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On Irregular Semi Strong P-ADIC U Numbers

Hiilya Duru

Abstract

The concept of the “relation of comparability” was introduced by Maillet in
[7], who showed that if «, 3 are comparable Liouville numbers then each of the
numbers a+03, a—@8, af and «a/fis either arational or Lioville number. Moreover
those which are Liouville numbers are comparable aamong theem and toa and (.
Maillet’s proof uses in an essential way the transitivity of the comparability relation.
Unfortunately, as the comparability relation is not transitive, his proof is defective.
In this paper, without using the comparability relation, we obtain some uncountable
subfields of p-adic numbers field, Qp.

In [1] using a different notion of comparability, Alniagik was able to define some
uncountable subfields of C.

In this paper, without using comparability relation, we define irregular semi-
strong p-adic U,, numbers and obtain some uncountable subfields of p-adic numbers
field Q.

1. Introduction

For the convenience of the reader we shall briefly recall Koksma’s well known classi-
fication [2] for the p-adic numbers, which was introduced by Schlikewei [3].

For an algebraic number «, define the height H («) as the height of the minimal
polynomial of a, say P (z) € Z[x], where the P is supposed to be normalized, such that,
its coeflicients are relatively prime.

For a p-adic number ¢ in @), and a natural number n put
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wy (H, )= min | &—alp,

dega<n
H(o)<H
a#g
and
1 r(H
w6 = Jim s ()
and

w* (§) = lim sup

n—oo

wi (6)

Define p* (€) as being the smallest n , such that w}; (§) = oo, if such an n exists. Otherwise

put p* (§) = oo. Now call a p-adic number &

S* — number if 0 < w* (§) < oo and p* (§) = oo,
T* — numberif w* (§) = oo and p* (§) = oo,
U* — number if w* (§) = oo and p* (§) < oo.
Every S*—,T*, U* — number is a S—, T—, U—, number respectively. Moreover in [4]

Xin has proved that Mahler’s subclasses U, are equal to the Koksma’s subclasses U}, .

For the proof of the main results we shall need the following lemmas.

Lemma 1 Let o, 8 be two p-adic algebraic numbers with different minimal polynomials.
Then, for | a|,=p~" and r = min{0, h},

C1

(@™ H ()"

(M=1) r=M(|h|+1)
@M

)

la =3 p> I
where M > max{deg «, degB} and ¢; = (Schlikewei [3] ).

Lemma 2 Let P(x) = apz™ + ...+ ag € Z[z]. If « is a root of P then

1 .
|a— 08> TP (Morrison [5]).
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Lemma 3 Let aq,...ax (k> 1) be algebraic numbers in Q, with Q [(a1,...ax); Q] = ¢
and let F (y,x1,...x;) be a polynomial with integral coefficients, whose degree in y is at
least one. If n is an algebraic number such that F (n,as,...ar) = 0, then the degree of
n <dg and

2dg+(li+...+lk)g 1 lig lkg
hn <3 'h(xl "'hakv

where hy, is the height of 1, ha, is the height of o; (1 =1,...,k), H is the mazimum of
the absolute values of the coefficients of F, ; is the degree of F inx; (i=1,...,k) and d
is the degree of F' iny (see [6] )

Our first main result is the following theorem.

Theorem 4 Let (ai)ieN be a sequence of p-adic algebraic numbers with

(1)dega; = m; <k, lim H («;) = o0, (k > 0 constant), (1)
0<]| | ! here li @)
Qit1 — O |p= ——, where lim w; = oo,
+ P H(ai) ¢ 1—00
| < —— 5> 0 (3)
Qit1 — @ ——— for some .
+ p H (ai)g
Then lim;_,oc o; € U}, where m = liminf; . m;.
Proof. It follows from lemma 2 and hypothesis (2) that consecutive a}s cannot be
conjugates and if i is sufficiently large, | ;1 |,=| @; |,. Hence by putting | a; |,= p™"
(h € Z) and t = min{0, h} and using lemma 1, we get
co
— <| @it1 — i |p, 4
H(ai)kH(aH_l)k 1 | + |p ( )

pU=1) t=k (IAI+1)

where cp— R

Since lim; oo | i1 — a4 [p= 0, the sequence (o), is a Cauchy sequence in @, and

so lim; o oy = € exists. Let’s show that & € U}, First we shall prove that, for sufficiently
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large ¢ and s > 4, | s — @y |p=]| @it1 — @; |p . Indeed, combining (4) and (2) and using

both the facts that H («;) — oo and w; — oo we obtain

and from this

H (a;)"" < H ()" (for i large enough).

Combining relations (2) and (6) we get

| it1 — i [p> ] Qige — Qigeta I,

for each t = 2,...5 — 1.

Hence

1

T a)™ (i large and s > 1)

| s — i [p=| iy — i [p=
Since «; — &, for sufficiently large i, there is a s > i such that
| € —as |p< H (i)
Therefore a combination of (6), (7) and (8) together with the equalities,

| & —ay |p=max{|§—as |p»|as_ai |p}:| Qy — Qg |p:H(ai)

gives us

| € —ai|p=H(a;)""",  (fori large).

—w;

9)

On the other hand, since liminf; .. m; = m, we have a subsequence (a;, ),y of

(ai);cny such that liminfy .. a;, = m. Hence for sufficiently large k, dega;, = m.

Hence, using (9) we get | £ — ay, |p,= H (i)~ “* , which shows that p* (§) < m.
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We shall complete the proof by showing the opposite inequality p* (§) > m. For this

we shall distinguish two cases according to m = 1 or m > 1. In the case m = 1, by
definition of p* (), we have p* (€§) > 1. So together with p* (¢§) < m = 1, we obtain

(€)= 1.

Now suppose that m > 1. Let 8 be a p-adic number of degree < m. Since lim inf; o, m;

m, deg a; > m for sufficiently large ¢. Applying lemma 1, we get

18— i |p> e H (ar)”* 1 H(B)

(i large).

On the other hand, as w; — oo, for sufficiently large i, we have

Now suppose that the p-adic algebraic number 3 satisfies the condition

2k (k + )
Wi T

H (9) > max{H (ai,) =}

(10)

(11)

(12)

where ig is a sufficiently large, fixed index. It is clear that there exists a natural number

i > ip such that, for every p-adic algebraic number satisfying (12), we have

Taking into account (5),(11) and (13) we can have only one of the following cases:

H(a;) < H(B) < H (a41) -

H(ay) < H(B) < H (0p41) %

or

H(ai1)% < H(B) < H(aip1).

(13)

Suppose that the first relation in (14) holds. Then a combination of (2), (3), (9), (10),

(12) and (14) gives us
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|8 = ailp> H(B) ™" > H (1) ™" > H ()" =[ €~ ailp - (15)

Furthermore, using the equation, |&— 8 |,= max{|{— a; |p,| 8 — a; |p}, we get

| €= B |p> H(a;)™?*  (for large 7). (16)

If the second relation in (14) holds, then using the relations (9), (10), (11), (12), we get

—2k (k+9)
5

| € = it lp= H (i) """ < H (B) <H@T <l - Bl

so that

€= 8 ly=| aip1 — B > H(B)F ~*, (17)

As the exponent of H(3) on the right hand side of (17) is greater than that of (16), ( 17)
is verified for all p-adic algebraic numbers of degree at most m—1 and height greater than
max{H (a;,), %} This shows us that p*(£) > m. This result together with the inequality
1* (&) < m imply that p*(£) = m also in case m > 1, as well. Hence ¢ € U,,, and this
completes the proof. O

Definition 5 Given a U number § in Q,. If there is a sequence (o) of p-adic algebraic
numbers satisfying the conditions (1), (2) and (3) of Theorem 1, then we say that “€ =
lim; o «; 18 an irreqular semi-strong U-number.”

In Theorem 1 we have seen that if liminf;, . m; = m, then £ € U,,.
In the sequel U* and U will denote the set of all irregular semi-strong U—, Uy, —

numbers.

Example. If p is a prime number and « is a p-adic algebraic number of degree m, then

o0
%za—i—Zp"! is in U,

=1
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By defining o, = a+p* +... +p™, one can show that (atn) ey satisfies the conditions
of Theorem 1.

The main result of the paper is the following theorem.

Theorem 6 The set F' = AUU} is an uncountable subfield of Q,,where A denotes the
set of p-adic algebraic numbers.
Proof. Let y1,y2 € F. Assume that y; € U!® y2 € Uj®. Then there are positive
numbers p1, p2 and sequences of algebraic numbers (ai)ieN ,(Bi)ien (dega; <l degf; <
[ where | > max{r,t}) such that

1 1 . .
0 <lais —ailp= H(o)™ = H{ai)™ where lim w; = oo, lim H (a;) =00 (A)
1 1

where lim v; = o0, lim H (8;) =00 (B)

O < ﬁl - BZ = Vj < )
| +1 |P H (61) H (BH_I)Pz oo oo

Let ( 2;)ien be a monotonic union sequence formed from {H («;)} and {H(5;)}. Assume
that x;, > max{H (a1), H(B1)}. We shall introduce positive integers j (i),t (i) and then

p-adic algebraic numbers §; as follows. For i > i,

j(i) = max{v:H (o) < x;}
t; = max{v: H(B,) <x;} (18)
5 = aje)+ B

Now consider the set B ={§; : i > ip}. If B contains only finitely many p-adic algebraic
numbers then lim; .., §; = y1 + y2 € B. Hence y; + y» is a p-adic algebraic numbers i.e.
y1+y2 € F.

Hence we suppose that B contains infinitely many p-adic algebraic numbers. In this

case, we define a subsequence (0;, )ken of (8;)ien as follows.

If 6 = dj,+s then §;, =d0;,41 =... = §ik+s_1(8 =1,2.., 041 — % — 1,941 — ik)

(19)

Tgt1
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Now by lemma 3, we) have

H((Szk) < 34 H(aj(ik))l H(ﬁt(ik))l (k =1,2, )

Hence using (18), we get

H(;,,) < 23 (for large k). (20)

ik

On the other hand, from the definitions of j (i) and ¢ (¢) , we see that

0 < j(ing1) —j(ing1 —1) <1 and 0 <t (igsr) —t(iggr — 1) < 1. (21)

Moreover, from the definition of (4;, )xen, one can see easily that the numbers in (21)
cannot be zero at the same time. If the numbers are both different from zero, then a
combination of (A), (B),(C),(19) and (21) gives us

| 5ik+1 - 6ik |p = | 6ik+1 - 6ik+1—1 |P
< max{] (i) = G- lps | Betins) = Betinsa—1) p}
< max{(H(aj(ik+1—1)+1))_pl y (H(Bt(ik+1—1)+1))_p2} (22)
1
Tk+1

where p = min{p1, p2}. Hence using the relations (20),, and (22) and putting v;, =

o logwi,C
+1

———, we get

T hogar, V€ 8

| §ik+1 — Oiy, |p< H(‘sik)_wk (k large). (23)

Let’s show that v;, — oo as k — oo. It’s enough to consider only the case z;_ , =
(H(aj (i) and. a1 = (H (B¢ (i4,—1)), since the other three cases are trivial and
similar. First using lemma 1 and relation (A) , theen replaacing in (5) («;) and w;,

respectively, by 38; and v; we get,

82



DURU

H(aj(ik+1) )_Sl <| Qj(igs1) — Qj(igpr—1) |P< H(aj(ik+1)_p1 < H(Bt(ik+1)_p1 <

—v, _ ot
H(ﬁt(ik+1—1) Ut G 1) P/ .

Therefore we have limy_. oo v;, = 00

Now let’s show that limg o H(d;,) = 0o. By lemmal and (22), we have

coH (83,) "V H(Siy )™ < Giyn — 0 [p< @y’ (24)

V41"

Since  limy oo (logz,,,) / (logx;,) = oo, we have

23 < ot 14 and zf, 18 eyt (for k large). (25)

Therefore using (20),,,(24) and (25) respectively, we get

5p

i < H(6,,,) (for k large), (26)

Tgt1

which shows that H(d;,) — oo, as k — co. Furthermore, using (20),_, in (22), we have

| 6oy — 0y lp< 2 < H(5;,,,) 207

ki1 iht1 tht1

Now we show that the product y1ys is in F. To show this we shall approximate y1y2 by

algebraic numbers ¢; as defined as

9; = aj(i)ﬁt(i) (i > ). (27)

If B = {0} : i > ip}contains only finitely many p-adic algebraic numbers, then it is closed.
Therefore by (27) we have y1y2 € A C F. If Bis not finite, we can choose a subsequence
(6, Jken of (0;)ien as follows.

It 6, , =0, ,thend, =6 4

Now using (18), (C) and (22) we obtain

= =0 oy (8= 1,20 kg1 — ik — Ligsr —in)
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| §ék+1 - 5;;6 |P:| §ék+1 - §ék+1—1 |PS max{| Qjigt1) — Xjling1—1) |P
| Bt(ik+1) |P7 | ﬁt(iwl) - Bt(iwl—l) |P N Qg (ig41—1) |P} g < M max{| Qji(ik41) (28)
—Qj(ixs1-1) |ps | Beinsr) = Belinir—1) pks

where M = max{1,| 1 |p,| y2 |p}- On the other hand, using an argument similar the one

used in the previous steps, we obtain

H(o;,) < xf’iz (for k large). (29)
Hence a combination of (28) and (29) gives us

16, . =0 |,< H(8, )&#  (fork large).

Tk+1 Tk+1

Moreover, using the same arguments that we have used to get (23), we obtain

| | | 7Uik

Tk+1

(for k large),

which shows that ;s is in U for some m < [2. Next, as we have shown for (H (6;,))ken,
one can easily show that respectively, H(J;, ) — oc.

Finally let o € A and y; € F'— A. Then using an similar argument to the one used to
prove that @ 4+ y; € F and approximating ay;, a + y1 by (a)ien, (@ + a;)ien respec-
tively, one shows that ay;,a+y; € F. O
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