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Inequality for Ricci Curvature of Slant Submanifolds

in Cosymplectic Space Forms
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Abstract

In this article, we establish inequalities between the Ricci curvature and the

squared mean curvature, and also between the k-Ricci curvature and the scalar

curvature for a slant, semi-slant and bi-slant submanifold in a cosymplectic space

form of constant ϕ- sectional curvature with arbitrary codimension.
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1. Introduction

Let M̃ be a (2m + 1)-dimensional almost contact manifold endowed with an almost
contact structure (ϕ, ξ, η), that is, ϕ is a (1,1) tensor field, ξ is a vector field and η is a
1-form such that

ϕ2 = −I + η ⊗ ξ and η(ξ) = 1.

Then, ϕ(ξ) = 0 and η ◦ ϕ = 0. Let g be a compatible Riemannian metric with (ϕ, ξ, η),
that is, g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ) or equivalent, g(X,ϕY ) = −g(ϕX, Y ) and
g(X, ξ) = η(X) for all X, Y ∈ M̃ . Then, M̃ becomes an almost contact metric manifold
equipped with an almost contact metric structure (ϕ, ξ, η, g). An almost contact metric
manifold is cosymplectic ([1]) if ∇̃Xϕ = 0, where ∇̃ is the Levi-Civita connection of the
Riemannian metric g. From the formula ∇̃Xϕ = 0 it follows that ∇̃Xξ = 0.
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A plane section π in TpM̃ of an almost contact metric manifold M̃ is called a ϕ-section

if π ⊥ ξ and ϕ(π) = π. M̃ is of constant ϕ-sectional curvature if sectional curvature K̃(π)
does not depend on the choice of the ϕ-section π of TpM̃ and the choice of a point

p ∈ M̃ . A cosymplectic manifold M̃ is said to be a cosymplectic space form if the ϕ-
sectional curvature is constant c along M̃ . A cosymplectic space form will be denoted by
M̃(c). Then the Riemannian curvature tensor R̃ on M̃(c) is given by ([9])

4R̃(X, Y, Z,W ) =c{g(X,W )g(Y, Z) − g(X,Z)g(Y,W ) + g(X,ϕW )g(Y, ϕZ)

− g(X,ϕZ)g(Y, ϕW ) − 2g(X,ϕY )g(Z, ϕW ) − g(X,W )η(Y )η(Z)

+ g(X,Z)η(Y )η(W ) − g(Y, Z)η(X)η(W ) + g(Y,W )η(X)η(Z)}.
(1.1)

Let M be an n-dimensional submanifold of a cosymplectic space form M̃(c) equipped
with a Riemannian metric g. The Gauss and Wiengarten formulas are given respectively
by

∇̃XY = ∇XY + h(X, Y ) and ∇̃XN = −ANX +∇⊥XN

for all X, Y ∈ TM and N ∈ T⊥M, where ∇̃,∇ and ∇⊥ are the Riemannian, induced
Riemannian and induced normal connections in M̃(c),M and the normal bundle T⊥M
of M respectively, and h is the second fundamental form related to the shape operator A
by g(h(X, Y ), N) = g(ANX, Y ). Then the equation of Gauss is given by

R̃(X, Y, Z,W ) = R(X, Y, Z,W ) + g(h(X,W ), h(Y, Z)) − g(h(X,Z), h(Y,W )), (1.2)

for any vectors X, Y, Z,W tangent to M .
For any vector X tangent to M we put ϕX = PX+FX, where PX and FX are the

tangential and the normal components of ϕX, respectively. Given an orthonormal basis
{e1, . . . , en} of M , we define the squared norm of P by

||P ||2 =
n∑

i,j=1

g2(ϕei, ej)

and the mean curvature vector H(p) at p ∈M is given by H = 1
n

∑n
i=1 h(ei, ei).

We put

hrij = g(h(ei, ej), er) and ||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),
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where {en+1, . . . , e2m+1} is an orthonormal basis of T⊥p M and r = n+ 1, . . . , 2m+ 1. A

submanifold M in M̃(c) is called totally geodesic if the second fundamental form vanishes
identically and totally umbilical if there is a real number λ such that h(X, Y ) = λg(X, Y )H
for any tangent vectors X, Y on M .

For an n-dimensional Riemannian manifold M , we denote by K(π) the sectional
curvature of M associated with a plane section π ⊂ TpM, p ∈ M . For an orthonormal
basis {e1, . . . , en} of the tangent space TpM, the scalar curvature τ is defined by

τ =
∑
i<j

Kij, (1.3)

where Kij denotes the sectional curvature of the 2-plane section spanned by ei and ej .
Suppose L is a k-plane section of TpM and X a unit vector in L. We choose an

orthonormal basis {e1, . . . , ek} of L such that e1 = X. Define the Ricci curvature RicL
of L at X by

RicL(X) = K12 + · · ·+K1k. (1.4)

We simply call such a curvature a k-Ricci curvature. The scalar curvature τ of the k-plane
section L is given by

τ (L) =
∑

1≤i<j≤k
Kij . (1.5)

For each integer k, 2 ≤ k ≤ n, the Riemannain invariant Θk on an n-dimensional
Riemannian manifold M is defined by

Θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈M, (1.6)

where L runs over all k-plane sections in TpM and X runs over all unit vectors in L.
Recall that for a submanifold M in a Riemannain manifold, the relative null space of

M at a point p ∈M is defined by

Np = {X ∈ TpM |h(X, Y ) = 0 for all Y ∈ TpM}.

In [8], A. Lotta has introduced the following notion of slant submanifolds into almost
contact metric manifolds. A submanifold M tangent to ξ is said to be slant if for any
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p ∈ M and any X ∈ TpM , linearly independent of ξ, the angle between ϕX and TpM

is a constant θ ∈ [0, π/2], called the slant angle of M in M̃(c). Invariant and anti-
invariant submanifolds of M̃(c) are slant submanifolds with slant angle θ = 0 and θ = π/2,
respectively.

We say that a submanifold M tangent to ξ is a bi-slant submanifolf in M̃(c) if there
exist two orthogonal distributions D1 and D2 on M such that

(1) TM admits the orthogonal direct decomposition TM = D1 ⊕ D2 ⊕ {ξ}
(2) For any i = 1, 2, Di is slant distribution with slant angle θi.

On the other hand, CR-submanifolds of M̃(c) are bi-slant submanifolds with θ1 = 0, θ2 =
π/2.

Let 2d1 = dimD1 and 2d2 = dimD2.

Remark. If either d1 or d2 vanishes, the bi-slant submanifold is a slant submanifold.
Thus, slant submanifolds are particular cases of bi-slant submanifolds.

A submanifold M tangent to ξ is called a semi-slant submanifold in M̃(c) if there
exist two orthogonal distributions D1 and D2 on M such that

(1) TM admits the orthogonal direct decomposition TM = D1 ⊕ D2 ⊕ {ξ}.
(2) The distribution D1 is an invariant distribution, i.e., ϕ(D1) = D1.

(3) The distribution D2 is slant with angle θ 6= 0.

Remark. The invariant distribution of a semi-slant submanifold is a slant distribution
with zero angle. Thus, it is obvious that in fact, semi-slant submanifolds are particular
cases of bi-slant submanifolds.

(1) If d2 = 0, then M is an invariant submanifold.

(2) If d1 = 0 and θ = π/2, then M is an anti-invariant submanifold.

For the other properties and examples of slant, bi-slant and semi-slant submanifolds
in almost contact metric manifold, we refer to the reader [2], [3].

2. Ricci Curvature and Squared Mean Curvature

B.Y. Chen established a sharp relationship between the Ricci curvature and the
squared mean curvature for submanifolds in real space forms (see [6]). We prove similar
inequalities for slant, bi-slant and semi-slant submanifolds in a cosymplectic space form

46



YOON

M̃(c). We consider submanifolds M tangent to the vector field ξ.

Theorem 2.1 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a
(2m+ 1)-dimensional cosymplectic space form M̃(c). Then, we have

(1) For each unit vector X ∈ TpM orthogonal to ξ

Ric(X) ≤ 1
4

{
(n− 1)c+

1
2
(3 cos2 θ − 2)c + n2||H ||2

}
. (2.1)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.1) if and only if X ∈ Np.

(3) The equality case of (2.1) holds identically for all unit tangent vectors orthogonal
to ξ at p if and only if p is a totally geodesic point.

Proof. Let X ∈ TpM be a unit tangent vector at p orthogonal to ξ. We choose an
othonormal basis e1, · · · , en = ξ, en+1, · · · , e2m+1 such that e1, · · · , en are tangent to M
at p with e1 = X. Then, from the equation of Gauss, we have

n2||H ||2 = 2τ + ||h||2− {n(n− 1) + 3(n− 1) cos2 θ − 2n+ 2} c
4
. (2.2)

From (2.2) we get

n2||H ||2 = 2τ +
2m+1∑
r=n+1

[(hr11)
2 + (hr22 + · · ·+ hrnn)

2 + 2
∑

1≤i<j≤n
(hrij)

2]

− 2
2m+1∑
r=n+1

∑
2≤i<j≤n

hriih
r
jj −

c

4
[n(n− 1) + 3(n− 1) cos2 θ − 2n+ 2]

= 2τ +
1
2

2m+1∑
r=n+1

[
(hr11 + hr22 + · · ·+ hrnn)

2 + (hr11 − hr22 − · · · − hrnn)2
]

+ 2
2m+1∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 − 2

2m+1∑
r=n+1

∑
2≤i<j≤n

hriih
r
jj

− c

4
[n(n− 1) + 3(n− 1) cos2 θ − 2n+ 2].

(2.3)
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By using the equation of Gauss, we have

∑
2≤i<j≤n

Kij =
2m+1∑
r=n+1

∑
2≤i<j≤n

[hriih
r
jj − (hrij)

2] + (n− 1)(n − 2)
c

8

+ [3(n− 2) cos2 θ − 2n+ 4]
c

8
.

(2.4)

Substituting (2.4) in (2.3), we get

1
2
n2||H ||2 ≥ 2Ric(X)− 2(n− 1)

c

4
− (3 cos2 θ − 2)

c

4
,

or equivalently (2.1).
(2) Assume H(P ) = 0. Equality holds in (2.1) if and only ifhr12 = · · · = hr1n = 0,

hr11 = hr22 + · · ·+ hrnn, r ∈ {n+ 1, · · · , 2m+ 1}.

Then hr1j = 0 for all j ∈ {1, · · · , n}, r ∈ {n+ 1, · · · , 2m+ 1}, that is, X ∈ Np.
(3) Then equality case of (2.1) holds for all unit tangent vectors orthogonal to ξ at p if
and only ifhrij = 0, i 6= j, r ∈ {n+ 1, · · · , 2m+ 1},

hr11 + · · ·+ hrnn − 2hrii = 0, i ∈ {1, · · · , n}, r ∈ {n+ 1, · · · , 2m+ 1}.

In this case, it follows that p is a totally geodesic point. The converse is trivial. 2

Theorem 2.2 Let M be an n-dimensional bi-slant submanifold satisfying g(X,ϕY ) = 0,
for any X ∈ D1 and any Y ∈ D2, tangent to ξ in a (2m + 1)-dimensional cosymplectic
space form M̃(c). Then,

(1) For each unit vector X ∈ TpM orthogonal to ξ and if
(i) X is tangent to D1 we have

Ric(X) ≤ 1
4

{
(n− 1)c+

1
2
(3 cos2 θ1 − 2)c+ n2||H ||2

}
; (2.5)

and if
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(ii) X is tangent to D2, we have

Ric(X) ≤ 1
4

{
(n − 1)c+

1
2
(3 cos2 θ2 − 2)c+ n2||H ||2

}
. (2.6)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.5) and (2.6) if and only if X ∈ Np.

(3) The equality case of (2.5) and (2.6) holds identically for all unit tangent vectors
orthogonal to ξ at p if and only if p is a totally geodesic point.

Proof. Let X ∈ TpM be a unit tangent vector at p orthogonal to ξ. We choose an
othonormal basis e1, · · · , en = ξ, en+1, · · · , e2m+1 such that e1, · · · , en are tangent to M
at p with e1 = X. Then, from the equation of Gauss, we have

n2||H ||2 = 2τ + ||h||2− {n(n− 1) + 6(d1 cos2 θ1 + d2 cos2 θ2) − 2n+ 2} c
4
, (2.7)

where 2d1 = dimD1 and 2d2 = dimD2.

From (2.7) we get

n2||H ||2 = 2τ +
2m+1∑
r=n+1

[(hr11)
2 + (hr22 + · · ·+ hrnn)

2 + 2
∑

1≤i<j≤n
(hrij)

2]

− 2
2m+1∑
r=n+1

∑
2≤i<j≤n

hriih
r
jj −

c

4
[n(n− 1) + 6(d1 cos2 θ1 + d2 cos2 θ2) − 2n+ 2]

= 2τ +
1
2

2m+1∑
r=n+1

[
(hr11 + hr22 + · · ·+ hrnn)

2 + (hr11 − hr22 − · · · − hrnn)2
]

+ 2
2m+1∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 − 2

2m+1∑
r=n+1

∑
2≤i<j≤n

hriih
r
jj

− c

4
[n(n− 1) + 6(d1 cos2 θ1 + d2 cos2 θ2)− 2n+ 2].

(2.8)

We distinguish two cases:
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(i) if X is tangent to D1, then we have

∑
2≤i<j≤n

Kij =
2m+1∑
r=n+1

∑
2≤i<j≤n

[hriih
r
jj − (hrij)

2] + (n− 1)(n − 2)
c

8

+ [6(d1 cos2 θ1 + d2 cos2 θ2) − 3 cos2 θ1 − 2n+ 4]
c

8
.

(2.9)

Substituting (2.9) in (2.8), one gets

1
2
n2||H ||2 ≥ 2Ric(X)− 2(n− 1)

c

4
− (3 cos2 θ1 − 2)

c

4
,

which is equivalent to (2.5).

(ii) if X is tangent to D2, then we have

∑
2≤i<j≤n

Kij =
2m+1∑
r=n+1

∑
2≤i<j≤n

[hriih
r
jj − (hrij)

2] + (n− 1)(n − 2)
c

8

+ [6(d1 cos2 θ1 + d2 cos2 θ2)− 3 cos2 θ2 − 2n+ 4]
c

8
.

(2.10)

Substituting (2.10) in (2.8), one gets

1
2
n2||H ||2 ≥ 2Ric(X)− 2(n− 1)

c

4
− (3 cos2 θ2 − 2)

c

4
,

which is equivalent to (2.6).

(2) Assume H(p) = 0. Equality holds in (2.5) and (2.6) if and only ifhr12 = · · · = hr1n = 0,

hr11 = hr22 + · · ·+ hrnn, r ∈ {n+ 1, · · · , 2m+ 1}.

Then hr1j = 0 for all j ∈ {1, · · · , n}, r ∈ {n+ 1, · · · , 2m+ 1}, that is, X ∈ Np.
(3) Then equality case of (2.5) and (2.6) holds for all unit tangent vectors orthogonal to
ξ at p if and only ifhrij = 0, i 6= j, r ∈ {n+ 1, . . . , 2m+ 1},

hr11 + · · ·+ hrnn − 2hrii = 0, i ∈ {1, · · · , n}, r ∈ {n+ 1, · · · , 2m+ 1}.
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In this case, it follows that p is a totally geodesic point. The converse is trivial. 2

Corollary 2.3 Let M be an n-dimensional semi-slant submanifold in a (2m + 1)-
dimensional cosymplectic space form M̃(c). Then,

(1) For each unit vector X ∈ TpM orthogonal to ξ and if
(i) X is tangent to D1 we have

Ric(X) ≤ 1
4
{
(n− 2)c+ n2||H ||2

}
(2.11)

and if
(ii) X is tangent to D2 we have

Ric(X) ≤ 1
4

{
(n− 1)c+

1
2
(3 cos2 θ − 2)c + n2||H ||2

}
. (2.12)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.11) and (2.12) if and only if X ∈ Np.

(3) The equality case of (2.11) and (2.12) holds identically for all unit tangent vectors
orthogonal to ξ at p if and only if p is a totally geodesic point.

Corollary 2.4 Let M be an n-dimensional invariant submanifold in a (2m+1)-dimensional
cosymplectic space form M̃(c). Then,

(1) For each unit vector X ∈ TpM orthogonal to ξ

Ric(X) ≤ 1
4

{
(n − 1

2
)c+ n2||H ||2

}
. (2.13)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.13) if and only if X ∈ Np.

(3) The equality case of (2.13) holds identically for all unit tangent vectors orthogonal
to ξ at p if and only if p is a totally geodesic point.

Corollary 2.5 Let M be an n-dimensional anti-invariant submanifold in a (2m + 1)-
dimensional cosymplectic space form M̃(c). Then,

(1) For each unit vector X ∈ TpM orthogonal to ξ

Ric(X) ≤ 1
4
{
(n − 2)c+ n2||H ||2

}
. (2.14)
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(2) If H(p) = 0, then a unit tangent vector X orthogonal to ξ at p satisfies the equality
case of (2.14) if and only if X ∈ Np.

(3) The equality case of (2.14) holds identically for all unit tangent vectors orthogonal
to ξ at p if and only if p is a totally geodesic point.

3. k-Ricci Curvature and Squared Mean Curvature

In this section, we prove the relationship between the k-Ricci curvature and the
squared mean curvature for slant, bi-slant and semi-slant submanifolds in a cosymplectic
space form M̃(c). We state an inequality between the scalar curvature and the squared
mean curvature for submanifolds M tangent to the vector field ξ.

Theorem 3.1 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a
(2m+ 1)-dimensional cosymplectic space form M̃(c). Then we have

||H ||2 ≥ 2τ
n(n− 1)

− [n(n− 1) + 3(n− 1) cos2 θ − 2n+ 2]c
4n(n− 1)

, (3.1)

equality holding at a point p ∈M if and only if p is a totally umbilical point.

Proof. Let p be a point of M . We choose an orthonormal basis {e1, e2, · · · , en = ξ} for
the tangent space TpM and {en+1, · · · , e2m+1} for the normal space T⊥p M at p such that
the normal vector en+1 is in the direction of the mean curvature vector and e1, e2, · · · , en
diagonalize the shape operator An+1. Then we have

An+1 =



a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . an


, (3.2)

Ar = (hrij),
n∑
i=1

hrii = 0, n+ 2 ≤ r ≤ 2m+ 1.
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¿From the equation of Gauss

n2||H ||2 = 2τ +
n∑
i=1

a2
i +

2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2 − [n(n− 1) + 3(n− 1) cos2 θ − 2n+ 2]

c

4
.

(3.3)

On the other hand,

∑
i<j

(ai − aj)2 = (n− 1)
n∑
i=1

a2
i − 2

∑
i<j

aiaj . (3.4)

Therefore, from the above equation we have

n2||H ||2 = (
n∑
i=1

ai)2 =
n∑
i=1

a2
i + 2

∑
i<j

aiaj ≤ n
n∑
i=1

a2
i . (3.5)

Combining (3.3) and (3.5), we get

n(n− 1)||H ||2 ≥ 2τ +
2m+1∑
r=n+2

n∑
i,j=1

(hrij)
2 − [n(n− 1) + 3(n− 1) cos2 θ− 2n+ 2]

c

4
, (3.6)

which implies inequality (3.1). If the equality sign of (3.1) holds at a point p ∈ M

then from (3.4) and (3.6), we get Ar = 0 (r = n + 2, · · · , 2m+ 1) and a1 = · · · = an.

Consequently, p is a totally umbilical point. The converse is trivial. 2

Theorem 3.2 Let M be an n-dimensional bi-slant submanifold satisfying g(X,ϕY ) = 0,
for any X ∈ D1 and any Y ∈ D2, tangent to ξ into a (2m+ 1)-dimensional cosymplectic
space form M̃(c). Then we have

||H ||2 ≥ 2τ
n(n − 1)

− [n(n− 1) + 6(d1 cos2 θ1 + d2 cos2 θ2)− 2n+ 2]c
4n(n− 1)

,

where 2d1 = dimD1 and 2d2 = dimD2.

Theorem 3.3 Let M be an n-dimensional semi-slant submanifold tangent to ξ into a
(2m+ 1)-dimensional cosymplectic space form M̃(c). Then we have

||H ||2 ≥ 2τ
n(n− 1)

− [n(n− 1) + 6(d1 + d2 cos2 θ) − 2n+ 2]c
4n(n− 1)

,
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where 2d1 = dimD1 and 2d2 = dimD2.

Theorem 3.4 Let M be an n-dimensional θ-slant submanifold tangent to ξ into a
(2m+1)-dimensional cosymplectic space form M̃(c). Then, for any integer k (2 ≤ k ≤ n)
and any point p ∈M , we have

||H ||2 ≥ Θk(p) −
[n(n− 1) + 3(n− 1) cos2 θ− 2n+ 2]c

4n(n− 1)
.

Proof. Let {e1, · · · , en} be an orthonormal basis of TpM . Denote by Li1···ik the k-plane
section spanned by ei1 , · · · , eik . It follows from (1.4) and (1.5) that

τ (Li1···ik) =
1
2

∑
i∈{i1,··· ,ik}

RicLi1···ik (ei), (3.7)

τ (p) =
1(
n−2
k−2

) ∑
1≤i1<···<ik≤n

τ (Li1···ik). (3.8)

Combining (1.6), (3.7) and (3.8), we obtain

τ (p) ≥ n(n− 1)
2

Θk(p). (3.9)

Therefore, by using (3.1) and (3.9) we can obtain the inequality in Theorem 3.4. 2

Theorem 3.5 Let M be an n-dimensional bi-slant submanifold tangent to ξ into a
(2m+1)-dimensional cosymplectic space form M̃(c). Then, for any integer k (2 ≤ k ≤ n)
and any point p ∈M , we have

||H ||2 ≥ Θk(p)−
[n(n− 1) + 6(d1 cos2 θ1 + d2 cos2 θ2)− 2n+ 2]c

4n(n− 1)
,

where 2d1 = dimD1 and 2d2 = dimD2.

Theorem 3.6 Let M be an n-dimensional semi-slant submanifold tangent to ξ into a
(2m+1)-dimensional cosymplectic space form M̃(c). Then, for any integer k (2 ≤ k ≤ n)
and any point p ∈M , we have

||H ||2 ≥ Θk(p) −
[n(n− 1) + 6(d1 + d2 cos2 θ) − 2n+ 2]c

4n(n− 1)
,
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where 2d1 = dimD1 and 2d2 = dimD2.

Corollary 3.7 Let M be an n-dimensional invariant submanifold tangent to ξ into a
(2m+1)-dimensional cosymplectic space form M̃(c). Then, for any integer k (2 ≤ k ≤ n)
and any point p ∈M , we have

||H ||2 ≥ Θk(p)−
(n+ 1)c

4n
.

Corollary 3.8 Let M be an n-dimensional anti-invariant submanifold tangent to ξ into a
(2m+1)-dimensional cosymplectic space form M̃(c). Then, for any integer k (2 ≤ k ≤ n)
and any point p ∈M , we have

||H ||2 ≥ Θk(p)−
(n− 2)c

4n
.

Corollary 3.9 Let M be an n-dimensional contact CR-submanifold tangent to ξ into a
(2m+1)-dimensional cosymplectic space form M̃(c). Then, for any integer k (2 ≤ k ≤ n)
and any point p ∈M , we have

||H ||2 ≥ Θk(p)−
[n(n− 1) + 6d1 − 2n+ 2]c

4n(n− 1)
.
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