The Homological Theory of Degree of FQL- Mappings

Akif Abbasov

Abstract

In this article the homological theory is specially worked out, adapted for definition of the degree of mapping from one of the classes of infinite-dimensional mappings, exactly FQL-mappings, introduced in [7].

Key Words: Simplex, complex, cylinder, chain, cycle, homology, dimension, family with the finite dimensional opening, Fredholm Quasi-Linear mapping.

0. Introduction

Different homological theories, which are equivalent to each other for many topological spaces are known. That is why by the h elp of them the definition of homological degree for finite-dimensional mappings creates the same results, but application to infinite-dimensional mappings dont serve the aim. Therefore, it is necessary to include special homological theories adapted to different categories of infinite-dimensional mappings.

In this paper, a homological theory for FQL-mappings, included by A.I.Shnirelman (see [7]) is given; using this theory the degree of the FQL-mapping was defined, and the characteristics which are similar to those of finite-dimensional mappings are proved. Besides, equality of homological degree and degree to that of article [7] is indicated.

As seen, calculating the degree of mapping with homologies makes topological problem an algebraic one, and thus the given problem transforms into a combinatorial one. It is obvious that this homological theory has some other advantages.

1. The Simplex and Singular Theories

The simplex theory. Let H be the real Hilbert space and σ_n be the Euclid simplex from H of dimension n, H^k is the subspace of H of co-dimension k.

Definition 1 The cylinder $\sigma_n^k = \sigma_n \times H^k$ from $H \times H$ is called a Hilbert simplex of bi-dimension (n, k).

The σ_n is called a basis of σ_n^k .

Definition 2 A set $\sigma_s \times H^k$ is called a bound simplex of σ_n^k of bi-dimension (s, k), $0 \le s \le n$.

Here σ_s be bound of simplex σ_n of dimension s.

Definition 3 The set $K = \{\sigma_s^k\}, 0 \le s \le n$, is called a simplex complex, if together with each simplex σ_s^k in K enter all its bounds; two simplexes can be intersected only at their general bound.

Definition 4 The simplex $\sigma_n^k = \sigma_n \times H^k$ is called oriented, if its basis is oriented. In this case, the orient on σ_n is adoption for orient on σ_n^k . It is obvious, that σ_n^k can be oriented two ways. Denote them by $+\sigma_n^k$, $-\sigma_n^k$.

Definition 5 The factor-group of group of the formal linear combinations (finites) of kind $\sum g_i \cdot \sigma_{n,i}^k$, $g_i \in Z$, relatively of subgroup elements of kind $g \cdot \sigma_{n,i}^k + g \cdot \sigma_{n,i}^k$ and their linear combinations is called the group $C_n^k(K)$ of chains of bi-dimension (n,k) of simplex complex K.

In other words, we identify elements $g^+ \cdot \sigma_{n,i}^k$ and $g^- \cdot \sigma_n^k$ in group of formal linear combinations of oriented simplexes.

Definition 6 The differential $\partial_n^k \colon C_n^k(K) \to C_{n-1}^k(K), \forall n \ge 1, \forall k \text{ is defined by the equality}$

$$\partial_n^k \left(g \cdot \left(\left[\alpha^{i_0}, ..., \alpha^{i_n} \right] \times H^k \right) \right) = \sum_0^n \left(-1 \right)^j \left(\left[\alpha^{i_0}, ..., \alpha^{i_{j-1}}, \alpha^{i_{j+1}}, ..., \alpha^{i_n} \right] \times H^k \right)$$

for each oriented simplex and extended to all group $C_n^k(K)$ by linearity.

Here $\alpha^{i_0}, ..., \alpha^{i_n}$ are appears of simplex σ_n . In the future $C_n^k(K)$ will be denoted by C_n^k .

Theorem 7 The equality

$$\partial_{n-1}^k \circ \partial_n^k = 0$$

holds for all $n \ge 1$ and k.

The proof analogous to finite-dimensional.

The set ker $\partial_n^k = \{c_n^k | \partial_n^k c_n^k ? 0\}$ is a subgroup in C_n^k , which is called the group of cycles of bi-dimension (n, k); its elements are called cycles of bi-dimension (n, k). The set $Im\partial_{n+1}^k = \{c_n^k | c_n^k = \partial_{n+1}^k c_{n+1}^k\}$ is also a subgroup in C_n^k , which is called the group of boundaries of bi-dimension (n, k); its elements are called boundaries of bi-dimension (n, k); its elements are called boundaries of bi-dimension (n, k).

Theorem 7 implies that $Im\partial_{n+1}^k \subset \ker \partial_n^k$.

Definition 8 The factor-group of group of cycles relatively subgroup of boundaries, $\ker \partial_n^k / Im \partial_{n+1}^k$, is called a group of (n, k)-dimensional homologies of complex K.

It is denoted by $H_n^k(K)$.

The cycles c_n^k , c_n^k from one of the classes of contiguity are called linear (L)-homologous and denote this as $c_n^k \sim c_n^k$.

The singular theory. Let σ_n^k is a Hilbert simplex of bi-dimension (n,k), X is a real Hilbert space.

Definition 9 The continuous mapping $f_n^k : \sigma_n^k \to X$ is called (n, k)-dimensional singular simplex, if

a) f_n^k is a affine invertible mapping on each layer $H_{\alpha}^k = \alpha \times H^k$, $\alpha \in \sigma_n$;

b) co-dim $f_n^k(H_{\alpha}^k) = k, \ \alpha \in \sigma_n;$

c) $f_{n,\alpha}^k = f_n^k \mid_{H_{\alpha}^k}$ depends continuously on α .

Definition 10 The formal linear combination (finite) $\sum_{i} g_i \cdot f_{n,i}^k$ of (n,k)-dimensional singular simplexes of space X with coefficients $g_i \in Z$ is called a (n,k)-dimensional singular chain of X.

The set of all the (n, k)-dimensional singular chains of space X is denoted by $\tilde{C}_n^k(X)$. It is an Abelian group relatively of addition of chains, as linear combinations. This group is free, since $g_i \in Z$, Z is the ring of integers.

Definition 11 We define the differential

$$\tilde{\partial}_n^k: \tilde{C}_n^k(X) \to \tilde{C}_{n-1}^k(X) \forall n \ge 1, \forall k$$

as follows

$$\tilde{\partial}_n^k f_n^k = \sum (-1)^i \left(f_n^k \left|_{\sigma_{n-1,i}^k} \right. \right),$$

where $\sigma_{n-1,i}^k$ is (n-1,k)-dimensional bound of simplex σ_n^k and extend it on all group $\tilde{C}_n^k(X)$ by addition. For n = 0 suppose that $\tilde{\partial}_0^k : \tilde{C}_0^k \to 0 \ \forall k$.

Theorem 12 The equality

$$\tilde{\partial}_{n-1}^k \circ \tilde{\partial}_n^k = 0$$

holds for all $n \ge 1$ and k.

The proof is analogous to that in finite dimensional case.

By analogy to simplex case can be defined the groups ker $\tilde{\partial}_n^k$, $Im \tilde{\partial}_{n+1}^k$, \tilde{H}_n^k , accordingly of (n, k)-dimensional of cycles, boundaries, homologies.

The theory of relative homologies in X is more interesting which is stated in the next paragraph.

2. The Relative Linear Homologies

Let X be the real Hilbert space, D a bounded domain in X. In this paragraph the definition of linear homologies of pair $(X, X \setminus D)$ is given. For simplicity, we consider the case, when D = B(R) is open ball in X of radius R and with center at zero.

Definition 13 The (n, k)-dimensional chain from $\tilde{C}_n^k(X)$ is called a relative cycle of bi-dimension (n, k), if its boundary enters $\tilde{C}_{n-1}^k(X \setminus B(R))$.

Now we occupy ourselves with the definition of homology to zero of relative cycle (see definition 17).

Definition 14 $\{Y_{\alpha}^{n}\}$ is called a family with the finite-dimensional opening, if it can be divided to family $\{Y_{\beta}^{m}\}$ of parallel planes of some co-dimension $m \ge n^{-1}$.

¹A (affine) bundle (Y_1, p_1, B_1) is called a dividing of (affine) bundle (Y_2, p_2, B_2) , if $Y_1 = Y_2$ and $\forall \alpha \in B_1 \ \exists \beta \in B_2, \ p_1^{-1}(\alpha) \subset p_2^{-1}(\beta)$.

Definition 15 f_n^k is called a singular simplex with the finite-dimensional opening, if the family $\{f_n^k(H_\alpha^k)\}$ has a finite-dimensional opening.

By analogy, $\tilde{\sigma}_n^k = \sum_{1}^m g_i \cdot f_{n,i}^k$ will call the chain with the finite-dimensional opening, if each simplex $f_{n,i}^k$, i = 1, ..., m, has a finite-dimensional opening. In this case, without loss of generality, we will propose that all the families $\{X_{i,\alpha}^k \setminus X_{i,\alpha}^k = f_{n,i}^k(H_{\alpha}^k)\}, i = 1, ..., m$, are divided into one family of parallel plains.

We now provide the supportive material in order to define the most important concept, i.e. homology of relative cycle to zero.

A) Using the continuity of family of plains and the compactness of basis of each singular simplex $f_{n,i}^k$, entering into the chain $\tilde{\sigma}_n^k$, by sufficient little perturbing (i.e. unimportant motion), this chain can be approximated (in ball of radius R and with center at zero), by chain $\tilde{\sigma}_n^k = \sum_{i=1}^m g_i \cdot f_{n,i}^k$, satisfying the following conditions:

1) ' $\tilde{\sigma}_n^k$ has the finite-dimensional opening²

2) if ${}^{\prime}\tilde{\sigma}_{n}^{k}$ is relative cycle, then ${}^{\prime}\tilde{\sigma}_{n}^{k}$ also will be relative cycle.

B) Let ${}^{\prime}f_{n,i}^{k}$ be some simplex from ${}^{\prime}\tilde{\sigma}_{n}^{k}$, $\{{}^{\prime}X_{i,\alpha}^{k} \setminus {}^{\prime}X_{i,\alpha}^{k} = {}^{\prime}f_{n,i}^{k}(H_{\alpha}^{k}), \alpha \in \sigma_{n}\}$ is correspondent to the family plains (which has finite dimensional opening) and $\{{}^{\prime}X_{i,\alpha,\beta}^{k'}\}$ is the dividing of $\{{}^{\prime}X_{i,\alpha}^{k}\}$ on parallel plains of co-dimension $k', k' \geq k$,

$$(\alpha,\beta)\in\sigma_n\times R_{k'-k},$$

that is

$$X_{i,\alpha}^{k} = \bigcup_{\beta} X_{i,\alpha,\beta}^{k'} \quad \forall i \in \sigma_{n};$$

 $\forall (i_1, \alpha_1, \beta_1), (i_2, \alpha_2, \beta_2) \ 'X_{i_1, \alpha_1, \beta_1}^{k'} \parallel' X_{i_2, \alpha_2, \beta_2}^{k'} \ ^3.$

Transfer it dividing (by mappings $({}^{t}f_{n,i,\alpha}^{k})^{-1}, \alpha \in \sigma_{n}$) on σ_{n}^{k} . Then the plains H_{α}^{k} of $\sigma_{n}^{k} = \sigma_{n} \times H^{k}$ are also divided to parallel plains of co-dimension k'. Let $s : \sigma_{n} \to \sigma_{n}^{k}$ is some continuously section of trivial affine bundle $(\pi_{n}, \sigma_{n}^{k}, \sigma_{n}), \pi_{n} : \sigma_{n}^{k} \to \sigma_{n}$. Consider orthogonal supplements (in H_{α}^{k}) to one from parallel plains (${}^{t}f_{n,i,\alpha}^{k}$)^{-1}(${}^{t}X_{i,\alpha,\beta}^{k}$), $(\alpha, \beta) \in \sigma_{n} \times R_{k'-k}$, going by section $s : \sigma_{n} \to \sigma_{n}^{k}$. Then get the affine bundle with basis σ_{n}

 ${}^{3}See [1].$

and layers of dimension (k' - k). Denote that bundle by $\sigma_{n'}$, n' = n + (k' - k) and the layers by $H_{k'-k,\alpha}$. Because basis σ_n (of bundle $\sigma_{n'}$) convex (σ_n is n -dimensional simplex), then $\sigma_{n'}$ is trivial. Now consider the affine bundle, induced by families $\{H_{i,\alpha,\beta}^{k'} \setminus H_{i,\alpha,\beta}^{k'} = (f_{i,n,\alpha}^k)^{-1}(X_{\alpha,\beta,i}^{k'})\}$. Denote it by $\sigma_{n'}^{k'}$. $\sigma_{n'}$ is the basis of $\sigma_{n'}^{k'}$. Because the set $\sigma_{n'}$ is contractible, then $\sigma_{n'}^{k'}$ is trivial. Hence, without restriction of generality, one can suppose that the trivial affine bundle $\sigma_n^k = \sigma_n \times H^k$ divided on the trivial affine bundle $\sigma_{n'}^{k'} = \sigma_{n'} \times H^{k'}$. Divide the basis $\sigma_{n'} = \sigma_n \times H_{k'-k}$ by $\sigma_{n',i}$, where $\sigma_{n',i}$, i = 1, 2...,are parallel prisms of dimension n'. Take the Cartesian product $\sigma_{n',i} \times H^{k'}$. Obviously, the dividing of $\sigma_{n'}$ on to prisms can be made so, that the contraction f_n^k only on one from these prisms have intersection with B(R). It is possible, because of the linearity f_n^k on each H_{α}^k , uniformly continue $f_{n,\alpha}^k$ at α and bounded ness of B(R); the other contractions in this case will be consisted out of B(R). In this case, the orientation of one of the simplexes $\sigma_{n',i}^{k'} = \sigma_{n',i} \times H^{k'}$ get out arbitrary and the orientations of other simplexes coordinate with it. Therefore each of two neighboring simplexes $\sigma_{n',i}^{k'}$, $\sigma_{n',i+1}^{k'}$, $i = 0, \pm 1, \pm 2, ...,$ induce on its general bound contrary orientations.

Definition 16 The contraction of f_n^k on the (n', k') -dimensional cylinder is called its (n', k') -dimensional bearer, if

a) n' - n = k' - k;

b) the image of this contraction consists all the points of intersection $f_n^k(\sigma_n^k)$ with B(R).

By analogy, well call the chain $\tilde{\sigma}_{n'}^{k'} = \sum_{1}^{m} g_i \cdot f_{n',i}^{k'}$ the (n',k') -dimensional bearer of the chain $\tilde{\sigma}_{n}^{k} = \sum_{1}^{m} g_i \cdot f_{n,i}^{k}$, if $f_{n',i}^{k'}$ is (n',k') -dimensional bearer of $f_{n,i}^{k}$ for each *i*.

In this case, without restriction of generality, well suppose that all the plains from all the simplexes, induced by the bearers, entering $\tilde{\sigma}_{n'}^{k'}$, parallel to each other. Let $\tilde{\sigma}_{n}^{k}$ be a relative singular cycle. Lets orient each simplex $f_{n',i}^{k'}$, i = 1, ..., m, so that for two simplexes $f_{n,i}^{k}$ and $f_{n,i'}^{k}$ from $\tilde{\sigma}_{n}^{k}$, having a general bound, according to their simplexes $f_{n',i}^{k'}$ and $f_{n',i'}^{k'}$ induce on that bound opposite orientations. So, the oriented relative cycle $\tilde{\sigma}_{n'}^{k'}$ can be constructed (with two possible ways). So, we have finished preparatory material. We now present our **main** definition.

Definition 17 The relative cycle σ_n^k is called homological to zero, if for some number $l \ge 0$, its (n+l, k+l)-dimensional bearer $\tilde{\sigma}_{n+l}^{k+l}$ homological to zero.

From this definition it is easy to get that sum of (n, k)-dimensional relative cycles, homologized to zero, is also (n, k)-dimensional relative cycle, homologized to zero. Therefore, (n, k)-dimensional relative cycles, homologized to zero, make subgroup of group (n, k)dimensional relative cycles.

Lemma 18 Relative cycles $\tilde{\sigma}_n^k$, $\tilde{\sigma}_n^k$ from point **A**), are homologized to each other in sense of definition 17 (for this l = 0), at sufficiently little $\varepsilon > 0$, right

$$2\varepsilon < dist(B(R), \bigcup_{i} \bigcup_{\alpha} X_{i,\alpha}^{k}),$$

where $\alpha \in \partial \sigma_n, i = 1, ..., m, X_{i,\alpha}^k$ is arbitrary plain from $\tilde{\partial}_n^k \tilde{\sigma}_n^k$.

3. Calculation $\tilde{H}_n^k(X, X \setminus B(R))$

Theorem 19

$$\tilde{H}_n^k(X, XnB(R)) = \begin{cases} 0, n \neq k, \\ Z, n = k. \end{cases}$$

The proof reduces to calculation of the group $\tilde{H}_{n+l}(X_{k+l}, X_{k+l} \setminus B_{k+l}(R))$, where X_{k+l} is (k+l)-dimensional subspace $X, B_{k+l}(R)$ is open bull in X_{k+l} of radius R with center at zero. More precisely, taking into consideration the isomorphism

$$\tilde{H}_{n+l_1}(X_{k+l_1}, X_{k+l_1} \setminus B_{k+l_1}(R)) = \tilde{H}_{n+l_2}(X_{k+l_2}, X_{k+l_2} \setminus B_{k+l_2}(R)),$$

proves that

$$\tilde{H}_n^k(X, X \setminus B(R)) = \tilde{H}_n(X_k, X_k \setminus B_k(R))$$

and

$$\widetilde{H}_n(X_k, X_k \backslash B_k(R)) = \begin{cases} 0, n \neq k, \\ Z, n = k. \end{cases}$$

Here n, k, l, l_1, l_2 are arbitrary natural numbers.

4. The Homological degree of an *FQL*-mapping

Let X,Y be the real Hilbert spaces, $F:X\to Y$ be an FQL-mapping. Suppose, the a priori estimate

$$\left\|x\right\|_{x} \le \Phi(\left\|F\left(x\right)\right\|_{u}) \tag{1}$$

where Φ is some positive monotonous function. Let $B_x(R)$ be a ball in X of radius R with center at zero, $x \in X \setminus B_x(R)$, that is $||x||_x \ge R$.

Lemma 20 At above said conditions,

$$\exists R' > 0, F(x) \in Y \setminus B_u(R'),$$

where $B_Y(R')$ is a ball in Y of radius R' with center at zero.

Here for simple, it is supposed that Φ is an identical mapping. From lemma 20 follows, that F is mapping of pairs $(X, X \setminus B_x(R)), (Y, Y \setminus B_y(R'))$.

Lemma 21 Let $F_m : X \to Y, m = 1, 2, 3, ...,$ be the sequence of FL-mappings, uniformly converging F in each bounded ball and F satisfy estimate (1). Then at sufficiently large m, FL-mapping F_m will be mapping of pairs.

Obviously, at sufficiently large m, FL-mapping F_m induced the homomorphism

$$F_{m,*}: \tilde{H}^n_n(X, X \setminus B_x(R)) \to \tilde{H}^n_n(Y, Y \setminus B_y(R' - \varepsilon)),$$

where $\varepsilon > 0$ is the arbitrary positive number. Let $[\tilde{\sigma}_n^n]$ be a generator of group $\tilde{H}_n^n(X, X \setminus B_x(R))$ and $[\tilde{\omega}_n^n] = F_{m,*}[\tilde{\sigma}_n^n]$. As $\tilde{H}_n^n(Y, Y \setminus B_y(R' - \varepsilon)) = Z$, then $[\tilde{\omega}_n^n]$ corresponds some of the numbers from Z. Let denote that number by $\deg_H(F_m)$.

Definition 22 The number $\deg_H(F_m)$ is called of homological degree of FL- mapping F_m .

The signum $\deg_H(F_m)$ depended at selected generators in groups $\tilde{H}_n^n(X, X \setminus B_x(R))$ and $\tilde{H}_n^n(Y, Y \setminus B_y(R' - \varepsilon))$. The correction of definition 22 is easily proved. It is easy to prove that at sufficiently large m, $\deg_H(F_m)$ is stabilized. Because of this we can give the following.

Definition 23

$$\deg_H(F) = \lim_{m \to \infty} \deg_H(F_m).$$

Theorem 24 Let $\{F_t\}$ be the family of FQL-mappings, which depend continuously (but in each sphere is uniformly continuous) on parameter $t \in [0, 1]$ and for all $t \in [0, 1]$ the a priori estimate (1), where the function Φ is independent on t, is satisfied. Then

$$\deg_H(F_1) = \deg_H(F_0)$$

Let $F: X \to Y$ be an FQL-mapping, satisfying condition (1), $\deg_1(F)$ is degree of F as FQL-mapping, defined by A.I.Shnirelman (see [7]).

Theorem 25

$$\deg_H(F)=\deg_1(F)$$

Consequence 26 If $\deg_H(F_m) \neq 0$, then $\forall y \in B_y(R' - \varepsilon)$ the equation $F_m(x) = y$ has solution in $B_x(R)$.

Theorem 27 Let $F : X \to Y$ is FQL-mapping, satisfying of a priori estimate (1) and $\deg_H(F) \neq 0$. Then the equation F(x) = y has solution $\forall y \in Y$. **Proof.** Consider $y_0 \in F$. Since at sufficiently large m

$$\forall x \in B_x(R) \ ||F(x) - F_m(x)||_y < \varepsilon,$$

then from condition (1) follows that solutions of equation $F_m(x) = y_0$ belong to ball $B_x(R_0)$, where $R_0 = \Phi(||y_0||_y + 2\varepsilon)$. Then mappings F_m will transfer $X \setminus B_x(R_0)$ in $Y \setminus B_y(||y_0||_y + \varepsilon)$. As $\deg_H(F) = \lim_{m \to \infty} \deg_H(F_m)$, then at sufficiently large m $\deg_H(F_m) = \deg_H(F)$. Hence $\forall m \gg \deg_H(F) \neq 0$. Therefore from consequence 26 follows that $F_m(x) = y_0$ has solution. The proof of existence of solution of equation $F(x) = y_0$ is conducted analogous to as given in [7].

5. Appendix

Let X, Y be real Banach spaces, let Ω be abound domain in X and suppose that $\pi_n : X \to X_n$ is a linear mapping from X to a n-dimensional space X_n and $X_{\alpha}^n = \pi^{-1}(\alpha)$, $\alpha \in X_n$.

Definition 28 Continuous mapping $f^n : \Omega \to Y$ is called a Fredholm Linear (FL), if

a) some linear mapping $\pi_n: X \to X_n$ is fixed;

b) on each plane X_{α}^n , $\alpha \in X_n$, passing through Ω , $f_{\alpha}^n \equiv f^n \mid X_{\alpha}^n$ is an affine invertible mapping from X_{α}^n on to its image $Y_{\alpha}^n = f(X_{\alpha}^n)$ that is, closed in Y and has co-dimension n and f_{α}^n depends continuously on α .

Definition 29 involutions mapping $f : X \to Y$ is called Fredholm Quasi-Linear (FQL), if there exists a sequence FL-mappings $\{f^{n_k}\}$, uniformly approximating f on each bounded domain $\Omega \subset X$, such that

$$||f_{\alpha}^{n_k}|| < C(\Omega), ||(f_{\alpha}^{n_k})^{-1}|| < C(\Omega),$$

with $k > k_0(\Omega)$, if $\alpha \in \pi_{n_k}(\Omega)$ and $C(\Omega)$ does not depend on k, if $k > k_0(\Omega)$.

References

- Abbasov, A.: A Special Quasi-Linear Mapping and its Degree, Turkish J. Mathematics, 24,1, 1-14s, (2000).
- [2] Bessaga, C.: Everi Infinite Dimensional Hilbert Space is Diffeomorphic with its Unit Sphere, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phus., 14, 27-31, (1966).
- Borisovich, Y.G., Zvyagin, V.G., Sapronoff, Y.I.: Nonlinear Fredholm mappings and theory of LerayñSchauder, UMN, 32, 4 (196), (1977). (in Russian)
- [4] Eells, J.: Fredholm structures, Proc. Sump. Pure Math. Soc. Providence, R.I. 62 (1970).
- [5] Hilton P.J., Wylie S., Homology Theory, Cambridge, 1960.
- [6] Spanier, E.H.: Algebraic Topology, New York, 1966.
- [7] Shnirelman, A.I.: The Degree of Quasi-Linear Mapping and Nonlinear Problem of Hilbert, Mat. Sb., 89, (131), 3, 366-389 (in Russian), (1972).

Akif ABBASOV Faculty of Economics and Management Univertsity of Kocaeli Umuttepe 41380, İzmit-TURKEY e-mail: aakif@kou.edu.tr Received 17.09.2003