A Connected Sum of Knots and Fintushel-Stern Knot Surgery on 4-manifolds

Manabu Akaho

Abstract

We give some new examples of smooth 4-manifolds which are diffeomorphic although they are obtained by Fintushel-Stern knot surgeries on a smooth 4-manifold with different knots; the first such examples are given by Akbulut [1]. In the proof we essentially use the monodromy of a cusp.

1. Introduction

Let X be a smooth 4-manifold. In [4] a cusp in X is a PL embedded 2-sphere of selfintersection 0 with a single nonlocally flat point whose neighborhood is the cone on the right-hand trefoil knot. The regular neighborhood of a cusp is called a cusp neighborhood. It is fibered by smooth tori with one singular fiber, the cusp, and the monodromy is

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

If T is a smoothly embedded torus representing a nontrivial homology class [T], we say that T is c-embedded if T is a smooth fiber in a cusp neighborhood.

Consider an oriented $\operatorname{knot} K$ in S^{3}, and let m denote an oriented meridional circle to K; see Figure 1. Let M_{K} be the 3 -manifold obtained by performing 0 -framed surgery on K. Then m can also be viewed as a circle in M_{K}. In $M_{K} \times S^{1}$ we have a smooth torus

[^0]AKAHO

Figure 1
$T_{m}=m \times S^{1}$ of self-intersection 0 . Since a tubular neighborhood of m has a canonical framing in M_{K}, a tubular neighborhood of the torus T_{m} in $M_{K} \times S^{1}$ has a canonical identification with $T_{m} \times D^{2}$. Let $X_{(K, \phi)}$ denote the fiber sum

$$
X_{(K, \phi)}:=\left[X \backslash\left(T \times D^{2}\right)\right] \cup_{\phi}\left[\left(M_{K} \times S^{1}\right) \backslash\left(T_{m} \times D^{2}\right)\right]
$$

where $T \times D^{2}$ is a tubular neighborhood of the torus T in the manifold X and ϕ : $\partial\left(T \times D^{2}\right) \rightarrow \partial\left(T_{m} \times D^{2}\right)$ is a homeomorphism. In general, the diffeomorphism type of $X_{(K, \phi)}$ depends on ϕ. If we fix an identification of T with $S^{1} \times S^{1}$ and a homeomorphism $\phi: \partial\left(T \times D^{2}\right) \rightarrow \partial\left(T_{m} \times D^{2}\right)$ such that

$$
\begin{aligned}
\phi\left(S^{1} \times * \times *\right) & =m \times * \times * \\
\phi\left(* \times S^{1} \times *\right) & =* \times S^{1} \times * \\
\phi\left(* \times * \times \partial D^{2}\right) & =* \times * \times \partial D^{2}
\end{aligned}
$$

where *'s are points, then we shall simply denote $X_{(K, \phi)}$ by X_{K}. We call this operation Fintushel-Stern knot surgery on a 4-manifold X with K.

In case $H_{1}(X, \mathbf{Z})$ has no 2-torsion there is a natural identification of the spin ${ }^{c}$ structures of X with the characteristic elements of $H^{2}(X, \mathbf{Z})$. Recall that the Seiberg-Witten invariant $S W_{X}$ is a function

$$
S W_{X}:\left\{k \in H^{2}(X, \mathbf{Z}) \mid k \equiv w_{2}(T X) \bmod 2\right\} \rightarrow \mathbf{Z}
$$

The function $S W_{X}$ has a compact support $B=\left\{ \pm \beta_{1}, \ldots, \pm \beta_{n}\right\}$ which is called the set of basic classes. By setting $t_{\beta}:=\exp \beta$ for each $\beta \in H^{2}(X, \mathbf{Z})$, the function $S W_{X}$ is usually written as a Laurent polynomial

$$
S W_{X}=\sum_{\beta \in B} S W_{X}(\beta) t_{\beta}
$$

AKAHO

Then Fintushel and Stern [4] theorem says:
Theorem 1.1 Let X be a simply connected smooth 4-manifold with $b^{+}>1$. Suppose that X contains a smoothly c-embedded torus T such that $\pi_{1}(X \backslash T)=1$. Then

$$
S W_{X_{K}}=S W_{X} \cdot \Delta_{K}(t),
$$

where $t=\exp 2[T]$ and $\Delta_{K}(t)$ is the Alexander polynomial of K.
To make sense of the statement of the theorem, we need to replace $[T]$ by its Poincaré dual.

Since the Seiberg-Witten invariant is a diffeomorphism invariant, if $S W_{X}$ and $\Delta_{K}(t)$ are nontrivial, then X and X_{K} are not diffeomorphic. Fintushel and Stern conjectured that if X is the Kummer surface $K 3$, then the association $K \rightarrow X_{K}$ gives an injective map from the set of isotopy classes of knots in S^{3} to the set of diffeomorphism classes of smooth structures on X. In [1] Akbulut gave first counterexamples to this conjecture:

Theorem 1.2 Let X be a smooth 4-manifold. Suppose that X contains a smoothly cembedded torus T. Fix an identification of T with $S^{1} \times S^{1}$. We denote the mirror reflection of an oriented knot K by K^{*}, see Figure 2. Then

$$
X_{K}=X_{K^{*}},
$$

and this diffeomorphism leaves the core torus invariant.
We denote an oriented meridional circle to K^{*} by m^{\prime}. In the Alexander polynomials K is equal to K^{*}, i.e., $\Delta_{K}(t)=\Delta_{K^{*}}(t)$. In Section 2 we give a simple proof of Theorem 1.2.

Next we give a relation between a connected sum of knots and Fintushel-Stern knot surgery; this observation is given by S . Finashin, see Lemma 3.1 in [3]. Let T_{1} and T_{2} be regular fibers in a cusp neighborhood in X. We fix common identifications of T_{1} and T_{2} with $S^{1} \times S^{1}$ by holonomy. Let K_{1} and K_{2} be oriented knots in S^{3}. We construct $X_{K_{1}}$ by using T_{1} and K_{1}. Since $X_{K_{1}}$ also has a cusp neighborhood which has T_{2} as a smooth fiber, we can construct $\left(X_{K_{1}}\right)_{K_{2}}$ by using T_{2} and K_{2}.

Theorem 1.3

$$
\left(X_{K_{1}}\right)_{K_{2}}=X_{K_{1} \sharp K_{2}},
$$

where $K_{1} \sharp K_{2}$ is the connected sum of K_{1} and K_{2}.

AKAHO

Figure 2

Note that $\Delta_{K_{1}}(t) \cdot \Delta_{K_{2}}(t)=\Delta_{K_{1} \sharp K_{2}}(t)$. Because the core torus is invariant with respect to the diffeomorphism $X_{K_{1}}=X_{K_{1}^{*}}$, we obtain the following corollary:

Corollary 1.4

$$
\left(X_{K_{1}}\right)_{K_{2}}=X_{\left(K_{1}^{*}\right) \sharp K_{2}} .
$$

Finally these claims give us new counterexamples to the conjecture:

Corollary 1.5

$$
X_{K_{1} \sharp K_{2}}=X_{\left(K_{1}^{*}\right) \sharp K_{2}} .
$$

In section 3 we prove Theorem 1.3.

2. A simple proof of Theorem 1.2

In this section we give a simple proof of Theorem 1.2.
We denote the oppositely oriented circle to an oriented S^{1} by $\overline{S^{1}}$. Let Y denote the fiber sum

$$
Y:=\left[X \backslash\left(T \times D^{2}\right)\right] \cup_{\psi}\left[\left(M_{K^{*}} \times S^{1}\right) \backslash\left(T_{m^{\prime}} \times D^{2}\right)\right]
$$

90

AKAHO

where $\psi: \partial\left(T \times D^{2}\right) \rightarrow \partial\left(T_{m^{\prime}} \times D^{2}\right)$ is a homeomorphism such that

$$
\begin{aligned}
\psi\left(\overline{S^{1}} \times * \times *\right) & =m^{\prime} \times * \times * \\
\psi\left(* \times \overline{S^{1}} \times *\right) & =* \times S^{1} \times * \\
\psi\left(* \times * \times \partial D^{2}\right) & =* \times * \times \partial D^{2} .
\end{aligned}
$$

Since the third power of the monodromy of the cusp is - $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ on a smooth fiber T, Y is diffeomorphic to $X_{K^{*}}$. Let $f: M_{K} \rightarrow M_{K^{*}}$ be an orientation reversing diffeomorphism which maps the points to their mirror reflection points and $f \times\left(-\mathrm{id}_{S^{1}}\right): M_{K} \times S^{1} \rightarrow$ $M_{K^{*}} \times S^{1}$ an orientation preserving diffeomorphism, where $-\mathrm{id}_{S^{1}}$ is the orientation reversing diffeomorphism of S^{1}. Then we can construct a diffeomorphism $F: X_{K} \rightarrow Y$ by

$$
F(x):=\left\{\begin{aligned}
\left(f \times\left(-\operatorname{id}_{S^{1}}\right)\right)(x), & \text { for } x \in\left(M_{K} \times S^{1}\right) \backslash\left(T_{m} \times D^{2}\right) \\
x, & \text { for } x \in X \backslash\left(T \times D^{2}\right),
\end{aligned}\right.
$$

and F maps the core torus to itself. Hence $X_{K^{*}}=Y=X_{K}$ and we finish proving the theorem.

3. Proof of Theorem 1.3

We define an oriented link as in Figure 3; let N be the 3 -manifold obtained by

Figure 3
performing 0 -framed surgery on each component of the link. Let W denote the fiber

AKAHO

sum

$$
W:=\left[X \backslash\left(T \times D^{2}\right)\right] \cup_{\phi}\left[\left(N \times S^{1}\right) \backslash\left(T_{m_{1}} \times D^{2}\right)\right]
$$

where m_{1} is an oriented meridional circle to K_{1}. Because T_{2} is ambient isotopic to $m_{1} \times S^{1}$, we can easily see that W is diffeomorphic to $\left(X_{K_{1}}\right)_{K_{2}}$. Now we shall play Kirby calculus on the 3-manifold N as in Figure 4. The last step of vanishing components can be found

Figure 4
in example 5.2 of [6]. Hence $N \backslash\left(m_{1} \times D^{2}\right)$ is diffeomorphic to $M_{K_{1} \sharp K_{2}} \backslash\left(m_{1} \times D^{2}\right)$, and W is diffeomorphic to $X_{K_{1} \sharp K_{2}}$. We finish proving Theorem 1.3.

Acknowledgment

The author would like to thank K. Fukaya who suggested publishing this manuscript and M. Tange who met him in argument.

AKAHO

References

1] S. Akbulut. A Fake Cusp and a Fishtail, Turkish J. Math. 23 (1999), no. 1, 19-31.
[2] S. Akbulut. Variations on Fintushel-Stern Knot Surgery on 4-manifolds, Turkish J. Math. 26 (2002), no. 1, 81-92.
[3] S. Finashin. Knotting of algebraic curves in $C P^{2}$, Topology 41 (2002), 47-55.
[4] R. Fintushel and R. Stern. Knots, Links, and 4-manifolds, Invent. Math. 134, no. 2 (1998), 363-400.
[5] R. E. Gompf and A. I. Stipsicz. 4-manifolds and Kirby Calculus, Graduate Studies in Mathematics 20, (1999), American Mathematical Society.
[6] R. C. Kirby. The Topology of 4-manifolds, Lecture Notes in Mathematics 1374, (1989), Springer-Verlarg.
[7] M. Tange. Master's thesis, Kyoto University (2003).

Manabu AKAHO
Department of Mathematics
Tokyo Metropolitan University
akaho@math.metro-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: Primary 57R55. Secondary 57M25
 Supported by JSPS Grant-in-Aid for Scientific Research (Wakate (B))

