On Certain Modified Meyer-König and Zeller Operators

L. Rempulska, K. Tomczak

Abstract

We introduce certain modified Meyer-König and Zeller operators and we study their approximation properties.

The similar results for modified Bernstein polynomials were given in [6].

Key Words: Meyer-König and Zeller operator, degree of approximation, Voronovskaya theorem.

1. Introduction

1.1. In 1960, W. Meyer-König and K. Zeller in [7] introduced the following operators for functions $f \in C_{Q}$ and $n \in N=\{1,2, \ldots$,$\} :$

$$
M_{n}(f ; x):= \begin{cases}\sum_{k=0}^{\infty} p_{n k}(x) f\left(\frac{k}{n+k}\right) & \text { if } 0 \leq x<1, \tag{1.1}\\ f(1) & \text { if } x=1,\end{cases}
$$

where

$$
\begin{equation*}
p_{n k}(x):=\binom{n+k}{k} x^{k}(1-x)^{n+1}, \quad k \in N_{0}=N \cup\{0\}, \tag{1.2}
\end{equation*}
$$

[^0]and C_{Q} is the space of all real-valued functions f, continuous on the interval $Q=[0,1]$ and the norm is defined by
\[

$$
\begin{equation*}
\|f\| \equiv\|f(\cdot)\|:=\max _{x \in Q}|f(x)| \tag{1.3}
\end{equation*}
$$

\]

$M_{n}(f)$ is called the n-th Meyer-König and Zeller operator.
Approximation properties of $M_{n}(f)$ have been examined in many papers (e.g. [1, 3, $5,7]$). Moreover, in many papers were introduced some modifications of operators $M_{n}(f)$ (e.g. $[2,4,5]$) and were studied their approximation properties.

It is known $([1,3,5])$ that if $f \in C_{Q}$, then $M_{n}(f) \in C_{Q}$ and $\left\|M_{n}(f)\right\| \leq\|f\|$ for $n \in N$, Moreover,

$$
\begin{equation*}
\left\|M_{n}(f ; \cdot)-f(\cdot)\right\| \leq A \omega_{2}\left(f ; \frac{1}{\sqrt{n}}\right), \quad n \in N \tag{1.4}
\end{equation*}
$$

where A is a suitable positive constant independent on n and x and $\omega_{2}(f ; \cdot)$ is the second modulus of smmothness of f. Obviously (1.4) implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|M_{n}(f ; \cdot)-f(\cdot)\right\|=0 \tag{1.5}
\end{equation*}
$$

for every $f \in C_{Q}$. Moreover for $f \in C_{Q}^{r+2}=\left\{f \in C_{Q}: f^{(r+2)} \in C_{Q}\right\}$ with a fixed $r \in N_{0}$, we have

$$
\begin{equation*}
\left\|M_{n}(f ; \cdot)-f(\cdot)\right\|=O\left(\frac{1}{n}\right), \quad n \in N \tag{1.6}
\end{equation*}
$$

and this estimation can not be improved.
1.2. In this paper we will show that the estimations (1.4) and (1.6) can be improved for $f \in C_{Q}^{r}, r \geq 2$, by certain modification of the operators $M_{n}(f)$. We introduce the following definition.

Definition 1 Let $r \in N_{0}$ be a fixed number. For $f \in C_{Q}^{r}$ and $n \in N$ we define the modified Meyer-König and Zeller operators

$$
M_{n ; r}(f ; x):= \begin{cases}\sum_{k=0}^{\infty} p_{n k}(x) \sum_{j=0}^{r} \frac{f^{(j)}\left(\xi_{n k}\right)}{j!}\left(x-\xi_{n k}\right)^{j} & \text { if } 0 \leq x<1 \tag{1.7}\\ f(1) & \text { if } x=1\end{cases}
$$

where

$$
\begin{equation*}
\xi_{n k}:=\frac{k}{n+k} \quad \text { for } \quad k \in N_{0}, \quad n \in N \tag{1.8}
\end{equation*}
$$

and $p_{n k}(x)$ is defined by (1.2). Clearly $M_{n ; 0}(f ; x) \equiv M_{n}(f ; x)$ for every $f \in C_{Q}$, $x \in Q, n \in N$.

In Section 2 we will give some auxiliary results. The main theorems will be given in Section 3.

In this paper we will denote by $A_{i}(q), i \in N$, a suitable positive constant depending only on parameter q.

2. Lemmas

2.1. It is well known $[1,2,3,4,7,8]$ that

$$
\begin{gather*}
M_{n}(1 ; x)=1 \quad M_{n}(t-x ; x)=0, \tag{2.9}\\
M_{n}\left((t-x)^{2} ; x\right)=\frac{x(1-x)^{2}}{n}+O_{x}\left(\frac{1}{n^{2}}\right), \quad \text { for } x \in Q \text { and } n \in N .
\end{gather*}
$$

Moreover in [4] is given the following lemma.

Lemma 1 For every fixed $q \in N$ there exists $A_{1}(q)=$ const. >0 such that

$$
M_{n}\left((t-x)^{2 q} ; x\right) \leq A_{1}(q) n^{-q}, \quad n \in N
$$

uniformly for $x \in Q$.
2.2. Now we will give some elementary properties of operators $M_{n ; r}(f)$ defined by (1.7) and (1.8).

From (1.7) it follows that $M_{n ; r}(1 ; x)=1$ for $x \in Q, n \in N$ and $r \in N_{0}$ and

$$
\begin{equation*}
M_{n ; r}(f ; 0)=f(0), \quad n \in N, \quad r \in N_{0} \tag{2.10}
\end{equation*}
$$

Lemma 2 Let $n, r \in N$ be fixed numbers. Then for every $f \in C_{Q}^{r}$ we have $M_{n ; r}(f) \in C_{Q}$, i.e. $M_{n ; r}(f)$ is an operator from the space C_{Q}^{r} into C_{Q}. Moreover there exists $A_{2}(r)=$ const. >0 such that for every $f \in C_{Q}^{r}$ we have

$$
\begin{equation*}
\left\|M_{n ; r}(f ; \cdot)\right\| \leq A_{2}(r) \sum_{j=0}^{r}\left\|f^{(j)}\right\|, \quad n \in N \tag{2.11}
\end{equation*}
$$

Proof. We observe that if $f \in C_{Q}^{r}$, then for every fixed $n \in N$ and $j, q=0,1, \ldots, r$ the sequence $\left(\left(\xi_{n k}\right)^{q} f^{(j)}\left(\xi_{n k}\right)\right)_{k=0}^{\infty}$ is convergent to $f^{(j)}(1)$ as $k \rightarrow \infty$. Moreover, it is easily verified that the limitability method of sequences, generated by $\left(p_{n k}(x)\right)_{k=0}^{\infty}$, with a fixed $n \in N$ and $x \rightarrow 1-$, is regular. Hence we can write

$$
\lim _{x \rightarrow 1-} \sum_{k=0}^{\infty} p_{n k}(x)\left(\xi_{n k}\right)^{q} f^{(j)}\left(\xi_{n k}\right)=f^{(j)}(1)
$$

for every $j, q=0,1, \ldots, r$ and $n \in N$.
From the above, and by (1.7) and (1.8), we get

$$
\begin{aligned}
\lim _{x \rightarrow 1-} M_{n ; r}(f ; x)= & \sum_{j=0}^{r} \frac{1}{j!} \sum_{q=0}^{j}\binom{j}{q}(-1)^{q} \\
& \times \lim _{x \rightarrow 1-} x^{j-q} \sum_{k=0}^{\infty} p_{n k}(x) f^{(j)}\left(\xi_{n k}\right) \xi_{n k}^{q}= \\
= & \sum_{j=0}^{r} \frac{f^{(j)}(1)}{j!} \sum_{q=0}^{j}\binom{j}{q}(-1)^{q} .
\end{aligned}
$$

Since

$$
\sum_{q=0}^{j}\binom{j}{q}(-1)^{q}=\left\{\begin{array}{lll}
1 & \text { if } \quad j=0 \tag{2.12}\\
0 & \text { if } \quad j \geq 1
\end{array}\right.
$$

we have

$$
\lim _{x \rightarrow 1-} M_{n ; r}(f ; x)=f(1), \quad n \in N, \quad r \in N_{0}
$$

which by (1.7) shows that $M_{n ; r}(f)$ is a continuous function at $x=1$. The continuity of $M_{n ; r}(f)$ at $x \in[0,1)$ is obvious by the properties of sum of power series convergent on $[0,1)$.

From this and (1.7), (1.8) and (1.1), we deduce that

$$
M_{n ; r}(f ; x)=\sum_{j=0}^{r} \frac{(-1)^{j}}{j!} M_{n}\left((t-x)^{j} f^{(j)}(t) ; x\right)
$$

for $x \in Q, n \in N$ and $r \in N_{0}$. Further, by (1.1)-(1.3), (1.8) and the Hölder inequality and Lemma 1, we have

$$
\begin{aligned}
& \left|M_{n}\left((t-x)^{j} f^{(j)}(t) ; x\right)\right| \leq\left\|f^{(j)}\right\| M_{n}\left(|t-x|^{j} ; x\right) \\
& \quad \leq\left\|f^{(j)}\right\|\left(M_{n}\left((t-x)^{2 j} ; x\right)\right)^{1 / 2}\left(M_{n}(1 ; x)\right)^{1 / 2} \leq A_{1}(j)\left\|f^{(j)}\right\| n^{-j / 2}
\end{aligned}
$$

for $x \in Q, n \in N$ and $0 \leq j \leq r$. Consequently

$$
\begin{aligned}
\left\|M_{n ; r}(f ; \cdot)\right\| & \leq \sum_{j=0}^{r} \frac{1}{j!}\left\|M_{n}\left((t-\cdot)^{j} f^{(j)}(t) ; \cdot\right)\right\| \\
& \leq A_{2}(r) \sum_{j=0}^{r}\left\|f^{(j)}\right\|, \quad n \in N
\end{aligned}
$$

Thus the proof of (2.11) is completed.

3. Theorems

3.1. First we will prove an analogue of (1.4) for $f \in C_{Q}^{r}$ and $M_{n ; r}(f)$, but we will use the modulus of continuity of the derivative $f^{(r)}$, i.e.

$$
\omega\left(f^{(r)} ; t\right):=\sup \left\{\left|f^{(r)}(x)-f^{(r)}(y)\right|: x, y \in Q,|x-y| \leq t\right\}
$$

for $t \in[0,1]([9])$. The application of the second modulus of continuity $\omega_{2}\left(f^{(r)} ; \cdot\right)$ to approximation theorem for $f \in C_{Q}^{r}$ and $M_{n ; r}(f), r \in N$, is difficult by derivatives $f^{(j)}$ and factors $\left(x-\xi_{n k}\right)^{j}, j=1, \ldots, r$, in the formula (1.7).

Theorem 1 Let $r \in N_{0}$ be a fixed number. Then there exists $A_{3}(r)=$ const. >0 such

REMPULSKA, TOMCZAK

that for every $f \in C_{Q}^{r}$ and $n \in N$ holds the following inequality

$$
\begin{equation*}
\left\|M_{n ; r}(f ; \cdot)-f(\cdot)\right\| \leq A_{3}(r) n^{-r / 2} \omega\left(f^{(r)} ; \frac{1}{\sqrt{n}}\right) \tag{3.13}
\end{equation*}
$$

where $\omega\left(f^{(r)} ; \cdot\right)$ is the modulus of continuity of $f^{(r)}$.
Proof. The estimation (3.13) for $r=0$ follows from (1.4).
Let $r \in N$. Similarly as in [6] we apply the following modified Taylor formula for $f \in C_{Q}^{r}$ in a given point $t \in Q$:

$$
\begin{aligned}
f(x)= & \sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!}(x-t)^{j} \\
& +\frac{(x-t)^{r}}{(r-1)!} \int_{0}^{1}(1-u)^{r-1}\left[f^{(r)}(t+u(x-t))-f^{(r)}(t)\right] d u, \quad x \in Q
\end{aligned}
$$

Choosing $t=\xi_{n k}$ and applying (2.9), we derive from the above Taylor formula and (1.7)

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty}\left(p_{n k}(x) f(x)=M_{n ; r}(f ; x)+\sum_{k=0}^{\infty} p_{n k}(x) \frac{\left(x-\xi_{n k}\right)^{r}}{(r-1)!} I_{r}\left(x, \xi_{n k}\right),\right. \tag{3.14}
\end{equation*}
$$

where

$$
I_{r}\left(x, \xi_{n k}\right)=\int_{0}^{1}(1-u)^{r-1}\left[f^{(r)}\left(\xi_{n k}+u\left(x-\xi_{n k}\right)\right)-f^{(r)}\left(\xi_{n k}\right)\right] d u
$$

The definition and properties of modulus of continuity of function ([9]) imply that

$$
\begin{aligned}
& \left|f^{(r)}\left(\xi_{n k}+u\left(x-\xi_{n k}\right)\right)-f^{(r)}\left(\xi_{n k}\right)\right| \leq \omega\left(f^{(r)} ; u\left|x-\xi_{n k}\right|\right) \\
& \quad \leq \omega\left(f^{(r)} ;\left|x-\xi_{n k}\right|\right) \leq\left(\sqrt{n}\left|x-\xi_{n k}\right|+1\right) \omega\left(f^{(r)} ; 1 / \sqrt{n}\right)
\end{aligned}
$$

for every $0 \leq u \leq 1,0 \leq x<1, k \in N_{0}$ and $n \in N$. From this and (3.14) we get

$$
\begin{align*}
& \left|f(x)-M_{n ; r}(f ; x)\right| \leq \tag{3.15}\\
& \quad \leq \frac{1}{r!} \omega\left(f^{(r)} ; 1 / \sqrt{n}\right) \sum_{k=0}^{\infty} p_{n k}(x)\left|x-\xi_{n k}\right|^{r}\left(\sqrt{n}\left|x-\xi_{n k}\right|+1\right) \\
& \quad \leq \frac{1}{r!} \omega\left(f^{(r)} ; 1 / \sqrt{n}\right)\left(\sqrt{n} M_{n}\left(|t-x|^{r+1} ; x\right)+M_{n}\left(|t-x|^{r} ; x\right)\right)
\end{align*}
$$

for $0 \leq x<1$ and $n \in N$. Using the Hölder inequality and (2.9) and Lemma 1, we get

$$
\begin{aligned}
M_{n}\left(|t-x|^{q} ; x\right) & \leq\left(M_{n}\left((t-x)^{2 q} ; x\right)\right)^{1 / 2}\left(M_{n}(1 ; x)\right)^{1 / 2} \\
& \leq A_{1}(q) n^{-q / 2}, \quad x \in Q, \quad n, q \in N
\end{aligned}
$$

Further from (3.15) results that

$$
\left|f(x)-M_{n ; r}(f ; x)\right| \leq A_{4}(r) \omega\left(f^{(r)} ; n^{-1 / 2}\right)\left(\sqrt{n} n^{-(r+1) / 2}+n^{-r / 2}\right)
$$

for all $0 \leq x<1$ and $n \in N$. This inequality and (1.7) for $x=1$ immediately yield (3.13).

From Theorem 1 we can derive the following two corollaries.

Corollary 1 Let $f \in C_{Q}^{r}, r \in N_{0}$, then

$$
\lim _{n \rightarrow \infty} n^{r / 2}\left\|M_{n ; r}(f ; \cdot)-f(\cdot)\right\|=0
$$

Corollary 2 Let $f \in C_{Q}^{r}, r \in N_{0}$, and let $f^{(r)} \in \operatorname{Lip} \alpha$ with a fixed $0<\alpha \leq 1$, i.e. $\omega\left(f^{(r)} ; t\right)=O\left(t^{\alpha}\right)$ for $t \in(0,1]$. Then

$$
\left\|M_{n ; r}(f ; \cdot)-f(\cdot)\right\|=O\left(n^{-(r+\alpha) / 2}\right), \quad n \in N
$$

Remark. Theorem 1, Corollary 1 and Corollary 2 show that the degree of approximation of function $f \in C_{Q}^{r}$ with $r \geq 2$ by operators $M_{n ; r}(f)$ is better than (1.4) and (1.6) for $M_{n}(f)$.
3.2. Now we will prove the Voronovskaya type theorem.

Theorem 2 Suppose that $f \in C_{Q}^{r+2}$ with a fixed $r \in N_{0}$. Then

$$
\begin{align*}
M_{n, r}(f ; x) & -f(x)=\frac{(-1)^{r} f^{(r+1)}(x) M_{n}\left((t-x)^{r+1} ; x\right)}{(r+1)!} \tag{3.16}\\
& +\frac{(-1)^{r}(r+1) f^{(r+2)}(x) M_{n}\left((t-x)^{r+2} ; x\right)}{(r+2)!}+g_{n}(x ; r)
\end{align*}
$$

for every $x \in Q$ and $n \in N$, where

$$
\begin{equation*}
g_{n}(x ; r)=o\left(n^{-(r+2) / 2}\right) \quad \text { as } \quad n \rightarrow \infty \tag{3.17}
\end{equation*}
$$

uniformly for $x \in Q$.

Proof. \quad By (1.1), (1.7) and (2.10) we have (3.16) for $x=0$ and $x=1$.
Fix $0<x<1$. For $f \in C_{Q}^{r+2}$ we have $f^{(j)} \in C_{Q}^{r+2-j}, 0 \leq j \leq r$, and by the Taylor formula we can write

$$
\begin{equation*}
f^{(j)}(t)=\sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!}(t-x)^{i}+\varphi_{j}(t, x)(t-x)^{r+2-j} \tag{3.18}
\end{equation*}
$$

for $t \in Q$, where $\varphi_{j}(t) \equiv \varphi_{j}(t, x)$ is function such that $\varphi_{j}(t) t^{r+2-j} \in C_{Q}^{r+2-j}$ and $\lim _{t \rightarrow x} \varphi_{j}(t)=\varphi_{j}(x)=0$. Taking $t=\xi_{n k}$ in (3.18) and applying this formula to $M_{n ; r}(f)$, we get

$$
\begin{align*}
M_{n ; r}(f ; x)= & \sum_{k=0}^{\infty} p_{n k}(x) \sum_{j=0}^{r} \frac{\left(x-\xi_{n k}\right)^{j}}{j!} \sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!}\left(\xi_{n k}-x\right)^{i} \tag{3.19}\\
& +\sum_{k=0}^{\infty} p_{n k}(x) \sum_{j=0}^{r} \frac{\left(x-\xi_{n k}\right)^{j}}{j!} \varphi_{j}\left(\xi_{n k}\right)\left(\xi_{n, k}-x\right)^{r+2-j} \\
:= & \sum_{1}+\sum_{2}, \quad n \in N .
\end{align*}
$$

by elementary calculations we get

$$
\begin{aligned}
\sum_{1}= & \sum_{k=0}^{\infty} p_{n k}(x) \sum_{j=0}^{r} \frac{\left(x-\xi_{n k}\right)^{j}}{j!} \sum_{q=j}^{r+2} \frac{f^{(q)}(x)}{(q-j)!}\left(\xi_{n k}-x\right)^{q-j} \\
= & \sum_{k=0}^{\infty} p_{n k}(x) \sum_{j=0}^{r} \frac{(-1)^{j}}{j!}\left\{\sum_{q=j}^{r} \frac{f^{(q)}(x)}{(q-j)!}\left(\xi_{n k}-x\right)^{q}\right. \\
& \left.+\frac{f^{(r+1)}(x)}{(r+1-j)!}\left(\xi_{n k}-x\right)^{r+1}+\frac{f^{(r+2)}(x)}{(r+2-j)!}\left(\xi_{n k}-x\right)^{r+2}\right\} \\
= & \sum_{k=0}^{\infty} p_{n k}(x) \sum_{q=0}^{r} \frac{f^{(q)}(x)}{q!}\left(\xi_{n k}-x\right)^{q} \sum_{j=0}^{q}\binom{q}{j}(-1)^{j} \\
& +\frac{f^{(r+1)}(x)}{(r+1)!} \sum_{k=0}^{\infty} p_{n k}(x)\left(\xi_{n k}-x\right)^{r+1} \sum_{j=0}^{r}\binom{r+1}{j}(-1)^{j} \\
& +\frac{f^{(r+2)}(x)}{(r+2)!} \sum_{k=0}^{\infty} p_{n k}(x)\left(\xi_{n k}-x\right)^{r+2} \sum_{j=0}^{r}\binom{r+2}{r}(-1)^{j}
\end{aligned}
$$

for $n \in N$. Applying (2.12) and equalities

$$
\begin{aligned}
& \sum_{j=0}^{r}\binom{r+1}{j}(-1)^{j}=(-1)^{r} \\
& \sum_{j=0}^{r}\binom{r+2}{j}(-1)^{j}=(r+1)(-1)^{r}
\end{aligned}
$$

with $r \in N_{0}$, and by (1.1) and (2.9), we obtain

$$
\begin{align*}
\sum_{1}= & f(x)+\frac{(-1)^{r} f^{(r+1)}(x) M_{n}\left((t-x)^{r+1} ; x\right)}{(r+1)!} \tag{3.20}\\
& +\frac{(-1)^{r}(r+1) f^{(r+2)}(x) M_{n}\left((t-x)^{r+2} ; x\right)}{(r+2)!}, \quad n \in N
\end{align*}
$$

Denoting by

$$
\phi_{r}(t):=\sum_{j=0}^{r} \frac{(-1)^{j}}{j!} \varphi_{j}(t), \quad t \in Q
$$

we have $\phi_{r} \in C_{Q}, \lim _{t \rightarrow x} \phi_{r}(t)=\phi_{r}(x)=0$ and

$$
\begin{aligned}
\sum_{2} & =\sum_{k=0}^{\infty} p_{n k}(x)\left(\xi_{n k}-x\right)^{r+2} \phi_{r}\left(\xi_{n k}\right) \\
& =M_{n}\left((t-x)^{r+2} \phi_{r}(t) ; x\right), \quad n \in N
\end{aligned}
$$

Further, by the Hölder inequality, we have

$$
\begin{equation*}
\left|\sum_{2}\right| \leq\left(M_{n}\left((t-x)^{2 r+4} ; x\right)\right)^{1 / 2}\left(M_{n}\left(\phi_{r}^{2}(t) ; x\right)\right)^{1 / 2}:=g_{n}(x ; r) \tag{3.21}
\end{equation*}
$$

for $n \in N$. The properties of $\phi_{r}(\cdot)$ and (1.5) imply that

$$
\lim _{n \rightarrow \infty} M_{n}\left(\phi_{r}^{2}(t) ; x\right)=\phi_{r}^{2}(x)=0
$$

uniformly on Q. From this and (3.21) and Lemma 2 it follows that

$$
g_{n}(x ; r)=o\left(n^{-(r+2) / 2}\right) \quad \text { as } \quad n \rightarrow \infty
$$

uniformly on Q. This result and (3.19)-(3.21) imply the desired assertions (3.15) and (3.16). Thus the proof is completed.

Theorem 2 implies the following Voronovskaya type theorem for operators $M_{n}(f)$ ([1], [2]):

Corollary 3 If $f \in C_{Q}^{2}$, then

$$
\lim _{n \rightarrow \infty} n\left(M_{n}(f ; x)-f(x)\right)=\frac{x(1-x)^{2}}{2} f^{\prime \prime}(x)
$$

for every $x \in Q$.

References

[1] Becker M., Nessel R.J.: A global approximation theorems for Meyer-König and Zeller operators, Math. Z., 160, 195-206 (1978).

REMPULSKA, TOMCZAK

[2] Chen W.: On the integral type Meyer-König and Zeller operators, Approx. Theory and its Applic., 2(3), 7-18 (1986).
[3] De Vore R.A.: The approximation of Continuous Functions by positive Linear Operators for functions of bounded variation, J. Approx. Theory, 56, 245-255 (1989).
[4] Guo S.: On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory, 56, 245-255 (1989).
[5] Gupta V.: A note on Meyer-König and Zeller operators for functions of bounded variation, Approx. Theory and its Applic., 18(3), 99-102 (2002).
[6] Kirov G.H.: A generalization of the Bernstein polynomials, Math. Balkanica, 6(2), 147-153 (1992).
[7] Meyer-König W, Zeller K.: Bernsteiniche Potenzreihen, Studia Math., 19, 89-94 (1960).
[8] Müller M.W.: L_{p}-approximation by the method of integral Meyer- König and Zeller operators, Studia Math., 63, 81-88 (1978).
[9] Timan A.F.: Theory of Approximation of Functions of Real Variable, New York, 1963.
L. REMPULSKA, K. TOMCZAK

Received 03.09.2003
Institute of Mathematics
Poznań University of Technology
Piotrowo 3A 60-965 Poznań, POLAND
e-mail: Irempuls@math.put.poznan.pl

[^0]: AMS Mathematics Subject Classification: 41A36.

