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Abstract

Based on a continuation theorem of Mawhin, periodic solutions are found for the

second-order Rayleigh equation with piecewise constant argument.
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1. Introduction

Qualitative behaviors of first order delay differential equations with piecewise constant
arguments are the subject of many investigations (see, e.g. [1–19]), while those of higher
order equations are not.

However, there are reasons for studying higher order equations with piecewise constant
arguments. Indeed, as mentioned in [10], a potential application of these equations is in
the stabilization of hybrid control systems with feedback delay, where a hybrid system
is one with a continuous plant and with a discrete (sampled) controller. As an example,
suppose a moving particle is subjected to damping and a restoring controller −φ(x[t−k])
which acts at sampled time [t− k], then the equation of motion is of the form

x′′(t) + a (t)x′ (t) = −φ(x[t− k]).

Mathematics Subject Classification: 34K13
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In this paper we study a slightly more general second-order Rayleigh equation with
piecewise constant argument of the form

x′′ (t) + f (t, x′ (t)) + g (t, x ([t− k])) = 0, (1)

where [·] is the greatest-integer function, k is a positive integer, f (t, x) and g (t, x) are
continuous on R2 such that for (t, x) ∈ R2,

f (t + ω, x) = f (t, x)

and

g (t + ω, x) = g (t, x) ,

for some positive integer ω. We also require f(t, 0) = 0 for all t in R.

By a solution of (1) we mean a function x (t) which is defined on R and which satisfies
the conditions (i) x′ (t) is continuous on R, (ii) x′ (t) is differentiable at each point t ∈ R,

with the possible exception of the points [t] ∈ R where one-sided derivatives exist, and
(iii) substitution of x(t) into Eq. (1) leads to an identity on each interval [n, n + 1) ⊂ R

with integral endpoints.
In this note, existence criteria for ω-periodic solutions of (1) will be established.

For this purpose, we will make use of a continuation theorem of Mawhin. Let X

and Y be two Banach spaces and L : DomL ⊂ X → Y is a linear mapping and
N : X → Y a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKerL = codim Im L < +∞, and ImL is closed in Y. If L is a
Fredholm mapping of index zero, there exist continuous projectors P : X → X and
Q : Y → Y such that ImP = KerL and ImL = KerQ = Im(I − Q). It follows that
L|DomL∩KerP : (I − P )X → ImL has an inverse which will be denoted by KP . If Ω is an

open and bounded subset of X, the mapping N will be called L-compact on Ω̄ if QN
(
Ω̄
)

is bounded andKP (I −Q)N
(
Ω̄
)

is compact. Since ImQ is isomorphic to KerL, there
exists an isomorphism J : ImQ→ KerL.

Theorem A (Mawhin’s continuation theorem [20]). Let L be a Fredholm mapping of
index zero, and let N be L-compact on Ω̄. Suppose

(i) for each λ ∈ (0, 1), x ∈ ∂Ω, Lx 6= λNx; and
(ii) for each x ∈ ∂Ω ∩KerL, QNx 6= 0 and deg (JQN, Ω ∩KerL, 0) 6= 0.

Then the equation Lx = Nx has at least one solution in Ω̄ ∩ domL.
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2. Existence Criteria

The main results of our paper are as follows.

Theorem 1 Suppose there exist constants K > 0, D > 0, r1 > 0, r2 > 0 and r3 > 0
such that

(a1) |f (t, x)| 6 r1 |x|+ K for (t, x) ∈ R2,

(b1) xg (t, x) > 0 and |g (t, x)| > r2 |x| for t ∈ R and |x| > D,

(c1) limx→−∞max0≤t≤ω
g(t,x)
x
≤ r3,

(d1) 2ω
[
r1 + r3

(
r1
r2

+ ω
)]

< 1.

Then (1) has an ω-periodic solution.

Theorem 2 Suppose there exist K > 0, D > 0, r1 > 0, r2 > 0 and r3 > 0 such that

(a1) | f (t, x) |6 r1 |x|+ K for (t, x) ∈ R2,

(b1) xg (t, x) > 0 and | g (t, x) |> r2 |x| , for t ∈ R and |x| > D,

(c2) limx→+∞max0≤t≤ω
g(t,x)
x
≤ r3,

(d1) 2ω
[
r1 + r3

(
r1
r2

+ ω
)]

< 1.

Then (1) has an ω-periodic solution.

Theorem 3 Suppose there exist K > 0, D > 0 and r > 0 such that

(a2) | f (t, x) |6 K for (t, x) ∈ R2,

(b2) xg (t, x) > 0 and | g (t, x) |> K, for t ∈ R and |x| > D,

(c3) limx→−∞max0≤t≤ω
g(t,x)
x ≤ r < 1

2ω2 .

Then (1) has an ω-periodic solution.

Theorem 4 Suppose there exist positive constants K > 0, D > 0 and r > 0 such that

(a2) | f (t, x) |6 K for (t, x) ∈ R2,

(b2) xg (t, x) > 0 and | g (t, x) |> K, for t ∈ R and |x| > D,

(c4) limx→+∞max0≤t≤ω
g(t,x)
x ≤ r < 1

2ω2 .

Then (1) has an ω-periodic solution.
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In order to prove Theorem 1, we first make the simple observation that x (t) is an
ω-periodic solution of the following equation

x′ (t) = x′ (0)−
∫ t

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds, t ∈ R, (2)

if, and only if, x (t) is an ω-periodic solution of (1).

Next, let Xω be the Banach space of all real ω-periodic differentiable continuous
functions of the form x = x (t) which is defined on R and endowed with the usual linear
structure as well as the norm ‖x‖1 = ‖x‖0+‖x′‖0 where ‖·‖0 denotes the maximum norm.
Let Yω be the Banach space of all real continuous functions of the form y = αt + h (t)
such that y (0) = 0 where α ∈ R and h (t) ∈ Xω , and endowed with the usual linear
structure as well as the norm ‖y‖2 = |α|+ ‖h‖1 . Let the zero element of Xω and Yω be
denoted by θ1 and θ2 respectively.

Define the mappings L : Xω → Yω and N : Xω → Yω respectively by

Lx (t) = x′ (t) − x′ (0) , t ∈ R, (3)

and

Nx (t) = −
∫ t

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds, t ∈ R. (4)

Let

h̄ (t) = −
∫ t

0

f (s, x ([s])) ds +
t

ω

∫ ω

0

f (s, x ([s])) ds, t ∈ R. (5)

Since h̄ ∈ Xω and h̄(0) = 0, N is a well-defined operator from Xω to Yω. Let us define
P : Xω → Xω and Q : Yω → Yω respectively by

Px (t) = x (0) , t ∈ R, (6)

for x = x (t) ∈ Xω and

Qy (t) = αt, t ∈ R, (7)

for y (t) = αt + h (t) ∈ Yω.
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Lemma 1 Let the mapping L be defined by (3). Then

KerL = {x ∈ Xω |x(t) = c, t ∈ R} , (8)

that is, the set of all real constant functions.

Indeed, it is easy to see from (3) that (8) holds.

Lemma 2 Let the mapping L be defined by (3). Then

ImL = {y ∈ Xω | y (0) = 0} ⊂ Yω. (9)

Proof. It suffices to show that for each y = y (t) ∈ Xω that satisfies y (0) = 0, there is
a x = x (t) ∈ Xω such that

y (t) = x′ (t) − x′ (0) , t ∈ R. (10)

But this is relatively easy, since we may let

x (t) =
∫ t

0

y (s) ds− t

ω

∫ ω

0

y (s) ds, t ∈ R. (11)

Then it may easily be checked that (11) holds. The proof is complete. 2

Lemma 3 The mapping L defined by (3) is a Fredholm mapping of index zero.

Indeed, from Lemma 1, Lemma 2 and the definition of Yω, dimKerL = codimImL =
1 < +∞. From (9), we see that ImL is closed in Yω. Hence L is a Fredholm mapping of
index zero.

Lemma 4 Let the mapping L, P and Q be defined by (3), (6) and (7) respectively. Then
ImP = KerL and ImL = KerQ.

Indeed, from Lemma 1, Lemma 2 and the defining conditions (6) and (7), it is easy
to see that ImP = KerL and ImL = KerQ.

Lemma 5 Let L and N be defined by (3) and (4) respectively. Suppose Ω is an open and
bounded subset of Xω . Then N is L-compact on Ω.
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Proof. It is easy to see that for any x ∈ Ω,

QNx (t) = − t

ω

∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds, (12)

so,

‖QNx‖2 =
∣∣∣∣ 1ω
∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds

∣∣∣∣ , (13)

and

(I −Q)Nx (t) = −
∫ t

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds

+
t

ω

∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds (14)

for t ≥ 0. These lead us to

KP (I −Q)Nx (t) = −
∫ t

0

dv

∫ v

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds

+
t

ω

∫ ω

0

dv

∫ v

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds

+
t2

2ω

∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds

− t

2

∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds. (15)

By (13), we see that QN
(
Ω̄
)

is bounded. Noting that (7) holds and N is a completely con-

tinuous mapping, by means of the Arzela-Ascoli theorem we know that KP (I −Q)N
(
Ω̄
)

is relatively compact. Thus N is L-compact on Ω. The proof is complete. 2

Lemma 6 Suppose g (t) is a real, bounded and continuous function on [a, b) and limt→b− g (t)
exists. Then there is a point ξ ∈ (a, b) such that∫ b

a

g (s) ds = g (ξ) (b− a) . (16)
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The above result is only a slight extension of the integral mean value theorem and is
easily proved.

We will need the integral equation

x′ (t) = x′ (0)− λ

∫ t

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds, t ∈ R, (17)

where λ ∈ (0, 1) .

We now turn to the proof of Theorem 1: Let L, N, P and Q be defined by ( 3), (4),
(6) and (7) respectively. Let x (t) be a ω-periodic solution of (9). By (9), we have∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds = 0, (18)

that is ∫ ω

0

f (s, x′ (s)) ds =
ω∑
i=1

∫ i

i−1

g (s, x ([s− k])) ds. (19)

Using the integral mean value theorem and Lemma 6, there are ξi ∈ [i− 1, i] , i =
1, 2, ..., ω, and ξ ∈ [0, ω] such that

f (ξ, x′ (ξ)) = − 1
ω

ω∑
i=1

g (ξi, x ([i− 1− k])) . (20)

Let Φ = max0≤t≤ω x (t) , Ψ = min0≤t≤ω x (t) ,

M = max
0≤t≤ω,Ψ≤x≤Φ

g (t, x)

and

m = min
0≤t≤ω,Ψ≤x≤Φ

g (t, x) .

Since x (t) is ω-periodic, we see that

m ≤ 1
ω

ω∑
i=1

g (ξi, x ([i− 1− k])) ≤M. (21)
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By (21), the continuity of g (t, x) , and the intermediate value theorem, there are η and
t1 ∈ [0, ω] such that

1
ω

ω∑
i=1

g (ξi, x ([i− 1− k])) = g (η, x (t1)) . (22)

From (20) and (22) we have

f (ξ, x′ (ξ)) = g (η, x (t1)) . (23)

We assert that

|x (t1)| ≤
r1

r2
‖x′‖0 + D +

K

r2
. (24)

Indeed our assertion is true if |x (t1)| ≤ D. Otherwise, by (a1) , (b1) and (23), we have

r2 |x (t1)| ≤ |g (η, x (t1))| = |f (ξ, x′ (ξ))|
≤ r1 |x′ (ξ)|+ K ≤ r1 ‖x′‖0 + K, (25)

which implies (24).
For for any t ∈ [0, ω] , we now have

|x (t)| ≤ |x (t1)|+
∣∣∣∣∫ t

t1

x′ (s) ds

∣∣∣∣
≤ |x (t1)|+

∫ ω

0

|x′ (s)|ds ≤
(

r1

r2
+ ω

)
‖x′‖0 + D +

K

r2
, (26)

so that

‖x‖0 ≤
(

r1

r2
+ ω

)
‖x′‖0 + D +

K

r2
. (27)

By condition (d1) , we know that there is a positive number ε such that

η1 = 2ω

[
r1 + (r3 + ε)

(
r1

r2
+ ω

)]
< 1. (28)

From condition (c1) ,we see that there is an ρ > D such that for t ∈ R and x < −ρ,

g (t, x)
x

< r3 + ε. (29)
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Let

E1 = {t | t ∈ [0, ω] , x ([t− k]) < −ρ} , (30)

E2 = {t | t ∈ [0, ω] , |x ([t− k])| ≤ ρ} , (31)

E3\ (E1 ∪ E2) (32)

and

M0 = max
0≤t≤2π,|x|≤ρ

|G (t, x)| . (33)

By (27), (29) and (30), we have

∫
E1

|g (t, x ([t− k]))|dt ≤
∫
E1

(r3 + ε) |x ([t − k])|dt

≤ ω (r3 + ε) max
0≤t≤2π

|x (t)| = ω (r3 + ε) ‖x‖0

≤ ω (r3 + ε)
[(

r1

r2
+ ω

)
‖x′‖0 + D +

K

r2

]
. (34)

From (31) and (33), we have

∫
E2

|g (t, x ([t − k]))|dt ≤ ωM0 . (35)

It follows from condition (a1) that

∫ ω

0

|f (t, x′ (t))| dt 6 ω (r1 ‖x′‖0 + K) . (36)
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In view of (b1), (18), (30), (31), (32), (34), (35) and (36), we get

∫
E3

|g (t, x ([t− k]))|dt =
∫
E3

g (t, x ([t− k])) dt

= −
∫ ω

0

f (t, x′ (t)) dt−
∫
E1

g (t, x ([t− k])) dt

−
∫
E2

g (t, x (t− τ (t))) dt

≤
∫ ω

0

|f (t, x′ (t))| dt +
∫
E1

|g (t, x ([t − k]))|dt

+
∫
E2

|g (t, x ([t− k]))| dt

≤ ω (r1 ‖x′‖0 + K) + ωM0

+ω (r3 + ε)
[(

r1

r2
+ ω

)
‖x′‖0 + D +

K

r2

]
≤ ω

[
r1 + (r3 + ε)

(
r1

r2
+ ω

)]
‖x′‖0 + M1, (37)

for some positive number M1. Thus it follows from (9), (34), (35), (36) and (37) that

∫ 2π

0

|x′′ (t)| dt ≤
∫ 2π

0

|f (t, x′ (t− σ (t)))|dt +
∫
E1

|g (t, x ([t− k]))| dt

+
∫
E2

|G (t, x ([t− k]))| dt +
∫
E3

|G (t, x ([t − k]))|dt + 2π ‖p‖0

≤ 2π (r1 ‖x′‖0 + K) + 2π (r3 + ε)
[(

r1

r2
+ 2π

)
‖x′‖0 + D +

K

r2

]
+2πM0 + 2π

[
r1 + (r3 + ε)

(
r1

r2
+ 2π

)]
‖x′‖0 + M1

+2π ‖p‖0
= η1 ‖x′‖0 + M2, (38)
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for some positive number M2. Note that x (0) = x (2π), therefore there is a t2 ∈ [0, ω]
such that x′ (t2) = 0. Hence, for any t ∈ [0, ω] , we have

|x′ (t)| =
∣∣∣∣∫ t

t2

x′′ (s) ds

∣∣∣∣ ≤ ∫ ω

0

|x′′ (t)| dt, (39)

that is

‖x′‖0 ≤
∫ ω

0

|x′′ (t)| dt. (40)

By (38) and (40), we see that

‖x′‖0 ≤ η1 ‖x′‖0 + M2, (41)

so that

‖x′‖0 ≤ D1, (42)

where D1 = M2/ (1− η1) . From (27) and (42),we get

‖x‖0 ≤ D0 (43)

where D0 =
(
r1
r2

+ ω
)

D1 + D + K
r2

. Take a positive number D > max{D0, D1}+ D, and

let

Ω =
{
x ∈ X | ‖x‖1 < D

}
. (44)

From Lemma 1 and Lemma 2, we know that L is a Fredholm mapping of index zero
and N is L-compact on Ω. In view of the bounds found above for periodic solutions, we
see that for any λ ∈ (0, 1) and any x ∈ ∂Ω, Lx 6= λNx. Since for any x ∈ ∂Ω ∩ KerL,

x = D (> D) or x = −D, thus in view of (b1) and (7) we have

QNx (t) = − t

ω

∫ ω

0

(f (s, x′ (s)) + g (s, x ([s− k]))) ds

= − t

ω

∫ ω

0

(f (s, 0) + g (s, x (([t − k])))) ds

= − t

ω

∫ 2π

0

g (s, x)ds,
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so

QNx 6= θ2.

The isomorphism J : ImQ→ KerL is defined by J (tα) = α for α ∈ R and t ∈ R. Then

JQNx = − 1
ω

∫ ω

0

g (s, , x)ds 6= 0.

In particular, we see that if x = D, then

JQNx = − 1
ω

∫ ω

0

g
(
s, D

)
ds < 0, (45)

and if x = −D, then

JQNx = − 1
ω

∫ ω

0

g
(
s,−D

)
ds > 0. (46)

Consider the mapping

H (x, s) = −sx + (1− s)JQNx, 0 ≤ s ≤ 1. (47)

From (45) and (47), for each s ∈ [0, 1] and x = D, we have

H (x, s) = −sD + (1− s)
−1
ω

∫ ω

0

g
(
s, D, D

)
ds < 0, (48)

Similarly, from (46) and (47), for each s ∈ [0, 1] and x = −D, we have

H (x, s) = sD + (1− s)
−1
ω

∫ ω

0

g
(
s,−D

)
ds > 0. (49)

By (48) and (49), H (x, s) is a homotopy. This shows that

deg (JQNx, Ω∩KerL, θ1) = deg (−x, Ω ∩KerL, θ1) 6= 0.

By Theorem A, we see that equation Lx = Nx has at least one solution in Ω ∩ DomL.

In other words, (1) has an ω-periodic solution x (t) . The proof is complete. 2

The proof of Theorem 2 is similar to that of Theorem 1, and so we omit the details
here.
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Proof of Theorem 3 Let x (t) be a ω-periodic solution of (9). Then (18) and (23) hold.
We will prove that there are positive numbers D2 and D3 such that

‖x‖0 ≤ D2 and ‖x′‖0 ≤ D3. (50)

By (a2) and (23) we see that

|g (η, x (t1))| = |f (ξ, x′ (ξ))| ≤ K. (51)

It follows from (b2) and (51) that

|x (t1)| ≤ D. (52)

Thus for any t ∈ [0, ω] , we have

|x (t)| ≤ |x (t1)|+
∫ ω

0

|x′ (s)|ds

≤ D + ω ‖x′‖0 ,

so that

‖x‖0 ≤ D + ω ‖x′‖0 . (53)

In view of condition (c3), we can take a positive number ε1 such that η2 = 2ω2 (r + ε1) <

1. Furthermore, we see that there is an ρ1 > D such that for t ∈ R and x < −ρ1,

g (t, x)
x

< r + ε1. (54)

Let

E′1 = {t | t ∈ [0, ω] , x ([t− k]) < −ρ1} , (55)

E′2 = {t | t ∈ [0, ω] , |x ([t− k])| ≤ ρ1} , (56)

E′3\ (E′1 ∪ E′2) (57)

and

M3 = max
0≤t≤ω,|x|≤ρ1

|g (t, x)| . (58)

69



WANG, CHENG

By (53), (54) and (55), we have

∫
E′1

|g (t, x ([t− k]))|dt ≤
∫
E′1

(r + ε1) |x ([t− k])|dt

≤ ω (r + ε1) max
0≤t≤ω

|x (t)| = ω (r + ε) ‖x‖0

≤ ω (r + ε1) [D + ω ‖x′‖0] . (59)

From (56) and (58), we have

∫
E′2

|g (t, x ([t − k]))|dt ≤ ωM3 . (60)

It follows from condition (a2) that

∫ ω

0

|f (t, x′ (t))|dt 6 ωK. (61)

In view of (b2), (18), (59), (60) and (61), we get

∫
E′3

|g (t, x ([t− k]))|dt =
∫
E′3

g (t, x ([t− k])) dt

= −
∫ ω

0

f (t, x′ (t)) dt−
∫
E1

g (t, x ([t− k])) dt

−
∫
E′2

g (t, x ([t− k])) dt

≤
∫ ω

0

|f (t, x′ (t))| dt +
∫
E1

|g (t, x ([t − k]))|dt

+
∫
E′2

|g (t, x ([t− k]))| dt

≤ ωK + ω (r + ε1) [D + ω ‖x′‖0] + ωM3

≤ ω2 (r + ε1) ‖x′‖0 + M4, (62)
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for some positive number M4. It follows from (9), (59), (60), (61) and (62) that∫ ω

0

|x′′ (t)| dt ≤
∫ ω

0

|f (t, x′ (t))|dt +
∫
E′1

|g (t, x ([t− k]))| dt

+
∫
E′2

|g (t, x ([t− k]))|dt +
∫
E′3

|g (t, x ([t− k]))| dt

≤ ωK + ω (r + ε1) [D + ω ‖x′‖0] + ωM3 + ω2 (r + ε1) ‖x′‖0 + M4

= η2 ‖x′‖0 + M5, (63)

for some positive number M5. Since x (0) = x (ω), there is a t3 ∈ [0, ω] such that
x′ (t3) = 0. Hence, for any t ∈ [0, ω] , we have

|x′ (t)| =
∣∣∣∣∫ t

t3

x′′ (s) ds

∣∣∣∣ ≤ ∫ ω

0

|x′′ (t)| dt, (64)

that is

‖x′‖0 ≤
∫ ω

0

|x′′ (t)| dt. (65)

By (63) and (65), we see that

‖x′‖0 ≤ η2 ‖x′‖0 + M5, (66)

so that

‖x′‖0 ≤ D3, (67)

where D3 = M5/ (1− η2) . From (53) and (67), we get

‖x‖0 ≤ D2 (68)

where D2 = D + ω D3. From (67) and (68), we see that there are positive numbers D2

and D3 such that (50) hold. The remaining proof is the same as that of Theorem 1. The
proof is complete. 2

The proof of Theorem 4 is similar to that of Theorem 3, and so we omit the details
here.
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Example. Consider a Rayleigh equation of the form

x′′ (t) +
1 + cosπt

48π (1 + π)
x′ (t) + exp

(
− (x′ (t))2

)
+

exp
(
(sin πt)2

)
h (x ([t− k]))

25π (π + 1)
= 1, (69)

where k is a positive integer and

h (x) =

{
x3 x > 0
x x < 0

.

Take

f (t, x) =
1 + cos πt

200
x + exp

(
−x2

)
− 1,

and

g (t, x) =
exp

(
(sin πt)2

)
h (x)

101
,

it is then easy to verify that all the assumptions in Theorem 1 are satisfied with K =
2, D = 1, r1 = 1

100 , r2 = 1
101 and r3 = e

101 . Thus (69) has a 2-periodic solution.
Furthermore, this solution is nontrivial since y (t) ≡ 0 is not a solution of (69).
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