Turk J Math 30 (2006) , 117 – 127. © TÜBİTAK

On Certain Modified Meyer-König and Zeller Operators

L. Rempulska, K. Tomczak

Abstract

We introduce certain modified Meyer-König and Zeller operators and we study their approximation properties.

The similar results for modified Bernstein polynomials were given in [6].

Key Words: Meyer-König and Zeller operator, degree of approximation, Voronovskaya theorem.

1. Introduction

1.1. In 1960, W. Meyer-König and K. Zeller in [7] introduced the following operators for functions $f \in C_Q$ and $n \in N = \{1, 2, ..., \}$:

$$M_n(f;x) := \begin{cases} \sum_{k=0}^{\infty} p_{nk}(x) f\left(\frac{k}{n+k}\right) & \text{if } 0 \le x < 1, \\ f(1) & \text{if } x = 1, \end{cases}$$
(1.1)

where

$$p_{nk}(x) := \binom{n+k}{k} x^k (1-x)^{n+1}, \quad k \in N_0 = N \cup \{0\},$$
(1.2)

AMS Mathematics Subject Classification: 41A36.

REMPULSKA, TOMCZAK

and C_Q is the space of all real-valued functions f, continuous on the interval Q = [0, 1]and the norm is defined by

$$||f|| \equiv ||f(\cdot)|| := \max_{x \in Q} |f(x)|.$$
(1.3)

 $M_n(f)$ is called the *n*-th Meyer-König and Zeller operator.

Approximation properties of $M_n(f)$ have been examined in many papers (e.g. [1, 3, 5, 7]). Moreover, in many papers were introduced some modifications of operators $M_n(f)$ (e.g. [2, 4, 5]) and were studied their approximation properties.

It is known ([1, 3, 5]) that if $f \in C_Q$, then $M_n(f) \in C_Q$ and $||M_n(f)|| \le ||f||$ for $n \in N$, Moreover,

$$\|M_n(f;\cdot) - f(\cdot)\| \le A \,\omega_2\left(f;\frac{1}{\sqrt{n}}\right), \qquad n \in N,$$
(1.4)

where A is a suitable positive constant independent on n and x and $\omega_2(f; \cdot)$ is the second modulus of symmetry of f. Obviously (1.4) implies that

$$\lim_{n \to \infty} \|M_n(f; \cdot) - f(\cdot)\| = 0, \qquad (1.5)$$

for every $f \in C_Q$. Moreover for $f \in C_Q^{r+2} = \{f \in C_Q : f^{(r+2)} \in C_Q\}$ with a fixed $r \in N_0$, we have

$$\|M_n(f;\cdot) - f(\cdot)\| = O\left(\frac{1}{n}\right), \qquad n \in N,$$
(1.6)

and this estimation can not be improved.

1.2. In this paper we will show that the estimations (1.4) and (1.6) can be improved for $f \in C_Q^r$, $r \ge 2$, by certain modification of the operators $M_n(f)$. We introduce the following definition.

Definition 1 Let $r \in N_0$ be a fixed number. For $f \in C_Q^r$ and $n \in N$ we define the modified Meyer-König and Zeller operators

$$M_{n;r}(f;x) := \begin{cases} \sum_{k=0}^{\infty} p_{nk}(x) \sum_{j=0}^{r} \frac{f^{(j)}(\xi_{nk})}{j!} (x - \xi_{nk})^{j} & \text{if } 0 \le x < 1, \\ f(1) & \text{if } x = 1, \end{cases}$$
(1.7)

where

$$\xi_{nk} := \frac{k}{n+k} \qquad for \quad k \in N_0, \ n \in N,$$
(1.8)

and $p_{nk}(x)$ is defined by (1.2). Clearly $M_{n;0}(f;x) \equiv M_n(f;x)$ for every $f \in C_Q$, $x \in Q, n \in N$.

In Section 2 we will give some auxiliary results. The main theorems will be given in Section 3.

In this paper we will denote by $A_i(q), i \in N$, a suitable positive constant depending only on parameter q.

2. Lemmas

2.1. It is well known [1, 2, 3, 4, 7, 8] that

$$M_n(1;x) = 1$$
 $M_n(t-x;x) = 0,$ (2.9)

$$M_n((t-x)^2; x) = \frac{x(1-x)^2}{n} + O_x\left(\frac{1}{n^2}\right), \text{ for } x \in Q \text{ and } n \in N.$$

Moreover in [4] is given the following lemma.

Lemma 1 For every fixed $q \in N$ there exists $A_1(q) = const. > 0$ such that

$$M_n((t-x)^{2q};x) \leq A_1(q) n^{-q}, \quad n \in N,$$

uniformly for $x \in Q$.

2.2. Now we will give some elementary properties of operators $M_{n;r}(f)$ defined by (1.7) and (1.8).

From (1.7) it follows that $M_{n;r}(1;x) = 1$ for $x \in Q$, $n \in N$ and $r \in N_0$ and

$$M_{n;r}(f;0) = f(0), \qquad n \in N, \quad r \in N_0.$$
 (2.10)

REMPULSKA, TOMCZAK

Lemma 2 Let $n, r \in N$ be fixed numbers. Then for every $f \in C_Q^r$ we have $M_{n;r}(f) \in C_Q$, i.e. $M_{n;r}(f)$ is an operator from the space C_Q^r into C_Q . Moreover there exists $A_2(r) = const. > 0$ such that for every $f \in C_Q^r$ we have

$$||M_{n;r}(f;\cdot)|| \le A_2(r) \sum_{j=0}^r ||f^{(j)}||, \quad n \in N.$$
 (2.11)

Proof. We observe that if $f \in C_Q^r$, then for every fixed $n \in N$ and j, q = 0, 1, ..., r the sequence $((\xi_{nk})^q f^{(j)}(\xi_{nk}))_{k=0}^{\infty}$ is convergent to $f^{(j)}(1)$ as $k \to \infty$. Moreover, it is easily verified that the limitability method of sequences, generated by $(p_{nk}(x))_{k=0}^{\infty}$, with a fixed $n \in N$ and $x \to 1-$, is regular. Hence we can write

$$\lim_{x \to 1^{-}} \sum_{k=0}^{\infty} p_{nk}(x) \left(\xi_{nk}\right)^q f^{(j)}(\xi_{nk}) = f^{(j)}(1)$$

for every j, q = 0, 1, ..., r and $n \in N$.

From the above, and by (1.7) and (1.8), we get

$$\lim_{x \to 1^{-}} M_{n;r}(f;x) = \sum_{j=0}^{r} \frac{1}{j!} \sum_{q=0}^{j} {j \choose q} (-1)^{q} \\ \times \lim_{x \to 1^{-}} x^{j-q} \sum_{k=0}^{\infty} p_{nk}(x) f^{(j)}(\xi_{nk}) \xi_{nk}^{q} = \\ = \sum_{j=0}^{r} \frac{f^{(j)}(1)}{j!} \sum_{q=0}^{j} {j \choose q} (-1)^{q}.$$

Since

$$\sum_{q=0}^{j} \begin{pmatrix} j \\ q \end{pmatrix} (-1)^{q} = \begin{cases} 1 & \text{if } j = 0 \\ 0 & \text{if } j \ge 1, \end{cases}$$
(2.12)

we have

$$\lim_{x \to 1^{-}} M_{n;r}(f;x) = f(1), \qquad n \in N, \ r \in N_0,$$

which by (1.7) shows that $M_{n;r}(f)$ is a continuous function at x = 1. The continuity of $M_{n;r}(f)$ at $x \in [0,1)$ is obvious by the properties of sum of power series convergent on [0,1).

From this and (1.7), (1.8) and (1.1), we deduce that

$$M_{n;r}(f;x) = \sum_{j=0}^{r} \frac{(-1)^j}{j!} M_n((t-x)^j f^{(j)}(t);x)$$

for $x \in Q$, $n \in N$ and $r \in N_0$. Further, by (1.1)–(1.3), (1.8) and the Hölder inequality and Lemma 1, we have

$$\begin{aligned} \left| M_n((t-x)^j f^{(j)}(t);x) \right| &\leq \left\| f^{(j)} \right\| \, M_n(|t-x|^j;x) \\ &\leq \left\| f^{(j)} \right\| (M_n((t-x)^{2j};x))^{1/2} (M_n(1;x))^{1/2} \leq A_1(j) \left\| f^{(j)} \right\| \, n^{-j/2}, \end{aligned}$$

for $x \in Q$, $n \in N$ and $0 \le j \le r$. Consequently

$$\|M_{n;r}(f;\cdot)\| \leq \sum_{j=0}^{r} \frac{1}{j!} \|M_{n}((t-\cdot)^{j} f^{(j)}(t);\cdot)\|$$

$$\leq A_{2}(r) \sum_{j=0}^{r} \|f^{(j)}\|, \quad n \in N.$$

Thus the proof of (2.11) is completed.

3. Theorems

3.1. First we will prove an analogue of (1.4) for $f \in C_Q^r$ and $M_{n;r}(f)$, but we will use the modulus of continuity of the derivative $f^{(r)}$, i.e.

$$\omega(f^{(r)};t) := \sup\left\{ \left| f^{(r)}(x) - f^{(r)}(y) \right| : x, y \in Q, \ |x - y| \le t \right\}$$

for $t \in [0,1]$ ([9]). The application of the second modulus of continuity $\omega_2(f^{(r)}; \cdot)$ to approximation theorem for $f \in C_Q^r$ and $M_{n;r}(f)$, $r \in N$, is difficult by derivatives $f^{(j)}$ and factors $(x - \xi_{nk})^j$, j = 1, ..., r, in the formula (1.7).

Theorem 1 Let $r \in N_0$ be a fixed number. Then there exists $A_3(r) = const. > 0$ such

that for every $f\in C^r_Q$ and $n\in N$ holds the following inequality

$$\|M_{n;r}(f;\cdot) - f(\cdot)\| \le A_3(r) n^{-r/2} \omega\left(f^{(r)}; \frac{1}{\sqrt{n}}\right), \qquad (3.13)$$

where $\omega(f^{(r)}; \cdot)$ is the modulus of continuity of $f^{(r)}$.

Proof. The estimation (3.13) for r = 0 follows from (1.4).

Let $r \in N$. Similarly as in [6] we apply the following modified Taylor formula for $f \in C_Q^r$ in a given point $t \in Q$:

$$f(x) = \sum_{j=0}^{r} \frac{f^{(j)}(t)}{j!} (x-t)^{j} + \frac{(x-t)^{r}}{(r-1)!} \int_{0}^{1} (1-u)^{r-1} [f^{(r)}(t+u(x-t)) - f^{(r)}(t)] du, \quad x \in Q.$$

Choosing $t = \xi_{nk}$ and applying (2.9), we derive from the above Taylor formula and (1.7)

$$f(x) = \sum_{k=0}^{\infty} (p_{nk}(x) f(x) = M_{n;r}(f;x) + \sum_{k=0}^{\infty} p_{nk}(x) \frac{(x-\xi_{nk})^r}{(r-1)!} I_r(x,\xi_{nk}), \qquad (3.14)$$

where

$$I_r(x,\xi_{nk}) = \int_0^1 (1-u)^{r-1} \left[f^{(r)}(\xi_{nk} + u(x-\xi_{nk})) - f^{(r)}(\xi_{nk}) \right] du.$$

The definition and properties of modulus of continuity of function ([9]) imply that

$$\left| f^{(r)} \left(\xi_{nk} + u(x - \xi_{nk}) \right) - f^{(r)} \left(\xi_{nk} \right) \right| \le \omega \left(f^{(r)}; u|x - \xi_{nk}| \right)$$
$$\le \omega \left(f^{(r)}; |x - \xi_{nk}| \right) \le \left(\sqrt{n} |x - \xi_{nk}| + 1 \right) \omega \left(f^{(r)}; 1/\sqrt{n} \right),$$

for every $0 \le u \le 1$, $0 \le x < 1$, $k \in N_0$ and $n \in N$. From this and (3.14) we get

$$|f(x) - M_{n;r}(f;x)| \leq$$

$$\leq \frac{1}{r!} \omega \left(f^{(r)}; 1/\sqrt{n} \right) \sum_{k=0}^{\infty} p_{nk}(x) |x - \xi_{nk}|^r \left(\sqrt{n} |x - \xi_{nk}| + 1 \right)$$

$$\leq \frac{1}{r!} \omega \left(f^{(r)}; 1/\sqrt{n} \right) \left(\sqrt{n} M_n \left(|t - x|^{r+1}; x \right) + M_n \left(|t - x|^{r}; x \right) \right),$$
(3.15)

for $0 \le x < 1$ and $n \in N$. Using the Hölder inequality and (2.9) and Lemma 1, we get

$$M_n \left(|t - x|^q; x \right) \leq \left(M_n \left((t - x)^{2q}; x \right) \right)^{1/2} (M_n(1; x))^{1/2} \\ \leq A_1(q) \, n^{-q/2}, \qquad x \in Q, \quad n, q \in N.$$

Further from (3.15) results that

$$|f(x) - M_{n;r}(f;x)| \le A_4(r) \omega \left(f^{(r)}; n^{-1/2}\right) \left(\sqrt{n} n^{-(r+1)/2} + n^{-r/2}\right)$$

for all $0 \le x < 1$ and $n \in N$. This inequality and (1.7) for x = 1 immediately yield (3.13).

From Theorem 1 we can derive the following two corollaries.

Corollary 1 Let $f \in C_Q^r$, $r \in N_0$, then

$$\lim_{n \to \infty} n^{r/2} \| M_{n;r}(f; \cdot) - f(\cdot) \| = 0.$$

Corollary 2 Let $f \in C_Q^r$, $r \in N_0$, and let $f^{(r)} \in Lip \ \alpha$ with a fixed $0 < \alpha \leq 1$, i.e. $\omega(f^{(r)};t) = O(t^{\alpha})$ for $t \in (0,1]$. Then

$$||M_{n;r}(f; \cdot) - f(\cdot)|| = O\left(n^{-(r+\alpha)/2}\right), \quad n \in N.$$

Remark. Theorem 1, Corollary 1 and Corollary 2 show that the degree of approximation of function $f \in C_Q^r$ with $r \ge 2$ by operators $M_{n;r}(f)$ is better than (1.4) and (1.6) for $M_n(f)$.

3.2. Now we will prove the Voronovskaya type theorem.

Theorem 2 Suppose that $f \in C_Q^{r+2}$ with a fixed $r \in N_0$. Then

$$M_{n,r}(f;x) - f(x) = \frac{(-1)^r f^{(r+1)}(x) M_n((t-x)^{r+1};x)}{(r+1)!} + \frac{(-1)^r (r+1) f^{(r+2)}(x) M_n((t-x)^{r+2};x)}{(r+2)!} + g_n(x;r)$$
(3.16)

1	0	2
T	4	J

for every $x \in Q$ and $n \in N$, where

$$g_n(x;r) = o\left(n^{-(r+2)/2}\right) \quad \text{as} \quad n \to \infty$$

$$(3.17)$$

uniformly for $x \in Q$.

Proof. By (1.1), (1.7) and (2.10) we have (3.16) for x = 0 and x = 1.

Fix 0 < x < 1. For $f \in C_Q^{r+2}$ we have $f^{(j)} \in C_Q^{r+2-j}$, $0 \le j \le r$, and by the Taylor formula we can write

$$f^{(j)}(t) = \sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!} (t-x)^i + \varphi_j(t,x)(t-x)^{r+2-j}$$
(3.18)

for $t \in Q$, where $\varphi_j(t) \equiv \varphi_j(t, x)$ is function such that $\varphi_j(t) t^{r+2-j} \in C_Q^{r+2-j}$ and $\lim_{t \to x} \varphi_j(t) = \varphi_j(x) = 0$. Taking $t = \xi_{nk}$ in (3.18) and applying this formula to $M_{n;r}(f)$, we get

$$M_{n;r}(f;x) = \sum_{k=0}^{\infty} p_{nk}(x) \sum_{j=0}^{r} \frac{(x-\xi_{nk})^{j}}{j!} \sum_{i=0}^{r+2-j} \frac{f^{(j+i)}(x)}{i!} (\xi_{nk}-x)^{i}$$

$$+ \sum_{k=0}^{\infty} p_{nk}(x) \sum_{j=0}^{r} \frac{(x-\xi_{nk})^{j}}{j!} \varphi_{j}(\xi_{nk}) (\xi_{n,k}-x)^{r+2-j}$$

$$:= \sum_{1}^{r} + \sum_{2}^{r}, \qquad n \in N.$$

$$(3.19)$$

by elementary calculations we get

$$\sum_{1} = \sum_{k=0}^{\infty} p_{nk}(x) \sum_{j=0}^{r} \frac{(x-\xi_{nk})^{j}}{j!} \sum_{q=j}^{r+2} \frac{f^{(q)}(x)}{(q-j)!} (\xi_{nk}-x)^{q-j}$$

$$= \sum_{k=0}^{\infty} p_{nk}(x) \sum_{j=0}^{r} \frac{(-1)^{j}}{j!} \left\{ \sum_{q=j}^{r} \frac{f^{(q)}(x)}{(q-j)!} (\xi_{nk}-x)^{q} + \frac{f^{(r+1)}(x)}{(r+1-j)!} (\xi_{nk}-x)^{r+1} + \frac{f^{(r+2)}(x)}{(r+2-j)!} (\xi_{nk}-x)^{r+2} \right\}$$

$$= \sum_{k=0}^{\infty} p_{nk}(x) \sum_{q=0}^{r} \frac{f^{(q)}(x)}{q!} (\xi_{nk}-x)^{q} \sum_{j=0}^{q} \binom{q}{j} (-1)^{j}$$

$$+ \frac{f^{(r+1)}(x)}{(r+1)!} \sum_{k=0}^{\infty} p_{nk}(x) (\xi_{nk}-x)^{r+1} \sum_{j=0}^{r} \binom{r+1}{j} (-1)^{j}$$

$$+ \frac{f^{(r+2)}(x)}{(r+2)!} \sum_{k=0}^{\infty} p_{nk}(x) (\xi_{nk}-x)^{r+2} \sum_{j=0}^{r} \binom{r+2}{j} (-1)^{j}$$

for $n \in N$. Applying (2.12) and equalities

$$\sum_{j=0}^{r} \binom{r+1}{j} (-1)^{j} = (-1)^{r},$$
$$\sum_{j=0}^{r} \binom{r+2}{j} (-1)^{j} = (r+1)(-1)^{r},$$

with $r \in N_0$, and by (1.1) and (2.9), we obtain

$$\sum_{1} = f(x) + \frac{(-1)^{r} f^{(r+1)}(x) M_{n}((t-x)^{r+1}; x)}{(r+1)!} + \frac{(-1)^{r} (r+1) f^{(r+2)}(x) M_{n}((t-x)^{r+2}; x)}{(r+2)!}, \quad n \in N.$$
(3.20)

Denoting by

$$\phi_r(t) := \sum_{j=0}^r \frac{(-1)^j}{j!} \varphi_j(t), \qquad t \in Q,$$

we have $\phi_r \in C_Q$, $\lim_{t \to x} \phi_r(t) = \phi_r(x) = 0$ and

$$\sum_{2} = \sum_{k=0}^{\infty} p_{nk}(x)(\xi_{nk} - x)^{r+2}\phi_r(\xi_{nk})$$
$$= M_n\left((t-x)^{r+2}\phi_r(t);x\right), \quad n \in N.$$

Further, by the Hölder inequality, we have

$$\left|\sum_{2}\right| \leq \left(M_n\left((t-x)^{2r+4};x\right)\right)^{1/2} \left(M_n(\phi_r^2(t);x)\right)^{1/2} := g_n(x;r)$$
(3.21)

for $n \in N$. The properties of $\phi_r(\cdot)$ and (1.5) imply that

$$\lim_{n \to \infty} M_n(\phi_r^2(t); x) = \phi_r^2(x) = 0$$

uniformly on Q. From this and (3.21) and Lemma 2 it follows that

$$g_n(x;r) = o\left(n^{-(r+2)/2}\right) \quad \text{as} \quad n \to \infty,$$

uniformly on Q. This result and (3.19)–(3.21) imply the desired assertions (3.15) and (3.16). Thus the proof is completed.

Theorem 2 implies the following Voronovskaya type theorem for operators $M_n(f)$ ([1], [2]):

Corollary 3 If $f \in C_Q^2$, then

$$\lim_{n \to \infty} n(M_n(f;x) - f(x)) = \frac{x(1-x)^2}{2} f''(x)$$

for every $x \in Q$.

References

 Becker M., Nessel R.J.: A global approximation theorems for Meyer-König and Zeller operators, *Math. Z.*, 160, 195–206 (1978).

REMPULSKA, TOMCZAK

- [2] Chen W.: On the integral type Meyer-König and Zeller operators, Approx. Theory and its Applic., 2(3), 7–18 (1986).
- [3] De Vore R.A.: The approximation of Continuous Functions by positive Linear Operators for functions of bounded variation, J. Approx. Theory, 56, 245–255 (1989).
- [4] Guo S.: On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation, J. Approx. Theory, 56, 245–255 (1989).
- [5] Gupta V.: A note on Meyer-König and Zeller operators for functions of bounded variation, Approx. Theory and its Applic., 18(3), 99-102 (2002).
- [6] Kirov G.H.: A generalization of the Bernstein polynomials, *Math. Balkanica*, 6(2), 147-153 (1992).
- [7] Meyer-König W, Zeller K.: Bernsteiniche Potenzreihen, Studia Math., 19, 89–94 (1960).
- [8] Müller M.W.: L_p-approximation by the method of integral Meyer- König and Zeller operators, Studia Math., 63, 81-88 (1978).
- [9] Timan A.F.: Theory of Approximation of Functions of Real Variable, New York, 1963.

L. REMPULSKA, K. TOMCZAK Institute of Mathematics Poznań University of Technology Piotrowo 3A 60-965 Poznań, POLAND e-mail: lrempuls@math.put.poznan.pl Received 03.09.2003