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A Connected Sum of Knots and Fintushel-Stern Knot

Surgery on 4-manifolds

Manabu Akaho

Abstract

We give some new examples of smooth 4-manifolds which are diffeomorphic
although they are obtained by Fintushel-Stern knot surgeries on a smooth 4-manifold
with different knots; the first such examples are given by Akbulut [1]. In the proof

we essentially use the monodromy of a cusp.

1. Introduction

Let X be a smooth 4-manifold. In [4] a cusp in X is a PL embedded 2-sphere of self-
intersection 0 with a single nonlocally flat point whose neighborhood is the cone on the
right-hand trefoil knot. The regular neighborhood of a cusp is called a cusp neighborhood.

It is fibered by smooth tori with one singular fiber, the cusp, and the monodromy is

1 1
-1 0 /)
If T is a smoothly embedded torus representing a nontrivial homology class [T], we say
that T is c-embedded if T is a smooth fiber in a cusp neighborhood.
Consider an oriented knot K in S3, and let m denote an oriented meridional circle to

K; see Figure 1. Let Mg be the 3-manifold obtained by performing 0-framed surgery on

K. Then m can also be viewed as a circle in Mx. In Mg x S! we have a smooth torus
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Figure 1

T,, = m x S' of self-intersection 0. Since a tubular neighborhood of m has a canonical
framing in Mg, a tubular neighborhood of the torus 7T}, in Mg x S' has a canonical
identification with T, x D?. Let X(Kk,¢) denote the fiber sum

X(k,p) = [X\ (T x D*)] Uy [(Mg x S)\ (T} x D?)],

where T x D? is a tubular neighborhood of the torus 7' in the manifold X and ¢ :
AT x D?) — O(T,, x D?) is a homeomorphism. In general, the diffeomorphism type of
X(K,¢) depends on ¢. If we fix an identification of T" with S 1'% S and a homeomorphism
¢ : (T x D*) — O(T,, x D?) such that

H(ST Xk x %) = m Xk X *
d(x x ST x ) = *x S x x,
p(x x ¥ x OD*) = xx * x OD?,

where *’s are points, then we shall simply denote X ¢) by Xx. We call this operation
Fintushel-Stern knot surgery on a 4-manifold X with K.

In case H1(X,Z) has no 2-torsion there is a natural identification of the spin® struc-
tures of X with the characteristic elements of H%(X,Z). Recall that the Seiberg-Witten

invariant SWx is a function
SWx : {k € H*(X,Z)|k = wy(TX) mod 2} — Z.

The function SWx has a compact support B = {£0, ... ,£/,} which is called the set of
basic classes. By setting g := exp 3 for each 8 € H?(X,Z), the function SWx is usually

written as a Laurent polynomial

SWx =Y SWx(B)ts.
BeB
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Then Fintushel and Stern [4] theorem says:

Theorem 1.1 Let X be a simply connected smooth 4-manifold with b™ > 1. Suppose
that X contains a smoothly c-embedded torus T such that 7 (X \T) =1. Then

SWx, = SWx - Ak(t),
where t = exp 2[T] and Ak(t) is the Alexander polynomial of K.

To make sense of the statement of the theorem, we need to replace [T] by its Poincaré
dual.

Since the Seiberg-Witten invariant is a diffeomorphism invariant, if SWx and Ag(t)
are nontrivial, then X and Xg are not diffeomorphic. Fintushel and Stern conjectured
that if X is the Kummer surface K3, then the association K — X gives an injective
map from the set of isotopy classes of knots in 52 to the set of diffeomorphism classes of

smooth structures on X. In [1] Akbulut gave first counterexamples to this conjecture:

Theorem 1.2 Let X be a smooth 4-manifold. Suppose that X contains a smoothly c-
embedded torus T. Fiz an identification of T with S'xS'. We denote the mirror reflection
of an oriented knot K by K*, see Figure 2. Then

Xk = Xk~,
and this diffeomorphism leaves the core torus invariant.

We denote an oriented meridional circle to K* by m/. In the Alexander polynomials
K is equal to K*, i.e., Ax(t) = Ag+(t). In Section 2 we give a simple proof of Theorem
1.2.

Next we give a relation between a connected sum of knots and Fintushel-Stern knot
surgery; this observation is given by S. Finashin, see Lemma 3.1 in [3]. Let 7} and T3 be
regular fibers in a cusp neighborhood in X. We fix common identifications of 77 and Tb
with S* x S by holonomy. Let K; and K5 be oriented knots in S%. We construct X,
by using 77 and K;. Since X, also has a cusp neighborhood which has T, as a smooth
fiber, we can construct (Xg, )k, by using Th and Ko.

Theorem 1.3

(XKl)K2 = XKﬂiKz»

where K14 Ks is the connected sum of K1 and Ks.
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Figure 2

Note that Ak, () - Ak, (t) = Ak, 4k, (t). Because the core torus is invariant with respect

to the diffeomorphism Xy, = X, we obtain the following corollary:

Corollary 1.4
(XK1 ) ke = X(xp )52

Finally these claims give us new counterexamples to the conjecture:

Corollary 1.5
Xk, = X(K7)pKo-

In section 3 we prove Theorem 1.3.

2. A simple proof of Theorem 1.2

In this section we give a simple proof of Theorem 1.2.
We denote the oppositely oriented circle to an oriented S* by ST. Let Y denote the

fiber sum
Y = [X\ (T x D*)] Uy [(Mg+ x SY)\ (T x D),
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where 1 : (T x D?) — O(T,,» x D?) is a homeomorphism such that

P(ST x % x %) = m X % X *,
P x ST x %) = % x 8! x
Y(x x * x OD?) = % x* x 9D

10
Since the third power of the monodromy of the cusp is — ( 01 ) on a smooth fiber T, Y

is diffeomorphic to Xg~. Let f : Mg — Mg+ be an orientation reversing diffeomorphism
which maps the points to their mirror reflection points and f x (—idg:1) : Mg x St —
Mg+ x S' an orientation preserving diffeomorphism, where —idg: is the orientation
reversing diffeomorphism of S'. Then we can construct a diffeomorphism F : X — Y
by

Py | U (Cids))@), fors € (M x S\ (Ty x D?)
' z, forz e X\ (T x D?),

and F maps the core torus to itself. Hence Xx+« =Y = Xk and we finish proving the

theorem. O

3. Proof of Theorem 1.3

We define an oriented link as in Figure 3; let N be the 3-manifold obtained by

K O 1) K

Figure 3

performing O-framed surgery on each component of the link. Let W denote the fiber
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W i= [X\ (T x D) Ug [(N x §")\ (T, x D),

where m is an oriented meridional circle to K. Because T5 is ambient isotopic to mq xS,
we can easily see that W is diffeomorphic to (X, )k,. Now we shall play Kirby calculus

on the 3-manifold N as in Figure 4. The last step of vanishing components can be found

K>

I 0 —_—
0 0
0
= Kl \{ K2 = Kl
0 0
0
= K; K>
Figure 4

in example 5.2 of [6]. Hence N \ (my x D?) is diffeomorphic to My, 4k, \ (m1 x D?), and

K,

K,

W is diffeomorphic to Xk, 4x,. We finish proving Theorem 1.3.
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