On Cauchy's Bound for Zeros of a Polynomial

V. K. Jain

Abstract

In this note, we improve upon Cauchy's classical bound, and upon some recent bounds for the moduli of the zeros of a polynomial.

Key Words: Zeros, polynomials, upper bound, moduli, refinement.

1. Introduction and Statement of Results

Let

$$
\begin{aligned}
f(z)= & z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\ldots+a_{1} z+a_{0} \\
& a_{i} \neq 0, \text { for at least one } i \in I \\
& I=\{0,1,2, \ldots, n-1\}
\end{aligned}
$$

be a polynomial of degree n, with complex coefficients. Then, according to Cauchy's classical result [1], we have the following theorem.

Theorem A

$$
Z[f(z)] \subset \bar{B}(\eta) \subset B(1+a)
$$

where η is the unique positive root of the equation

$$
\begin{gather*}
Q(x)=0 \\
Q(x)=x^{n}-\left|a_{n-1}\right| x^{n-1}-\left|a_{n-2}\right| x^{n-2}-\ldots-\left|a_{1}\right| x-\left|a_{0}\right|, \tag{1}
\end{gather*}
$$

[^0]$Z[f(z)]=$ the set of all zeros of the polynomial $f(z)$,
$$
B(r)=\{z:|z|<r\}, \bar{B}(r)=\{z:|z| \leq r\} .
$$
and
\[

$$
\begin{equation*}
a=\max _{i \in I}\left|a_{i}\right| \tag{2}
\end{equation*}
$$

\]

Sun and Hsieh [2] obtained certain refinements of Cauchy's classical bound. They proved the next theorem.

Theorem B

$$
Z[f(z)] \subset \bar{B}(\eta) \subset B\left(1+\delta_{1}\right) \subset B\left(1+\delta_{2}\right) \subset B(1+a),
$$

with

$$
\eta<1+\delta_{1} \leq 1+\delta_{2} \leq 1+a
$$

where δ_{1} is the unique positive root of the equation

$$
\begin{gather*}
Q_{1}(x)=0 \\
Q_{1}(x)=x^{3}+\left(2-\left|a_{n-1}\right|\right) x^{2}+\left(1-\left|a_{n-1}\right|-\left|a_{n-2}\right|\right) x-a \tag{3}
\end{gather*}
$$

and

$$
\delta_{2}=\frac{1}{2}\left[\left(\left|a_{n-1}\right|-1\right)+\sqrt{\left(\left|a_{n-1}\right|-1\right)^{2}+4 a}\right] .
$$

Theorem C Let

$$
\begin{aligned}
g_{1}(z) & =(-1)^{n} f(z) f(-z), \\
h(z) & =g_{1}(\sqrt{z})=\sum_{i=0}^{n} b_{i} z^{i}, \text { say }, \\
b & =\max _{i \in I}\left|b_{i}\right|, \\
m & =\max \left\{i: i \in I \&\left|b_{i}\right|=b\right\}, \\
\widetilde{b} & =\max _{i \in I \sim\{m\}}\left|b_{i}\right|,
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\left\{\begin{array}{l}
\min \left[(b / \widetilde{b})^{1 /(2(n-m-1))},\{b(n-m-1)\}^{1 / 2(n-m)}\right] ; \widetilde{b} \neq 0, m \neq n-1 \& b \geq 1 \\
1 ; \text { otherwise }
\end{array}\right. \\
& g_{2}(z)=\alpha^{-2 n}(-1)^{n} f(\alpha z) f(-\alpha z), \\
& C(z)=g_{2}(\sqrt{z})=\sum_{i=0}^{n} c_{i} z^{i}, \text { say, (with } c_{n}=1, \text { obviously), } \\
& c=\max _{i \in I}\left|c_{i}\right|
\end{aligned}
$$

Then

$$
\begin{equation*}
Z[f(z)] \subset \bar{B}(\alpha \sqrt{\widetilde{\eta}}) \subset B\left(\alpha \sqrt{1+\widetilde{\delta_{1}}}\right) \subset B\left(\alpha \sqrt{1+\widetilde{\delta_{2}}}\right) \subset B(\alpha \sqrt{1+c}) \tag{4}
\end{equation*}
$$

with

$$
\widetilde{\eta}<1+\widetilde{\delta_{1}} \leq 1+\widetilde{\delta_{2}} \leq 1+c
$$

where $\widetilde{\eta}$ is the unique positive root of the equation

$$
\widetilde{Q}(x)=0
$$

$\widetilde{\delta_{1}}$ is the unique positive root of the equation

$$
\widetilde{Q_{1}}(x)=0
$$

$$
\begin{aligned}
\widetilde{Q}(x) & =x^{n}-\left|c_{n-1}\right| x^{n-1}-\left|c_{n-2}\right| x^{n-2}-\ldots-\left|c_{1}\right| x-\left|c_{0}\right|, \\
\widetilde{Q_{1}}(x) & =x^{3}+\left(2-\left|c_{n-1}\right|\right) x^{2}+\left(1-\left|c_{n-1}\right|-\left|c_{n-2}\right|\right) x-c,
\end{aligned}
$$

and

$$
\widetilde{\delta_{2}}=\frac{1}{2}\left\{\left(\left|c_{n-1}\right|-1\right)+\sqrt{\left(\left|c_{n-1}\right|-1\right)^{2}+4 c}\right\} .
$$

In this note, we have also obtained a refinement of Cauchy's classical bound and then obtained certain other similar bounds also. More precisely, we have proved the following theorem.

Theorem 1

$$
Z[f(z)] \subset \bar{B}(\eta) \subset B\left(1+\delta_{0}\right) \subset B\left(1+\delta_{1}\right)
$$

with

$$
\eta<1+\delta_{0} \leq 1+\delta_{1}
$$

where δ_{0} is the unique positive root of the equation

$$
\begin{align*}
Q_{0}(x)= & 0, \tag{5}\\
Q_{0}(x)= & x^{4}+\left(3-\left|a_{n-1}\right|\right) x^{3}+\left(3-2\left|a_{n-1}\right|-\left|a_{n-2}\right|\right) x^{2}+ \\
& \left(1-\left|a_{n-1}\right|-\left|a_{n-2}\right|-\left|a_{n-3}\right|\right) x-a . \tag{6}
\end{align*}
$$

Remark 1 It is obvious that Theorem 1 is a refinement of Theorem B and therefore, also a refinement of Cauchy's classical bound.

Theorem 2

$$
Z[f(z)] \subset \bar{B}(\alpha \sqrt{\widetilde{\eta}}) \subset B\left(\alpha \sqrt{1+\widetilde{\delta_{0}}}\right) \subset B\left(\alpha \sqrt{1+\widetilde{\delta_{1}}}\right)
$$

with

$$
\widetilde{\eta}<1+\widetilde{\delta_{0}} \leq 1+\widetilde{\delta_{1}}
$$

where $\widetilde{\delta_{0}}$ is the unique positive root of the equation

$$
\begin{aligned}
\widetilde{Q_{0}}(x)= & 0, \\
\widetilde{Q_{0}}(x)= & x^{4}+\left(3-\left|c_{n-1}\right|\right) x^{3}+\left(3-2\left|c_{n-1}\right|-\left|c_{n-2}\right|\right) x^{2} \\
& +\left(1-\left|c_{n-1}\right|-\left|c_{n-2}\right|-\left|c_{n-3}\right|\right) x-c .
\end{aligned}
$$

Remark 2 It is obvious that Theorem 2 is a refinement of Theorem C. Therefore, thinking of Theorem 1 and Theorem 2 together, we can say that we have got upper bounds for the moduli of the zeros of the polynomial $f(z)$, better than those obtained by Sun and Hsieh [2], and hence, also better than those obtained by Zilovic et al. [3], as suggested by Sun and Hsieh [2].

2. Proofs of the Theorems

Proof of Theorem 1 That equation (5) has a unique positive root δ_{0}, follows by the use of Descartes' rule of signs. Further,

$$
\begin{aligned}
Q\left(1+\delta_{0}\right)= & \left(1+\delta_{0}\right)^{n}-\left|a_{n-1}\right|\left(1+\delta_{0}\right)^{n-1}-\left|a_{n-2}\right|\left(1+\delta_{0}\right)^{n-2}- \\
& \left|a_{n-3}\right|\left(1+\delta_{0}\right)^{n-3}-\left|a_{n-4}\right|\left(1+\delta_{0}\right)^{n-4}-\ldots \\
& \ldots-\left|a_{0}\right|,(\text { by }(1)), \\
\geq & \left(1+\delta_{0}\right)^{n}-\left|a_{n-1}\right|\left(1+\delta_{0}\right)^{n-1}-\left|a_{n-2}\right|\left(1+\delta_{0}\right)^{n-2} \\
& -\left|a_{n-3}\right|\left(1+\delta_{0}\right)^{n-3}-a\left(1+\delta_{0}\right)^{n-4}-\ldots \\
& \ldots-a\left(1+\delta_{0}\right)-a,(\text { by }(2)), \\
= & \left(1+\delta_{0}\right)^{n}-\left|a_{n-1}\right|\left(1+\delta_{0}\right)^{n-1}-\left|a_{n-2}\right|\left(1+\delta_{0}\right)^{n-2} \\
& -\left|a_{n-3}\right|\left(1+\delta_{0}\right)^{n-3}-a\left\{\frac{\left(1+\delta_{0}\right)^{n-3}-1}{\delta_{0}}\right\}, \\
> & \left(1+\delta_{0}\right)^{n-3}\left\{\left(1+\delta_{0}\right)^{3}-\left|a_{n-1}\right|\left(1+\delta_{0}\right)^{2}-\right. \\
& \left.\left|a_{n-2}\right|\left(1+\delta_{0}\right)-\left|a_{n-3}\right|-\frac{a}{\delta_{0}}\right\}, \\
= & \frac{\left(1+\delta_{0}\right)^{n-3}}{\delta_{0}} Q_{0}\left(\delta_{0}\right), \\
= & 0,
\end{aligned}
$$

which implies

$$
\eta<1+\delta_{0} .
$$

Again,

$$
\begin{aligned}
Q_{0}\left(\delta_{1}\right) & =Q_{0}\left(\delta_{1}\right)-\delta_{1} Q_{1}\left(\delta_{1}\right)-Q_{1}\left(\delta_{1}\right) \\
& =\delta_{1}\left(a-\left|a_{n-3}\right|\right),(\text { by }(3) \text { and }(6)) \\
& \geq 0
\end{aligned}
$$

thereby implying that

$$
\delta_{0} \leq \delta_{1}
$$

And now Theorem 1 follows, by using the fact that η is unique positive root of the equation

$$
Q(x)=0 .
$$

Proof of Theorem 2. We can prove, as in the proof of Theorem 1, that

$$
\begin{aligned}
\widetilde{\eta} & <1+\widetilde{\delta_{0}} \\
\widetilde{\delta_{0}} & \leq \widetilde{\delta_{1}}
\end{aligned}
$$

and then Theorem 2 follows by using

$$
Z[f(z)] \subset \bar{B}(\alpha \sqrt{\widetilde{\eta}})(\text { by }(4))
$$

References

[1] Cauchy, A.L.: Exercises de mathématique, in Oeuvres (2) Vol. 9, (1829), p. 122.
[2] Sun, Y.J. and Hsieh, J.G.: A note on circular bound of polynomial zeros, IEEE Trans. Circuits Syst. I 43 (1996), 476-478.
[3] Zilovic, M.S., Roytman, L.M., Combettes, P.L. and Swamy, M.N.S.: A bound for the zeros of polynomials, ibid 39 (1992), 476-478.
V. K. JAIN

Received 24.11.2004
Mathematics Department,
I.I.T. Kharagpur - 721302, INDIA
e-mail: vkj@maths.iitkgp.ernet.in

[^0]: AMS Mathematics Subject Classification: Primary 30C15, 30C10

