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Abstract

We introduce certain modified Meyer-König and Zeller operators and we study

their approximation properties.

The similar results for modified Bernstein polynomials were given in [6].
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1. Introduction

1.1. In 1960, W. Meyer-König and K. Zeller in [7] introduced the following operators
for functions f ∈ CQ and n ∈ N = {1, 2, ..., }:

Mn(f ; x) :=


∞∑
k=0

pnk(x) f
(

k
n+k

)
if 0 ≤ x < 1,

f(1) if x = 1,
(1.1)

where

pnk(x) :=

(
n+ k

k

)
xk (1− x)n+1, k ∈ N0 = N ∪ {0}, (1.2)
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and CQ is the space of all real-valued functions f , continuous on the interval Q = [0, 1]
and the norm is defined by

‖f‖ ≡ ‖f(·)‖ := max
x∈Q
|f(x)| . (1.3)

Mn(f) is called the n–th Meyer–König and Zeller operator.
Approximation properties of Mn(f) have been examined in many papers (e.g. [1, 3,

5, 7]). Moreover, in many papers were introduced some modifications of operators Mn(f)
(e.g. [2, 4, 5]) and were studied their approximation properties.

It is known ([1, 3, 5]) that if f ∈ CQ, then Mn(f)∈CQ and ‖Mn(f)‖ ≤ ‖f‖ for n ∈ N ,
Moreover,

‖Mn(f ; ·)− f(·)‖ ≤ Aω2

(
f ;

1√
n

)
, n ∈ N, (1.4)

where A is a suitable positive constant independent on n and x and ω2(f ; ·) is the second
modulus of smmothness of f . Obviously (1.4) implies that

lim
n→∞

‖Mn(f ; ·)− f(·)‖ = 0 , (1.5)

for every f ∈ CQ. Moreover for f ∈ Cr+2
Q = {f ∈ CQ : f(r+2) ∈ CQ}with a fixed r ∈ N0,

we have

‖Mn(f ; ·) − f(·)‖ = O

(
1
n

)
, n ∈ N, (1.6)

and this estimation can not be improved.

1.2. In this paper we will show that the estimations (1.4) and (1.6) can be improved
for f ∈ CrQ, r ≥ 2, by certain modification of the operators Mn(f). We introduce the
following definition.

Definition 1 Let r ∈ N0 be a fixed number. For f ∈ CrQ and n ∈ N we define the
modified Meyer-König and Zeller operators

Mn;r(f ; x) :=


∞∑
k=0

pnk(x)
r∑
j=0

f(j)(ξnk)
j! (x− ξnk)j if 0 ≤ x < 1,

f(1) if x = 1,
(1.7)
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where

ξnk :=
k

n + k
for k ∈ N0, n ∈ N, (1.8)

and pnk(x) is defined by (1.2). Clearly Mn;0(f ; x) ≡ Mn(f ; x) for every f ∈ CQ,
x ∈ Q, n ∈ N .

In Section 2 we will give some auxiliary results. The main theorems will be given in
Section 3.

In this paper we will denote by Ai(q), i ∈ N , a suitable positive constant depending
only on parameter q.

2. Lemmas

2.1. It is well known [1, 2, 3, 4, 7, 8] that

Mn(1; x) = 1 Mn(t − x; x) = 0, (2.9)

Mn((t− x)2; x) =
x(1− x)2

n
+ Ox

(
1
n2

)
, for x ∈ Q and n ∈ N.

Moreover in [4] is given the following lemma.

Lemma 1 For every fixed q ∈ N there exists A1(q) = const. > 0 such that

Mn

(
(t− x)2q; x

)
≤ A1(q)n−q, n ∈ N,

uniformly for x ∈ Q.

2.2. Now we will give some elementary properties of operators Mn;r(f) defined by
(1.7)and (1.8).

From (1.7) it follows that Mn;r(1; x) = 1 for x ∈ Q, n ∈ N and r ∈ N0 and

Mn;r(f ; 0) = f(0), n ∈ N, r ∈ N0. (2.10)
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Lemma 2 Let n, r ∈ N be fixed numbers. Then for every f ∈ CrQ we have Mn;r(f) ∈ CQ,
i.e. Mn;r(f) is an operator from the space CrQ into CQ. Moreover there exists A2(r) =
const. > 0 such that for every f ∈ CrQ we have

‖Mn;r(f ; ·)‖ ≤ A2(r)
r∑
j=0

∥∥∥f(j)
∥∥∥ , n ∈ N. (2.11)

Proof. We observe that if f ∈ CrQ, then for every fixed n ∈ N and j, q = 0, 1, ..., r the

sequence ((ξnk)qf(j)(ξnk))∞k=0 is convergent to f(j)(1) as k → ∞. Moreover, it is easily
verified that the limitability method of sequences, generated by (pnk(x))∞k=0, with a fixed
n ∈ N and x→ 1−, is regular. Hence we can write

lim
x→1−

∞∑
k=0

pnk(x) (ξnk)q f(j)(ξnk) = f(j)(1)

for every j, q = 0, 1, ..., r and n ∈ N .
From the above, and by (1.7) and (1.8), we get

lim
x→1−

Mn;r(f ; x) =
r∑
j=0

1
j!

j∑
q=0

(
j

q

)
(−1)q

× lim
x→1−

xj−q
∞∑
k=0

pnk(x)f(j)(ξnk)ξqnk =

=
r∑
j=0

f(j)(1)
j!

j∑
q=0

(
j

q

)
(−1)q .

Since

j∑
q=0

(
j

q

)
(−1)q =

1 if j = 0

0 if j ≥ 1,
(2.12)

we have

lim
x→1−

Mn;r(f ; x) = f(1), n ∈ N, r ∈ N0,

which by (1.7) shows that Mn;r(f) is a continuous function at x = 1. The continuity of
Mn;r(f) at x ∈ [0, 1) is obvious by the properties of sum of power series convergent on
[0, 1).
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From this and (1.7), (1.8) and (1.1), we deduce that

Mn;r(f ; x) =
r∑
j=0

(−1)j

j!
Mn((t − x)jf(j)(t); x)

for x ∈ Q, n ∈ N and r ∈ N0. Further, by (1.1)–(1.3), (1.8) and the Hölder inequality
and Lemma 1, we have∣∣∣Mn((t− x)jf(j)(t); x)

∣∣∣ ≤ ∥∥∥f(j)
∥∥∥ Mn(|t− x|j; x)

≤
∥∥∥f(j)

∥∥∥ (Mn((t− x)2j; x))1/2(Mn(1; x))1/2 ≤ A1(j)
∥∥∥f(j)

∥∥∥ n−j/2,
for x ∈ Q, n ∈ N and 0 ≤ j ≤ r. Consequently

‖Mn;r(f ; ·)‖ ≤
r∑
j=0

1
j!

∥∥∥Mn((t − ·)jf(j)(t); ·)
∥∥∥

≤ A2(r)
r∑
j=0

∥∥∥f(j)
∥∥∥ , n ∈ N.

Thus the proof of (2.11) is completed. 2

3. Theorems

3.1. First we will prove an analogue of (1.4) for f ∈ CrQ and Mn;r(f), but we will use

the modulus of continuity of the derivative f(r), i.e.

ω(f(r); t) := sup
{∣∣∣f(r)(x)− f(r)(y)

∣∣∣ : x, y ∈ Q, |x− y| ≤ t
}

for t ∈ [0, 1] ([9]). The application of the second modulus of continuity ω2(f(r); ·) to
approximation theorem for f ∈ CrQ and Mn;r(f), r ∈ N , is difficult by derivatives f(j)

and factors (x − ξnk)j , j = 1, ..., r, in the formula (1.7).

Theorem 1 Let r ∈ N0 be a fixed number. Then there exists A3(r) = const. > 0 such
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that for every f ∈ CrQ and n ∈ N holds the following inequality

‖Mn;r(f ; ·)− f(·)‖ ≤ A3(r)n−r/2 ω
(
f(r);

1√
n

)
, (3.13)

where ω(f(r); ·) is the modulus of continuity of f(r).

Proof. The estimation (3.13) for r = 0 follows from (1.4).
Let r ∈ N . Similarly as in [6] we apply the following modified Taylor formula for

f ∈ CrQ in a given point t ∈ Q:

f(x) =
r∑
j=0

f(j)(t)
j!

(x− t)j

+
(x− t)r
(r − 1)!

∫ 1

0

(1− u)r−1[f(r)(t+ u(x− t))− f(r)(t)] du, x ∈ Q.

Choosing t = ξnk and applying (2.9), we derive from the above Taylor formula and (1.7)

f(x) =
∞∑
k=0

(pnk(x) f(x) = Mn;r(f ; x) +
∞∑
k=0

pnk(x)
(x− ξnk)r

(r − 1)!
Ir(x, ξnk), (3.14)

where

Ir(x, ξnk) =
∫ 1

0

(1− u)r−1
[
f(r)(ξnk + u(x− ξnk)) − f(r)(ξnk)

]
du.

The definition and properties of modulus of continuity of function ([9]) imply that∣∣∣f(r) (ξnk + u(x− ξnk))− f(r) (ξnk)
∣∣∣ ≤ ω

(
f(r); u|x− ξnk|

)
≤ ω

(
f(r); |x− ξnk|

)
≤
(√
n|x− ξnk|+ 1

)
ω
(
f(r); 1/

√
n
)
,

for every 0 ≤ u ≤ 1, 0 ≤ x < 1, k ∈ N0 and n ∈ N . From this and (3.14) we get

|f(x) −Mn;r(f ; x)| ≤ (3.15)

≤ 1
r!
ω
(
f(r); 1/

√
n
) ∞∑
k=0

pnk(x)|x− ξnk| r
(√
n|x− ξnk|+ 1

)
≤ 1

r!
ω
(
f(r); 1/

√
n
)(√

nMn

(
|t− x| r+1; x

)
+Mn (|t− x| r; x)

)
,
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for 0 ≤ x < 1 and n ∈ N . Using the Hölder inequality and (2.9) and Lemma 1, we get

Mn (|t− x|q; x) ≤
(
Mn

(
(t− x)2q; x

))1/2 (Mn(1; x))1/2

≤ A1(q)n−q/2, x ∈ Q, n, q ∈ N.

Further from (3.15) results that

|f(x) −Mn;r(f ; x)| ≤ A4(r) ω
(
f(r);n−1/2

)(√
n n−(r+1)/2 + n−r/2

)
for all 0 ≤ x < 1 and n ∈ N . This inequality and (1.7) for x = 1 immediately yield
(3.13). 2

From Theorem 1 we can derive the following two corollaries.

Corollary 1 Let f ∈ CrQ, r ∈ N0, then

lim
n→∞

nr/2 ‖Mn;r(f ; ·) − f(·)‖ = 0.

Corollary 2 Let f ∈ CrQ, r ∈ N0, and let f(r) ∈ Lip α with a fixed 0 < α ≤ 1, i.e.

ω(f(r) ; t) = O(tα) for t ∈ (0, 1]. Then

‖Mn;r(f ; ·)− f(·)‖ = O
(
n−(r+α)/2

)
, n ∈ N.

Remark. Theorem 1, Corollary 1 and Corollary 2 show that the degree of approxi-
mation of function f ∈ CrQ with r ≥ 2 by operators Mn;r(f) is better than (1.4) and (1.6)
for Mn(f).

3.2. Now we will prove the Voronovskaya type theorem.

Theorem 2 Suppose that f ∈ Cr+2
Q with a fixed r ∈ N0. Then

Mn,r(f ; x) − f(x) =
(−1)rf(r+1)(x)Mn((t − x)r+1; x)

(r + 1)!
(3.16)

+
(−1)r(r + 1)f(r+2)(x)Mn((t − x)r+2; x)

(r + 2)!
+ gn(x; r)
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for every x ∈ Q and n ∈ N , where

gn(x; r) = o
(
n−(r+2)/2

)
as n→∞ (3.17)

uniformly for x ∈ Q.

Proof. By (1.1), (1.7) and (2.10) we have (3.16) for x = 0 and x = 1.

Fix 0 < x < 1. For f ∈ Cr+2
Q we have f(j) ∈ Cr+2−j

Q , 0 ≤ j ≤ r, and by the Taylor
formula we can write

f(j)(t) =
r+2−j∑
i=0

f(j+i)(x)
i!

(t− x)i + ϕj(t, x)(t− x)r+2−j (3.18)

for t ∈ Q, where ϕj(t) ≡ ϕj(t, x) is function such that ϕj(t) tr+2−j ∈ Cr+2−j
Q and

lim
t→x

ϕj(t) = ϕj(x) = 0. Taking t = ξnk in (3.18) and applying this formula to Mn;r(f),

we get

Mn;r(f ; x) =
∞∑
k=0

pnk(x)
r∑
j=0

(x− ξnk)j

j!

r+2−j∑
i=0

f(j+i)(x)
i!

(ξnk − x)i (3.19)

+
∞∑
k=0

pnk(x)
r∑
j=0

(x− ξnk)j

j!
ϕj(ξnk)(ξn,k − x)r+2−j

:=
∑

1
+
∑

2
, n ∈ N.
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by elementary calculations we get

∑
1

=
∞∑
k=0

pnk(x)
r∑
j=0

(x− ξnk)j

j!

r+2∑
q=j

f(q)(x)
(q − j)! (ξnk − x)q−j

=
∞∑
k=0

pnk(x)
r∑
j=0

(−1)j

j!


r∑
q=j

f(q)(x)
(q − j)! (ξnk − x)q

+
f(r+1)(x)

(r + 1− j)! (ξnk − x)r+1 +
f(r+2)(x)

(r + 2− j)! (ξnk − x)r+2

}

=
∞∑
k=0

pnk(x)
r∑
q=0

f(q)(x)
q!

(ξnk − x)q
q∑
j=0

(
q

j

)
(−1)j

+
f(r+1)(x)
(r + 1)!

∞∑
k=0

pnk(x)(ξnk − x)r+1
r∑
j=0

(
r + 1
j

)
(−1)j

+
f(r+2)(x)
(r + 2)!

∞∑
k=0

pnk(x)(ξnk − x)r+2
r∑
j=0

(
r + 2
j

)
(−1)j

for n ∈ N . Applying (2.12) and equalities

r∑
j=0

(
r + 1
j

)
(−1)j = (−1)r ,

r∑
j=0

(
r + 2
j

)
(−1)j = (r + 1)(−1)r,

with r ∈ N0, and by (1.1) and (2.9), we obtain

∑
1

= f(x) +
(−1)rf(r+1)(x)Mn((t − x)r+1 ; x)

(r + 1)!
(3.20)

+
(−1)r(r + 1)f(r+2)(x)Mn((t− x)r+2; x)

(r + 2)!
, n ∈ N.

Denoting by

φr(t) :=
r∑
j=0

(−1)j

j!
ϕj(t), t ∈ Q,
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we have φr ∈ CQ, lim
t→x

φr(t) = φr(x) = 0 and

∑
2

=
∞∑
k=0

pnk(x)(ξnk − x)r+2φr (ξnk)

= Mn

(
(t− x)r+2φr(t); x

)
, n ∈ N.

Further, by the Hölder inequality, we have∣∣∣∑
2

∣∣∣ ≤ (Mn

(
(t − x)2r+4; x

))1/2
(Mn(φ2

r(t); x))1/2 := gn(x; r) (3.21)

for n ∈ N . The properties of φr(·) and (1.5) imply that

lim
n→∞

Mn(φ2
r(t); x) = φ2

r(x) = 0

uniformly on Q. From this and (3.21) and Lemma 2 it follows that

gn(x; r) = o
(
n−(r+2)/2

)
as n→∞,

uniformly on Q. This result and (3.19)–(3.21) imply the desired assertions (3.15) and
(3.16). Thus the proof is completed. 2

Theorem 2 implies the following Voronovskaya type theorem for operators Mn(f) ([1],
[2]):

Corollary 3 If f ∈ C2
Q, then

lim
n→∞

n(Mn(f ; x) − f(x)) =
x(1− x)2

2
f ′′(x)

for every x ∈ Q.
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