Inequality for Ricci Curvature of Slant Submanifolds in Cosymplectic Space Forms

Dae Won Yoon

Abstract

In this article, we establish inequalities between the Ricci curvature and the squared mean curvature, and also between the k-Ricci curvature and the scalar curvature for a slant, semi-slant and bi-slant submanifold in a cosymplectic space form of constant φ-sectional curvature with arbitrary codimension.

Key Words: Mean curvature, sectional curvature, k-Ricci curvature, slant submanifold, semi-slant submanifold, bi-slant submanifold, cosymplectic space form.

1. Introduction

Let \tilde{M} be a $(2 m+1)$-dimensional almost contact manifold endowed with an almost contact structure (φ, ξ, η), that is, φ is a $(1,1)$ tensor field, ξ is a vector field and η is a 1-form such that

$$
\varphi^{2}=-I+\eta \otimes \xi \quad \text { and } \quad \eta(\xi)=1
$$

Then, $\varphi(\xi)=0$ and $\eta \circ \varphi=0$. Let g be a compatible Riemannian metric with (φ, ξ, η), that is, $g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)$ or equivalent, $g(X, \varphi Y)=-g(\varphi X, Y)$ and $g(X, \xi)=\eta(X)$ for all $X, Y \in \tilde{M}$. Then, \tilde{M} becomes an almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g). An almost contact metric manifold is cosymplectic ([1]) if $\tilde{\nabla}_{X} \varphi=0$, where $\tilde{\nabla}$ is the Levi-Civita connection of the Riemannian metric g. From the formula $\tilde{\nabla}_{X} \varphi=0$ it follows that $\tilde{\nabla}_{X} \xi=0$.

[^0]
YOON

A plane section π in $T_{p} \tilde{M}$ of an almost contact metric manifold \tilde{M} is called a φ-section if $\pi \perp \xi$ and $\varphi(\pi)=\pi$. \tilde{M} is of constant φ-sectional curvature if sectional curvature $\tilde{K}(\pi)$ does not depend on the choice of the φ-section π of $T_{p} \tilde{M}$ and the choice of a point $p \in \tilde{M}$. A cosymplectic manifold \tilde{M} is said to be a cosymplectic space form if the φ sectional curvature is constant c along \tilde{M}. A cosymplectic space form will be denoted by $\tilde{M}(c)$. Then the Riemannian curvature tensor \tilde{R} on $\tilde{M}(c)$ is given by ([9])

$$
\begin{align*}
4 \tilde{R}(X, Y, Z, W)= & c\{g(X, W) g(Y, Z)-g(X, Z) g(Y, W)+g(X, \varphi W) g(Y, \varphi Z) \\
& -g(X, \varphi Z) g(Y, \varphi W)-2 g(X, \varphi Y) g(Z, \varphi W)-g(X, W) \eta(Y) \eta(Z) \\
& +g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W)+g(Y, W) \eta(X) \eta(Z)\} \tag{1.1}
\end{align*}
$$

Let M be an n-dimensional submanifold of a cosymplectic space form $\tilde{M}(c)$ equipped with a Riemannian metric g. The Gauss and Wiengarten formulas are given respectively by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \quad \text { and } \quad \tilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N
$$

for all $X, Y \in T M$ and $N \in T^{\perp} M$, where $\tilde{\nabla}, \nabla$ and ∇^{\perp} are the Riemannian, induced Riemannian and induced normal connections in $\tilde{M}(c), M$ and the normal bundle $T^{\perp} M$ of M respectively, and h is the second fundamental form related to the shape operator A by $g(h(X, Y), N)=g\left(A_{N} X, Y\right)$. Then the equation of Gauss is given by

$$
\begin{equation*}
\tilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)) \tag{1.2}
\end{equation*}
$$

for any vectors X, Y, Z, W tangent to M.
For any vector X tangent to M we put $\varphi X=P X+F X$, where $P X$ and $F X$ are the tangential and the normal components of φX, respectively. Given an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of M, we define the squared norm of P by

$$
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(\varphi e_{i}, e_{j}\right)
$$

and the mean curvature vector $H(p)$ at $p \in M$ is given by $H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)$. We put

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right) \quad \text { and } \quad\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right),
$$

YOON

where $\left\{e_{n+1}, \ldots, e_{2 m+1}\right\}$ is an orthonormal basis of $T_{p}^{\perp} M$ and $r=n+1, \ldots, 2 m+1$. A submanifold M in $\tilde{M}(c)$ is called totally geodesic if the second fundamental form vanishes identically and totally umbilical if there is a real number λ such that $h(X, Y)=\lambda g(X, Y) H$ for any tangent vectors X, Y on M.

For an n-dimensional Riemannian manifold M, we denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$. For an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of the tangent space $T_{p} M$, the scalar curvature τ is defined by

$$
\begin{equation*}
\tau=\sum_{i<j} K_{i j} \tag{1.3}
\end{equation*}
$$

where $K_{i j}$ denotes the sectional curvature of the 2-plane section spanned by e_{i} and e_{j}.
Suppose L is a k-plane section of $T_{p} M$ and X a unit vector in L. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of L such that $e_{1}=X$. Define the Ricci curvature Ric Re $_{L}$ of L at X by

$$
\begin{equation*}
\operatorname{Ric}_{L}(X)=K_{12}+\cdots+K_{1 k} \tag{1.4}
\end{equation*}
$$

We simply call such a curvature a k-Ricci curvature. The scalar curvature τ of the k-plane section L is given by

$$
\begin{equation*}
\tau(L)=\sum_{1 \leq i<j \leq k} K_{i j} \tag{1.5}
\end{equation*}
$$

For each integer $k, 2 \leq k \leq n$, the Riemannain invariant Θ_{k} on an n-dimensional Riemannian manifold M is defined by

$$
\begin{equation*}
\Theta_{k}(p)=\frac{1}{k-1} \inf _{L, X} \operatorname{Ric}_{L}(X), \quad p \in M \tag{1.6}
\end{equation*}
$$

where L runs over all k-plane sections in $T_{p} M$ and X runs over all unit vectors in L.
Recall that for a submanifold M in a Riemannain manifold, the relative null space of M at a point $p \in M$ is defined by

$$
N_{p}=\left\{X \in T_{p} M \mid h(X, Y)=0 \quad \text { for all } \quad Y \in T_{p} M\right\} .
$$

In [8], A. Lotta has introduced the following notion of slant submanifolds into almost contact metric manifolds. A submanifold M tangent to ξ is said to be slant if for any
$p \in M$ and any $X \in T_{p} M$, linearly independent of ξ, the angle between φX and $T_{p} M$ is a constant $\theta \in[0, \pi / 2]$, called the slant angle of M in $\tilde{M}(c)$. Invariant and antiinvariant submanifolds of $\tilde{M}(c)$ are slant submanifolds with slant angle $\theta=0$ and $\theta=\pi / 2$, respectively.

We say that a submanifold M tangent to ξ is a bi-slant submanifolf in $\tilde{M}(c)$ if there exist two orthogonal distributions \mathcal{D}_{1} and \mathcal{D}_{2} on M such that
(1) $T M$ admits the orthogonal direct decomposition $T M=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus\{\xi\}$
(2) For any $i=1,2, \mathcal{D}_{i}$ is slant distribution with slant angle θ_{i}.

On the other hand, $C R$-submanifolds of $\tilde{M}(c)$ are bi-slant submanifolds with $\theta_{1}=0, \theta_{2}=$ $\pi / 2$.

Let $2 d_{1}=\operatorname{dim} \mathcal{D}_{1}$ and $2 d_{2}=\operatorname{dim} \mathcal{D}_{2}$.
Remark. If either d_{1} or d_{2} vanishes, the bi-slant submanifold is a slant submanifold. Thus, slant submanifolds are particular cases of bi-slant submanifolds.

A submanifold M tangent to ξ is called a semi-slant submanifold in $\tilde{M}(c)$ if there exist two orthogonal distributions \mathcal{D}_{1} and \mathcal{D}_{2} on M such that
(1) $T M$ admits the orthogonal direct decomposition $T M=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \oplus\{\xi\}$.
(2) The distribution \mathcal{D}_{1} is an invariant distribution, i.e., $\varphi\left(\mathcal{D}_{1}\right)=\mathcal{D}_{1}$.
(3) The distribution \mathcal{D}_{2} is slant with angle $\theta \neq 0$.

Remark. The invariant distribution of a semi-slant submanifold is a slant distribution with zero angle. Thus, it is obvious that in fact, semi-slant submanifolds are particular cases of bi-slant submanifolds.
(1) If $d_{2}=0$, then M is an invariant submanifold.
(2) If $d_{1}=0$ and $\theta=\pi / 2$, then M is an anti-invariant submanifold.

For the other properties and examples of slant, bi-slant and semi-slant submanifolds in almost contact metric manifold, we refer to the reader [2], [3].

2. Ricci Curvature and Squared Mean Curvature

B.Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [6]). We prove similar inequalities for slant, bi-slant and semi-slant submanifolds in a cosymplectic space form
$\tilde{M}(c)$. We consider submanifolds M tangent to the vector field ξ.

Theorem 2.1 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, we have
(1) For each unit vector $X \in T_{p} M$ orthogonal to ξ

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{(n-1) c+\frac{1}{2}\left(3 \cos ^{2} \theta-2\right) c+n^{2}\|H\|^{2}\right\} \tag{2.1}
\end{equation*}
$$

(2) If $H(p)=0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.1) if and only if $X \in N_{p}$.
(3) The equality case of (2.1) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let $X \in T_{p} M$ be a unit tangent vector at p orthogonal to ξ. We choose an othonormal basis $e_{1}, \cdots, e_{n}=\xi, e_{n+1}, \cdots, e_{2 m+1}$ such that e_{1}, \cdots, e_{n} are tangent to M at p with $e_{1}=X$. Then, from the equation of Gauss, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-\left\{n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right\} \frac{c}{4} . \tag{2.2}
\end{equation*}
$$

From (2.2) we get

$$
\begin{align*}
n^{2}\|H\|^{2}= & 2 \tau+\sum_{r=n+1}^{2 m+1}\left[\left(h_{11}^{r}\right)^{2}+\left(h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}+2 \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2}\right] \\
& -2 \sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}-\frac{c}{4}\left[n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right] \\
= & 2 \tau+\frac{1}{2} \sum_{r=n+1}^{2 m+1}\left[\left(h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}+\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2}\right] \tag{2.3}\\
& +2 \sum_{r=n+1}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2}-2 \sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r} \\
& -\frac{c}{4}\left[n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right] .
\end{align*}
$$

YOON

By using the equation of Gauss, we have

$$
\begin{align*}
\sum_{2 \leq i<j \leq n} K_{i j}= & \sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]+(n-1)(n-2) \frac{c}{8} \tag{2.4}\\
& +\left[3(n-2) \cos ^{2} \theta-2 n+4\right] \frac{c}{8}
\end{align*}
$$

Substituting (2.4) in (2.3), we get

$$
\frac{1}{2} n^{2}\|H\|^{2} \geq 2 \operatorname{Ric}(\mathrm{X})-2(n-1) \frac{c}{4}-\left(3 \cos ^{2} \theta-2\right) \frac{c}{4}
$$

or equivalently (2.1).
(2) Assume $H(P)=0$. Equality holds in (2.1) if and only if

$$
\left\{\begin{array}{l}
h_{12}^{r}=\cdots=h_{1 n}^{r}=0 \\
h_{11}^{r}=h_{22}^{r}+\cdots+h_{n n}^{r}, \quad r \in\{n+1, \cdots, 2 m+1\}
\end{array}\right.
$$

Then $h_{1 j}^{r}=0$ for all $j \in\{1, \cdots, n\}, r \in\{n+1, \cdots, 2 m+1\}$, that is, $X \in N_{p}$.
(3) Then equality case of (2.1) holds for all unit tangent vectors orthogonal to ξ at p if and only if

$$
\left\{\begin{array}{l}
h_{i j}^{r}=0, \quad i \neq j, \quad r \in\{n+1, \cdots, 2 m+1\}, \\
h_{11}^{r}+\cdots+h_{n n}^{r}-2 h_{i i}^{r}=0, \quad i \in\{1, \cdots, n\}, \quad r \in\{n+1, \cdots, 2 m+1\}
\end{array}\right.
$$

In this case, it follows that p is a totally geodesic point. The converse is trivial.
Theorem 2.2 Let M be an n-dimensional bi-slant submanifold satisfying $g(X, \varphi Y)=0$, for any $X \in \mathcal{D}_{1}$ and any $Y \in \mathcal{D}_{2}$, tangent to ξ in a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then,
(1) For each unit vector $X \in T_{p} M$ orthogonal to ξ and if
(i) X is tangent to \mathcal{D}_{1} we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{(n-1) c+\frac{1}{2}\left(3 \cos ^{2} \theta_{1}-2\right) c+n^{2}\|H\|^{2}\right\} \tag{2.5}
\end{equation*}
$$

and if

YOON

(ii) X is tangent to \mathcal{D}_{2}, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{(n-1) c+\frac{1}{2}\left(3 \cos ^{2} \theta_{2}-2\right) c+n^{2}\|H\|^{2}\right\} \tag{2.6}
\end{equation*}
$$

(2) If $H(p)=0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.5) and (2.6) if and only if $X \in N_{p}$.
(3) The equality case of (2.5) and (2.6) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let $X \in T_{p} M$ be a unit tangent vector at p orthogonal to ξ. We choose an othonormal basis $e_{1}, \cdots, e_{n}=\xi, e_{n+1}, \cdots, e_{2 m+1}$ such that e_{1}, \cdots, e_{n} are tangent to M at p with $e_{1}=X$. Then, from the equation of Gauss, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-\left\{n(n-1)+6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-2 n+2\right\} \frac{c}{4} \tag{2.7}
\end{equation*}
$$

where $2 d_{1}=\operatorname{dim} \mathcal{D}_{1}$ and $2 d_{2}=\operatorname{dim} \mathcal{D}_{2}$.
From (2.7) we get

$$
\begin{align*}
n^{2}\|H\|^{2}= & 2 \tau+\sum_{r=n+1}^{2 m+1}\left[\left(h_{11}^{r}\right)^{2}+\left(h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}+2 \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2}\right] \\
& -2 \sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r}-\frac{c}{4}\left[n(n-1)+6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-2 n+2\right] \\
= & 2 \tau+\frac{1}{2} \sum_{r=n+1}^{2 m+1}\left[\left(h_{11}^{r}+h_{22}^{r}+\cdots+h_{n n}^{r}\right)^{2}+\left(h_{11}^{r}-h_{22}^{r}-\cdots-h_{n n}^{r}\right)^{2}\right] \\
& +2 \sum_{r=n+1}^{2 m+1} \sum_{1 \leq i<j \leq n}\left(h_{i j}^{r}\right)^{2}-2 \sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n} h_{i i}^{r} h_{j j}^{r} \\
& -\frac{c}{4}\left[n(n-1)+6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-2 n+2\right] . \tag{2.8}
\end{align*}
$$

We distinguish two cases:
(i) if X is tangent to \mathcal{D}_{1}, then we have

$$
\begin{align*}
\sum_{2 \leq i<j \leq n} K_{i j}= & \sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]+(n-1)(n-2) \frac{c}{8} \tag{2.9}\\
& +\left[6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-3 \cos ^{2} \theta_{1}-2 n+4\right] \frac{c}{8}
\end{align*}
$$

Substituting (2.9) in (2.8), one gets

$$
\frac{1}{2} n^{2}\|H\|^{2} \geq 2 \operatorname{Ric}(\mathrm{X})-2(n-1) \frac{c}{4}-\left(3 \cos ^{2} \theta_{1}-2\right) \frac{c}{4}
$$

which is equivalent to (2.5).
(ii) if X is tangent to \mathcal{D}_{2}, then we have

$$
\begin{align*}
\sum_{2 \leq i<j \leq n} K_{i j} & =\sum_{r=n+1}^{2 m+1} \sum_{2 \leq i<j \leq n}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right]+(n-1)(n-2) \frac{c}{8} \tag{2.10}\\
& +\left[6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-3 \cos ^{2} \theta_{2}-2 n+4\right] \frac{c}{8}
\end{align*}
$$

Substituting (2.10) in (2.8), one gets

$$
\frac{1}{2} n^{2}\|H\|^{2} \geq 2 \operatorname{Ric}(\mathrm{X})-2(n-1) \frac{c}{4}-\left(3 \cos ^{2} \theta_{2}-2\right) \frac{c}{4}
$$

which is equivalent to (2.6).
(2) Assume $H(p)=0$. Equality holds in (2.5) and (2.6) if and only if

$$
\left\{\begin{array}{l}
h_{12}^{r}=\cdots=h_{1 n}^{r}=0 \\
h_{11}^{r}=h_{22}^{r}+\cdots+h_{n n}^{r}, \quad r \in\{n+1, \cdots, 2 m+1\}
\end{array}\right.
$$

Then $h_{1 j}^{r}=0$ for all $j \in\{1, \cdots, n\}, r \in\{n+1, \cdots, 2 m+1\}$, that is, $X \in N_{p}$.
(3) Then equality case of (2.5) and (2.6) holds for all unit tangent vectors orthogonal to ξ at p if and only if

$$
\left\{\begin{array}{l}
h_{i j}^{r}=0, \quad i \neq j, \quad r \in\{n+1, \ldots, 2 m+1\}, \\
h_{11}^{r}+\cdots+h_{n n}^{r}-2 h_{i i}^{r}=0, \quad i \in\{1, \cdots, n\}, \quad r \in\{n+1, \cdots, 2 m+1\}
\end{array}\right.
$$

YOON

In this case, it follows that p is a totally geodesic point. The converse is trivial.
Corollary 2.3 Let M be an n-dimensional semi-slant submanifold in a $(2 m+1)$ dimensional cosymplectic space form $\tilde{M}(c)$. Then,
(1) For each unit vector $X \in T_{p} M$ orthogonal to ξ and if
(i) X is tangent to \mathcal{D}_{1} we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{(n-2) c+n^{2}\|H\|^{2}\right\} \tag{2.11}
\end{equation*}
$$

and if
(ii) X is tangent to \mathcal{D}_{2} we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{(n-1) c+\frac{1}{2}\left(3 \cos ^{2} \theta-2\right) c+n^{2}\|H\|^{2}\right\} \tag{2.12}
\end{equation*}
$$

(2) If $H(p)=0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.11) and (2.12) if and only if $X \in N_{p}$.
(3) The equality case of (2.11) and (2.12) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.4 Let M be an n-dimensional invariant submanifold in a ($2 m+1$)-dimensional cosymplectic space form $\tilde{M}(c)$. Then,
(1) For each unit vector $X \in T_{p} M$ orthogonal to ξ

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{\left(n-\frac{1}{2}\right) c+n^{2}\|H\|^{2}\right\} \tag{2.13}
\end{equation*}
$$

(2) If $H(p)=0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.13) if and only if $X \in N_{p}$.
(3) The equality case of (2.13) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.5 Let M be an n-dimensional anti-invariant submanifold in a $(2 m+1)$ dimensional cosymplectic space form $\tilde{M}(c)$. Then,
(1) For each unit vector $X \in T_{p} M$ orthogonal to ξ

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{(n-2) c+n^{2}\|H\|^{2}\right\} \tag{2.14}
\end{equation*}
$$

YOON

(2) If $H(p)=0$, then a unit tangent vector X orthogonal to ξ at p satisfies the equality case of (2.14) if and only if $X \in N_{p}$.
(3) The equality case of (2.14) holds identically for all unit tangent vectors orthogonal to ξ at p if and only if p is a totally geodesic point.

3. k-Ricci Curvature and Squared Mean Curvature

In this section, we prove the relationship between the k-Ricci curvature and the squared mean curvature for slant, bi-slant and semi-slant submanifolds in a cosymplectic space form $\tilde{M}(c)$. We state an inequality between the scalar curvature and the squared mean curvature for submanifolds M tangent to the vector field ξ.

Theorem 3.1 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then we have

$$
\begin{equation*}
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}-\frac{\left[n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right] c}{4 n(n-1)} \tag{3.1}
\end{equation*}
$$

equality holding at a point $p \in M$ if and only if p is a totally umbilical point.

Proof. Let p be a point of M. We choose an orthonormal basis $\left\{e_{1}, e_{2}, \cdots, e_{n}=\xi\right\}$ for the tangent space $T_{p} M$ and $\left\{e_{n+1}, \cdots, e_{2 m+1}\right\}$ for the normal space $T_{p}^{\perp} M$ at p such that the normal vector e_{n+1} is in the direction of the mean curvature vector and $e_{1}, e_{2}, \cdots, e_{n}$ diagonalize the shape operator A_{n+1}. Then we have

$$
\begin{gather*}
A_{n+1}=\left(\begin{array}{ccccc}
a_{1} & 0 & 0 & \ldots & 0 \\
0 & a_{2} & 0 & \ldots & 0 \\
0 & 0 & a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right), \tag{3.2}\\
A_{r}=\left(h_{i j}^{r}\right), \quad \sum_{i=1}^{n} h_{i i}^{r}=0, \quad n+2 \leq r \leq 2 m+1 .
\end{gather*}
$$

¿From the equation of Gauss

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\sum_{i=1}^{n} a_{i}^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\left[n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right] \frac{c}{4} \tag{3.3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{i<j}\left(a_{i}-a_{j}\right)^{2}=(n-1) \sum_{i=1}^{n} a_{i}^{2}-2 \sum_{i<j} a_{i} a_{j} . \tag{3.4}
\end{equation*}
$$

Therefore, from the above equation we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} a_{i}^{2}+2 \sum_{i<j} a_{i} a_{j} \leq n \sum_{i=1}^{n} a_{i}^{2} \tag{3.5}
\end{equation*}
$$

Combining (3.3) and (3.5), we get

$$
\begin{equation*}
n(n-1)\|H\|^{2} \geq 2 \tau+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\left[n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right] \frac{c}{4}, \tag{3.6}
\end{equation*}
$$

which implies inequality (3.1). If the equality sign of (3.1) holds at a point $p \in M$ then from (3.4) and (3.6), we get $A_{r}=0(r=n+2, \cdots, 2 m+1)$ and $a_{1}=\cdots=a_{n}$. Consequently, p is a totally umbilical point. The converse is trivial.

Theorem 3.2 Let M be an n-dimensional bi-slant submanifold satisfying $g(X, \varphi Y)=0$, for any $X \in \mathcal{D}_{1}$ and any $Y \in \mathcal{D}_{2}$, tangent to ξ into $a(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then we have

$$
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}-\frac{\left[n(n-1)+6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-2 n+2\right] c}{4 n(n-1)}
$$

where $2 d_{1}=\operatorname{dim} \mathcal{D}_{1}$ and $2 d_{2}=\operatorname{dim} \mathcal{D}_{2}$.
Theorem 3.3 Let M be an n-dimensional semi-slant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then we have

$$
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}-\frac{\left[n(n-1)+6\left(d_{1}+d_{2} \cos ^{2} \theta\right)-2 n+2\right] c}{4 n(n-1)}
$$

YOON

where $2 d_{1}=\operatorname{dim} \mathcal{D}_{1}$ and $2 d_{2}=\operatorname{dim} \mathcal{D}_{2}$.
Theorem 3.4 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, for any integer $k(2 \leq k \leq n)$ and any point $p \in M$, we have

$$
\|H\|^{2} \geq \Theta_{k}(p)-\frac{\left[n(n-1)+3(n-1) \cos ^{2} \theta-2 n+2\right] c}{4 n(n-1)}
$$

Proof. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis of $T_{p} M$. Denote by $L_{i_{1} \cdots i_{k}}$ the k-plane section spanned by $e_{i_{1}}, \cdots, e_{i_{k}}$. It follows from (1.4) and (1.5) that

$$
\begin{gather*}
\tau\left(L_{i_{1} \cdots i_{k}}\right)=\frac{1}{2} \sum_{i \in\left\{i_{1}, \cdots, i_{k}\right\}} \operatorname{Ric}_{L_{i_{1} \cdots i_{k}}}\left(e_{i}\right), \tag{3.7}\\
\tau(p)=\frac{1}{\binom{n-2}{k-2}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \tau\left(L_{i_{1} \cdots i_{k}}\right) . \tag{3.8}
\end{gather*}
$$

Combining (1.6), (3.7) and (3.8), we obtain

$$
\begin{equation*}
\tau(p) \geq \frac{n(n-1)}{2} \Theta_{k}(p) \tag{3.9}
\end{equation*}
$$

Therefore, by using (3.1) and (3.9) we can obtain the inequality in Theorem 3.4.
Theorem 3.5 Let M be an n-dimensional bi-slant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, for any integer $k(2 \leq k \leq n)$ and any point $p \in M$, we have

$$
\|H\|^{2} \geq \Theta_{k}(p)-\frac{\left[n(n-1)+6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)-2 n+2\right] c}{4 n(n-1)}
$$

where $2 d_{1}=\operatorname{dim} \mathcal{D}_{1}$ and $2 d_{2}=\operatorname{dim} \mathcal{D}_{2}$.
Theorem 3.6 Let M be an n-dimensional semi-slant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, for any integer $k(2 \leq k \leq n)$ and any point $p \in M$, we have

$$
\|H\|^{2} \geq \Theta_{k}(p)-\frac{\left[n(n-1)+6\left(d_{1}+d_{2} \cos ^{2} \theta\right)-2 n+2\right] c}{4 n(n-1)}
$$

YOON

where $2 d_{1}=\operatorname{dim} \mathcal{D}_{1}$ and $2 d_{2}=\operatorname{dim} \mathcal{D}_{2}$.
Corollary 3.7 Let M be an n-dimensional invariant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, for any integer $k(2 \leq k \leq n)$ and any point $p \in M$, we have

$$
\|H\|^{2} \geq \Theta_{k}(p)-\frac{(n+1) c}{4 n}
$$

Corollary 3.8 Let M be an n-dimensional anti-invariant submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, for any integer $k(2 \leq k \leq n)$ and any point $p \in M$, we have

$$
\|H\|^{2} \geq \Theta_{k}(p)-\frac{(n-2) c}{4 n}
$$

Corollary 3.9 Let M be an n-dimensional contact $C R$-submanifold tangent to ξ into a $(2 m+1)$-dimensional cosymplectic space form $\tilde{M}(c)$. Then, for any integer $k(2 \leq k \leq n)$ and any point $p \in M$, we have

$$
\|H\|^{2} \geq \Theta_{k}(p)-\frac{\left[n(n-1)+6 d_{1}-2 n+2\right] c}{4 n(n-1)}
$$

References

[1] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
[2] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Semi-slant submanifolds of Sasakian manifold, Geom. Dedicata, 78(2) (1999), 183-199.
[3] J. L. Cabrerizo, A. Carriazo, L. M. Fernández and M. Fernández, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42(1) (2000), 125-138.
[4] B.-Y. Chen, Geometry of slant submanifolds, K.U. Leuven, 1990.
[5] B.-Y. Chen, Mean curvature and shape operater of isomeric immersions in real space form, Glasgow Math. J., 38 (1996), 87-97.

YOON

[6] B.-Y. Chen, Relations between Ricci curvature and operater for submanifolds with arbitrary codimensions, Glasgow Math. J., 41 (1999), 33-41.
[7] D. Cioroboiu, Some inequalities for Ricci curvature of certain submanifolds in Sasakian space forms, Acta Mathematica Academiae Paedagogicae Nyíregyháiensis, 19 (2003), 233-243.
[8] A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39 (1996), 183-198.
[9] G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geometry, 4 (1970), 237-244.

Dae Won YOON
Received 25.10.2004
Department of Mathematics Education and RINS
Gyeongsang National University
Chinju 660-701, South-KOREA
e-mail : dwyoon@gsnu.ac.kr

[^0]: 2000 AMS Mathematics Subject Classification: 53B25, 53D10.

