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A Connected Sum of Knots and Fintushel-Stern Knot

Surgery on 4-manifolds

Manabu Akaho

Abstract

We give some new examples of smooth 4-manifolds which are diffeomorphic

although they are obtained by Fintushel-Stern knot surgeries on a smooth 4-manifold

with different knots; the first such examples are given by Akbulut [1]. In the proof

we essentially use the monodromy of a cusp.

1. Introduction

Let X be a smooth 4-manifold. In [4] a cusp in X is a PL embedded 2-sphere of self-
intersection 0 with a single nonlocally flat point whose neighborhood is the cone on the
right-hand trefoil knot. The regular neighborhood of a cusp is called a cusp neighborhood.
It is fibered by smooth tori with one singular fiber, the cusp, and the monodromy is(

1 1
−1 0

)
.

If T is a smoothly embedded torus representing a nontrivial homology class [T ], we say
that T is c-embedded if T is a smooth fiber in a cusp neighborhood.

Consider an oriented knot K in S3 , and let m denote an oriented meridional circle to
K; see Figure 1. Let MK be the 3-manifold obtained by performing 0-framed surgery on
K. Then m can also be viewed as a circle in MK . In MK × S1 we have a smooth torus
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K m

Figure 1

Tm = m× S1 of self-intersection 0. Since a tubular neighborhood of m has a canonical
framing in MK , a tubular neighborhood of the torus Tm in MK × S1 has a canonical
identification with Tm ×D2. Let X(K,φ) denote the fiber sum

X(K,φ) := [X \ (T ×D2)] ∪φ [(MK × S1) \ (Tm ×D2)],

where T × D2 is a tubular neighborhood of the torus T in the manifold X and φ :
∂(T ×D2) → ∂(Tm ×D2) is a homeomorphism. In general, the diffeomorphism type of
X(K,φ) depends on φ. If we fix an identification of T with S1×S1 and a homeomorphism
φ : ∂(T ×D2)→ ∂(Tm ×D2) such that

φ(S1 × ∗ × ∗) = m× ∗ × ∗,
φ(∗ × S1 × ∗) = ∗ × S1 × ∗,

φ(∗ × ∗ × ∂D2) = ∗ × ∗ × ∂D2 ,

where ∗’s are points, then we shall simply denote X(K,φ) by XK . We call this operation
Fintushel-Stern knot surgery on a 4-manifold X with K.

In case H1(X,Z) has no 2-torsion there is a natural identification of the spinc struc-
tures of X with the characteristic elements of H2(X,Z). Recall that the Seiberg-Witten
invariant SWX is a function

SWX : {k ∈ H2(X,Z)|k ≡ w2(TX) mod 2} → Z.

The function SWX has a compact support B = {±β1, . . . ,±βn} which is called the set of
basic classes. By setting tβ := expβ for each β ∈ H2(X,Z), the function SWX is usually
written as a Laurent polynomial

SWX =
∑
β∈B

SWX (β)tβ .
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Then Fintushel and Stern [4] theorem says:

Theorem 1.1 Let X be a simply connected smooth 4-manifold with b+ > 1. Suppose
that X contains a smoothly c-embedded torus T such that π1(X \ T ) = 1. Then

SWXK = SWX ·∆K(t),

where t = exp 2[T ] and ∆K(t) is the Alexander polynomial of K.

To make sense of the statement of the theorem, we need to replace [T ] by its Poincaré
dual.

Since the Seiberg-Witten invariant is a diffeomorphism invariant, if SWX and ∆K(t)
are nontrivial, then X and XK are not diffeomorphic. Fintushel and Stern conjectured
that if X is the Kummer surface K3, then the association K → XK gives an injective
map from the set of isotopy classes of knots in S3 to the set of diffeomorphism classes of
smooth structures on X. In [1] Akbulut gave first counterexamples to this conjecture:

Theorem 1.2 Let X be a smooth 4-manifold. Suppose that X contains a smoothly c-
embedded torus T . Fix an identification of T with S1×S1. We denote the mirror reflection
of an oriented knot K by K∗, see Figure 2. Then

XK = XK∗ ,

and this diffeomorphism leaves the core torus invariant.

We denote an oriented meridional circle to K∗ by m′. In the Alexander polynomials
K is equal to K∗, i.e., ∆K(t) = ∆K∗(t). In Section 2 we give a simple proof of Theorem
1.2.

Next we give a relation between a connected sum of knots and Fintushel-Stern knot
surgery; this observation is given by S. Finashin, see Lemma 3.1 in [3]. Let T1 and T2 be
regular fibers in a cusp neighborhood in X. We fix common identifications of T1 and T2

with S1 × S1 by holonomy. Let K1 and K2 be oriented knots in S3. We construct XK1

by using T1 and K1. Since XK1 also has a cusp neighborhood which has T2 as a smooth
fiber, we can construct (XK1)K2 by using T2 and K2.

Theorem 1.3

(XK1)K2 = XK1]K2 ,

where K1]K2 is the connected sum of K1 and K2.
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K m K∗m′

Figure 2

Note that ∆K1(t) ·∆K2(t) = ∆K1]K2 (t). Because the core torus is invariant with respect
to the diffeomorphism XK1 = XK∗1 , we obtain the following corollary:

Corollary 1.4

(XK1 )K2 = X(K∗1 )]K2 .

Finally these claims give us new counterexamples to the conjecture:

Corollary 1.5

XK1]K2 = X(K∗1 )]K2 .

In section 3 we prove Theorem 1.3.

2. A simple proof of Theorem 1.2

In this section we give a simple proof of Theorem 1.2.

We denote the oppositely oriented circle to an oriented S1 by S1 . Let Y denote the
fiber sum

Y := [X \ (T ×D2)] ∪ψ [(MK∗ × S1) \ (Tm′ ×D2)],
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where ψ : ∂(T ×D2)→ ∂(Tm′ ×D2) is a homeomorphism such that

ψ(S1 × ∗ × ∗) = m′ × ∗ × ∗,
ψ(∗ × S1 × ∗) = ∗ × S1 × ∗,

ψ(∗ × ∗ × ∂D2) = ∗ × ∗ × ∂D2.

Since the third power of the monodromy of the cusp is−
(

1 0
0 1

)
on a smooth fiber T , Y

is diffeomorphic to XK∗ . Let f : MK →MK∗ be an orientation reversing diffeomorphism
which maps the points to their mirror reflection points and f × (−idS1 ) : MK × S1 →
MK∗ × S1 an orientation preserving diffeomorphism, where −idS1 is the orientation
reversing diffeomorphism of S1. Then we can construct a diffeomorphism F : XK → Y

by

F (x) :=

{
(f × (−idS1))(x), for x ∈ (MK × S1) \ (Tm ×D2)

x, for x ∈ X \ (T ×D2),

and F maps the core torus to itself. Hence XK∗ = Y = XK and we finish proving the
theorem. 2

3. Proof of Theorem 1.3

We define an oriented link as in Figure 3; let N be the 3-manifold obtained by

K1 K2

Figure 3

performing 0-framed surgery on each component of the link. Let W denote the fiber
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sum

W := [X \ (T ×D2)] ∪φ [(N × S1) \ (Tm1 ×D2)],

where m1 is an oriented meridional circle to K1. Because T2 is ambient isotopic tom1×S1,
we can easily see that W is diffeomorphic to (XK1 )K2 . Now we shall play Kirby calculus
on the 3-manifold N as in Figure 4. The last step of vanishing components can be found

K1 K2

0 0

0

⇒ K1 K2

2 0

0

⇒ K1 K2

0 0

0

⇒ K1 K2

K2

0

0

0

⇒ K1 K2

0

Figure 4

in example 5.2 of [6]. Hence N \ (m1×D2) is diffeomorphic to MK1]K2 \ (m1×D2), and
W is diffeomorphic to XK1]K2 . We finish proving Theorem 1.3. 2
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