabla_{T}^{2} W+\varepsilon_{1}\left(\varepsilon_{2} \kappa+(C / \kappa)\right) \nabla_{T} W-\varepsilon_{1} C\left(\kappa^{\prime} / \kappa^{2}\right) W, \tau B\right\rangle=0$.

3. Equilibrium Equations and the p-elastica

We take $P(\kappa)$ a polynomial of κ with degree $\geqslant 2$ and consider the following curvature energy functional in Minkowski space:

$$
\begin{equation*}
\left.\int_{0}^{L(w)} p(\kappa) d s\right|_{w=0} \tag{3.1}
\end{equation*}
$$

GÜRBÜZ

Now, we want to compute the first derivative restriction of this curvature energy functional:

$$
\begin{gathered}
\left.\frac{\partial}{\partial w} \int_{0}^{L(w)} p(\kappa) d s\right|_{w=0}=\left.\frac{\partial}{\partial w} \int_{0}^{L(w)} p(\kappa) v d t\right|_{w=0} \\
=\left.\int_{I}\left[p^{\prime}(\kappa) W(\kappa) v+p(\kappa) \frac{\partial v}{\partial w}\right] d t\right|_{w=0} \\
=\int_{0}^{L}\left[p^{\prime}(\kappa)\left(2 \varepsilon_{2}\left\langle\nabla_{T}^{2} W, \nabla_{T} T\right\rangle+4 \varepsilon_{1} g \kappa^{2}+2 \varepsilon_{2}\left\langle R(W, T) T, \nabla_{T} T\right\rangle\right)-p(\kappa) \varepsilon_{1} g\right] d s,
\end{gathered}
$$

where $W(0,0)=W(0, L)=0, \nabla_{T} W(0,0)=\nabla_{T} W(0, L)=0$ and $L(w)$ is the arclength of $\gamma(w, t)$. Then we can give the first variational formula:

$$
\begin{gather*}
\left.\frac{\partial}{\partial w} \int_{0}^{L(w)} p(\kappa) d s\right|_{w=0}=\int_{0}^{L}\left[\varepsilon_{2}\left\langle R(W, T) T+\nabla_{T}^{2} W, \frac{p^{\prime}(\kappa)}{\kappa} \nabla_{T} T\right\rangle+\varepsilon_{1}\left(2 \kappa p^{\prime}(\kappa)-p(\kappa)\right) g\right] d s \\
\quad=\int_{0}^{L}\left\langle\varepsilon_{2} \nabla_{T}^{2}\left(\frac{p^{\prime}(\kappa)}{\kappa} \nabla_{T} T\right)+\varepsilon_{2} \frac{p^{\prime}(\kappa)}{\kappa} C \nabla_{T} T+\varepsilon_{1} \nabla_{T}\left[\left(2 \kappa p^{\prime}(\kappa)-p(\kappa)\right) T\right], W\right\rangle d s \tag{3.2}
\end{gather*}
$$

So, we obtain Euler-Lagrange equations:

$$
\begin{equation*}
E=\varepsilon_{2} \nabla_{T}^{2}\left(\frac{p^{\prime}(\kappa)}{\kappa} \nabla_{T} T\right)+\varepsilon_{2} \frac{p^{\prime}(\kappa)}{\kappa} C \nabla_{T} T+\varepsilon_{1} \nabla_{T}\left[\left(2 \kappa p^{\prime}(\kappa)-p(\kappa)\right) T\right]=0 \tag{3.3}
\end{equation*}
$$

Definition 3.1 A regular unit-speed curve is called a p-elastica if it satisfies the above Euler- Lagrange equation (3.3).

We give the variational formulas by using Theorem 1.1:

$$
\begin{align*}
E= & {\left[\varepsilon_{2} p^{\prime \prime \prime}(\kappa) \kappa^{\prime^{2}}+\varepsilon_{2} p^{\prime \prime}(\kappa) \kappa^{\prime \prime}+p^{\prime}(\kappa)\left(-\varepsilon_{3} \tau^{2}+\varepsilon_{1} \kappa^{2}+C\right)\right.} \tag{3.4}\\
& \left.-\varepsilon_{1} \varepsilon_{2} p(\kappa) \kappa\right] N-\varepsilon_{2} \varepsilon_{3}\left(2 p^{\prime \prime}(\kappa) \kappa^{\prime} \tau+p^{\prime}(\kappa) \tau^{\prime}\right) B
\end{align*}
$$

Then, we obtain the Euler-Lagrange equation

GÜRBÜZ

$$
\begin{align*}
& \varepsilon_{2} p^{\prime \prime \prime}(\kappa) \kappa^{\prime^{2}}+\varepsilon_{2} p^{\prime \prime}(\kappa) \kappa^{\prime \prime} \\
& +\varepsilon_{2} p^{\prime}(\kappa)\left(-\varepsilon_{2} \varepsilon_{3} \tau^{2}+\varepsilon_{1} \varepsilon_{2} \kappa^{2}+C\right)-\varepsilon_{1} \varepsilon_{2} p(\kappa) \kappa=0 \tag{3.5}\\
& -\varepsilon_{2} \varepsilon_{3}\left(2 p^{\prime \prime}(\kappa) \kappa^{\prime} \tau+p^{\prime}(\kappa) \tau^{\prime}\right)=0
\end{align*}
$$

For κ and τ is constant, from Eq. (3.5),

$$
\begin{equation*}
\varepsilon_{2} p^{\prime}(\kappa)\left(\varepsilon_{1} \varepsilon_{2} \kappa^{2}-\varepsilon_{2} \varepsilon_{3} \tau^{2}+\varepsilon_{2} C\right)-\varepsilon_{1} \varepsilon_{2} p(\kappa) \kappa=0 \tag{3.6}
\end{equation*}
$$

In this situation, we can give the formula without intermediaries.

If κ is not constant, from the second of Eq. (3.5),

$$
\begin{equation*}
p^{\prime}(\kappa)^{2} \tau=k_{1} \tag{3.7}
\end{equation*}
$$

Here, k_{1} is a constant. From the integral of the first of Eq. (3.5), we have,

$$
\begin{equation*}
\varepsilon_{1}\left(\kappa p^{\prime}(\kappa)-p(\kappa)\right)^{2}+\varepsilon_{2}\left(p^{\prime \prime}(\kappa) \kappa^{\prime}\right)^{2}+C p^{\prime}(\kappa)^{2}-\varepsilon_{3} \frac{k_{1}^{2}}{p^{\prime}(\kappa)^{2}}=k_{2} \tag{3.8}
\end{equation*}
$$

Here k_{2} constant. Then, we can give the curvature $\kappa(s)$ by quadratures

$$
\begin{equation*}
\pm \sqrt{\frac{\varepsilon_{2} p^{\prime}(\kappa)^{2} p^{\prime \prime}(\kappa)^{2}}{p^{\prime}(\kappa)^{2}\left(k_{2}-C p^{\prime}(\kappa)^{2}-\varepsilon_{1}\left(\kappa p^{\prime}(\kappa)-p(\kappa)\right)^{2} \varepsilon_{3} k_{1}^{2}\right.}} d \kappa=\int d s \tag{3.9}
\end{equation*}
$$

We construct the Killing field along the p-elastica $\gamma(s)$. Let this Killing field be of the form

$$
W=h_{1}(s) T(s)+h_{2}(s) N(s)+h_{3}(s) B(s)
$$

where the functions h_{1}, h_{2} and h_{3} must satisfy the following equations:

GÜRBÜZ

$$
\begin{array}{ll}
\varepsilon_{1} h_{1}^{\prime}-\kappa h_{2} & =0 \tag{3.10}\\
h_{1} \kappa^{\prime}+\varepsilon_{2} h_{1}^{\prime} \kappa+h_{1}^{\prime} \kappa+\varepsilon_{2} h_{2}^{\prime \prime}+h_{2}\left(-\varepsilon_{1} \kappa^{2}-\varepsilon_{3} \tau^{2}+\varepsilon_{1} \varepsilon_{2} C\right)+2 h_{3}^{\prime} \tau+h_{3} \tau^{\prime} & =0 \\
-\varepsilon_{2} h_{1}\left(\kappa^{\prime} \kappa \tau^{2}+\kappa^{2} \tau^{\prime} \tau\right)+h_{2}^{\prime}\left(-2 \varepsilon_{2} \varepsilon_{3} \kappa \tau^{2}-\tau \kappa \tau^{\prime}-\tau^{2} \kappa^{\prime}-\varepsilon_{2} \varepsilon_{3} \tau^{\prime} \kappa^{\prime}\right)+ & \\
h_{2}\left(\varepsilon_{1} \varepsilon_{2} \tau^{2} \kappa^{3}+\varepsilon_{2} \varepsilon_{3} \tau^{4} \kappa-\varepsilon_{2} \varepsilon_{3} \tau^{\prime \prime} \tau \kappa-\varepsilon_{1}\left(\varepsilon_{2} \kappa^{2}+C\right) \kappa \tau^{2}-\varepsilon_{2} \varepsilon_{3} \tau^{\prime} \kappa^{\prime} \tau\right)- & \\
2 \tau^{2} \kappa h_{2}^{\prime \prime}-3 \varepsilon_{2} \kappa^{2} \tau h_{1}^{\prime}+\varepsilon_{3} \tau \kappa h_{3}^{\prime}+\varepsilon_{3} \kappa^{\prime} \tau h_{3}^{\prime \prime}+ & \\
h_{3}\left(-\varepsilon_{2} \tau^{\prime} \tau^{2} \kappa-2 \tau^{2} \tau^{\prime} \kappa-\varepsilon_{2} \kappa^{\prime} \tau^{3}-\varepsilon_{1} \varepsilon_{3} C \kappa^{\prime} \tau\right)+ & \\
h_{3}^{\prime}\left(-3 \varepsilon_{2} \tau^{3} \kappa+\varepsilon_{1} \varepsilon_{3}\left(\varepsilon_{2} \kappa^{3}+C \kappa\right) \tau\right)+ & \\
h_{3}^{\prime}\left(-3 \varepsilon_{2} \tau^{3} \kappa+\varepsilon_{1} \varepsilon_{3}\left(\varepsilon_{2} \kappa^{3}+C \kappa\right) \tau\right)=0 &
\end{array}
$$

With aid these equations and the Euler-lagrange Eq.(3.5), we obtained that the vector fields

$$
\begin{equation*}
J_{\gamma}=\varepsilon_{1}\left(p^{\prime}(k) k-p(k)\right) T+p^{\prime \prime}(k) k^{\prime} N-\varepsilon_{3} p^{\prime}(k) \tau B \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\gamma}=-\varepsilon_{2} p^{\prime}(k) B \tag{3.12}
\end{equation*}
$$

are Killing along the p-elastica γ in 3 -dimensional.Lorentzian space form. The solutions of Eq. (3.10) constitute a six dimensional linear space. So we give the following theorem.

Theorem 3.1 Let M a simply connected manifold with constant sectional curvature C in Lorentzian space form, and let γ be a p-elastica in M. Vector fields $J_{\gamma}=\varepsilon_{1}\left(p^{\prime}(k) k-\right.$ $p(k)) T+p^{\prime \prime}(k) k^{\prime} N-\varepsilon_{3} p^{\prime}(k) \tau B$ and $H_{\gamma}=-\varepsilon_{2} p^{\prime}(k) B$ can expanded to Killing fields J_{γ}^{\prime} and H_{γ}^{\prime} on M.

In 3-dimensional Lorentzian space form, we construct a system of cylindrical coordinates using the Killing fields J_{γ} and H_{γ}. The Euler Lagrange equation and its first integral intimate are written

$$
\begin{equation*}
\nabla_{T} J_{\gamma}=-C p^{\prime}(k) N \tag{3.13}
\end{equation*}
$$

and

GÜRBÜZ

$$
\begin{align*}
\left\|J_{\gamma}\right\|^{2} & =\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right| \tag{3.14}\\
& =\left|\varepsilon_{1}\left(p^{\prime}(k) k-p(k)\right)^{2}+\varepsilon_{2}\left(p^{\prime \prime}(k) k^{\prime}\right)^{2}-\varepsilon_{3}\left(p^{\prime}(k) \tau\right)^{2}\right|=\left|k_{2}-C p^{\prime}(k)^{2}\right|
\end{align*}
$$

In $R_{1}^{3}, \nabla_{T} J_{\gamma}=0$. Then the Killing field J_{γ} is a translation field. We can find one coordinate field $\frac{\partial}{\partial z}=\frac{J_{\gamma}}{\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right|^{1 / 2}}$. Due to

$$
\begin{equation*}
\left\langle J_{\gamma}, H_{\gamma}\right\rangle=\varepsilon_{2} p^{\prime}(k)^{2} \tau=\varepsilon_{2} k_{1} \tag{3.15}
\end{equation*}
$$

H_{γ} shows a rotation along z direction.

$$
\begin{equation*}
J_{1}=\varepsilon_{2} J_{\gamma}-\frac{1}{k_{1}}\left\langle J_{\gamma}, J_{\gamma}\right\rangle H_{\gamma} \tag{3.16}
\end{equation*}
$$

is a rotation field perpendicular to J_{γ}. So, for some normalization factor, we have $\frac{\partial}{\partial \varphi}=$ $Q J_{1}$. Hence

$$
\begin{equation*}
\frac{\partial}{\partial r}=\frac{J_{\gamma} \times B}{\left|\left\langle J_{\gamma} \times B, J_{\gamma} \times B\right\rangle\right|^{1 / 2}} \tag{3.17}
\end{equation*}
$$

is given. We can write the unit tangent vector as

$$
T=r_{s}(\partial / \partial r)+\varphi_{s}(\partial / \partial \varphi)+z_{s}(\partial / \partial z)
$$

with

$$
\begin{gather*}
r_{s}=\left\langle T, \frac{\partial}{\partial r}\right\rangle=\frac{\left\langle T, J_{\gamma} \times B\right\rangle}{\left|\left\langle J_{\gamma} \times B, J_{\gamma} \times B\right\rangle\right|^{1 / 2}}=-\frac{\varepsilon_{1} p^{\prime}(k) p^{\prime \prime}(k) k^{\prime}}{\left|\varepsilon_{3} k_{2} p^{\prime}(k)^{2}+k_{1}^{2}\right|^{1 / 2}}, \tag{3.18}\\
z_{s}=\left\langle T, \frac{\partial}{\partial z}\right\rangle=\frac{p^{\prime}(k) k-p(k)}{\left|\varepsilon_{3} k_{2} p^{\prime}(k)^{2}+k_{1}^{2}\right|^{1 / 2}} . \tag{3.19}
\end{gather*}
$$

$Q J_{1}$ has the proper length at the maxima of $\kappa(s)$. Then the length of $\partial / \partial \varphi$ at such a point $\gamma(s)$ is $r=r\left(s_{0}\right)$, the reciprocal of the curvature κ_{0} of the circle $r=r\left(s_{0}\right), z=z\left(s_{0}\right)$. At this point, T has vertical component

GÜRBÜZ

$$
\left\langle T, \frac{J_{\gamma}}{\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right|^{1 / 2}}\right\rangle=\frac{p^{\prime}(k) k-p(k)}{\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right|^{1 / 2}}
$$

and the horizontal component is

$$
-\frac{p^{\prime}(k) \tau}{\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right|^{1 / 2}}
$$

Note that

$$
\begin{align*}
\kappa_{0} & =-\frac{\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right|^{1 / 2}}{p^{\prime}(k) \tau}\left|\nabla_{T}\left(\frac{\partial / \partial \varphi}{|\langle\partial / \partial \varphi, \partial / \partial \varphi\rangle|^{1 / 2}}\right)\right| \tag{3.20}\\
& =-\frac{\left|\left\langle J_{\gamma}, J_{\gamma}\right\rangle\right|^{3 / 2}}{k_{1}\left|\left\langle J_{1}, J_{1}\right\rangle\right|}
\end{align*}
$$

Hence,

$$
Q=\frac{k_{1}}{\left|k_{2}\right|^{3 / 2}}
$$

and

$$
\begin{equation*}
\varphi_{s}=\frac{\langle T,(\partial / \partial \varphi)\rangle}{|\langle\partial / \partial \varphi, \partial / \partial \varphi\rangle|}=\frac{\varepsilon_{2}\left|k_{2}\right|^{3 / 2}\left(p^{\prime}(k) k-p(k)\right)}{k_{1}\left|\left\langle J_{1}, J_{1}\right\rangle\right|} \tag{3.21}
\end{equation*}
$$

So, we give the following theorem.

Theorem 3.2 Let (r, φ, z) be cylindrical coordinates given above in R_{1}^{3}, and $\gamma(s)=$ $(r(s), \varphi(s), z(s))$. Then we give
$r_{s}=-\frac{\varepsilon_{1} p^{\prime}(k) p^{\prime \prime}(k) k^{\prime}}{\left|\varepsilon_{3} k_{2} p^{\prime}(k)^{2}+k_{1}^{2}\right|^{1 / 2}}, \quad z_{s}=\frac{p^{\prime}(k) k-p(k)}{\left|\varepsilon_{3} k_{2} p^{\prime}(k)^{2}+k_{1}^{2}\right|^{1 / 2}}, \quad \varphi_{s}=\frac{\varepsilon_{2}\left|k_{2}\right|^{3 / 2}\left(p^{\prime}(k) k-p(k)\right)}{k_{1}\left|\left\langle J_{1}, J_{1}\right\rangle\right|}$.

GÜRBÜZ

References

[1] Huang, R.: A note on the p-elastica in a constant sectional curvature nanifold, J of Geometry physics, 2003
[2] Won Yoon, D.: On the Gauss map of translation surfaces in Minkowski 3-space, Taiwase Journal of Mathematics. Vol:6, 389-398,2002.
[3] O'Neill, B.: Semi-Riemannian Geometry,Academic Press. New York,London, 1983.
[4] Langer, J. and Singer, D.: The total squared curvature of closed curves, J. Differential geometry, 20, 1-22, 1984.
[5] Barros, M., Ferrandez, A., Lucas, P. and Merono M.: General helices in the three dimensional Lorentzian space forms, Rocky Mountain Journal of Mathematics, Vol:31, number: 2, 373-387, 2001.

Nevin GÜRBÜZ

Received 30.07.2004
Departmant of Mathematics,
Osmangazi University,
26480, Eskişehir-TURKEY
e-mail: ngurbuz@ogu.edu.tr

[^0]: Mathematics Subject Classification: 53A04, 35Q51, 53B99, 53A35.

