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The Homological Theory of Degree of FQL- Mappings
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Abstract

In this article the homological theory is specially worked out, adapted for def-

inition of the degree of mapping from one of the classes of infinite-dimensional

mappings, exactly FQL-mappings, introduced in [7].
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0. Introduction

Different homological theories, which are equivalent to each other for many topological
spaces are known. That is why by the h elp of them the definition of homological degree
for finite-dimensional mappings creates the same results, but application to infinite-
dimensional mappings dont serve the aim. Therefore, it is necessary to include special
homological theories adapted to different categories of infinite-dimensional mappings.

In this paper, a homological theory for FQL-mappings, included by A.I.Shnirelman
(see [7]) is given; using this theory the degree of the FQL-mapping was defined, and
the characteristics which are similar to those of finite-dimensional mappings are proved.
Besides, equality of homological degree and degree to that of article [7] is indicated.

As seen, calculating the degree of mapping with homologies makes topological problem
an algebraic one, and thus the given problem transforms into a combinatorial one. It is
obvious that this homological theory has some other advantages.
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1. The Simplex and Singular Theories

The simplex theory. Let H be the real Hilbert space and σn be the Euclid simplex
from H of dimension n, Hk is the subspace of H of co-dimension k.

Definition 1 The cylinder σkn = σn × Hk from H × H is called a Hilbert simplex of
bi-dimension (n, k).

The σn is called a basis of σkn.

Definition 2 A set σs × Hk is called a bound simplex of σkn of bi-dimension (s, k),
0 ≤ s ≤ n.

Here σs be bound of simplex σn of dimension s.

Definition 3 The set K = {σks}, 0 ≤ s ≤ n, is called a simplex complex, if together with
each simplex σks in K enter all its bounds; two simplexes can be intersected only at their
general bound.

Definition 4 The simplex σkn = σn×Hk is called oriented, if its basis is oriented. In this
case, the orient on σn is adoption for orient on σkn.It is obvious, that σkn can be oriented
two ways. Denote them by +σkn, −σkn.

Definition 5 The factor-group of group of the formal linear combinations (finites) of
kind

∑
gi · σkn,i, gi ∈ Z, relatively of subgroup elements of kind g ·+ σkn,i + g ·− σkn,i and

their linear combinations is called the group Ckn(K) of chains of bi-dimension (n, k) of
simplex complex K.

In other words, we identify elements g+ · σkn,i and g− · σkn in group of formal linear
combinations of oriented simplexes.

Definition 6 The differential ∂kn: Ckn(K) → Ckn−1(K), ∀ n ≥ 1, ∀k is defined by the
equality

∂kn
(
g ·
([
αi0, ..., αin

]
×Hk

))
=

n∑
0

(−1)j
([
αi0 , ..., αij−1, αij+1 , ..., αin

]
×Hk

)
for each oriented simplex and extended to all group Ckn (K) by linearity.

Here αi0 , ..., αin are apexes of simplex σn. In the future Ckn (K) will be denoted by Ckn.
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Theorem 7 The equality

∂kn−1 ◦ ∂kn = 0

holds for all n ≥ 1 and k.

The proof analogous to finite-dimensional.
The set ker ∂kn =

{
ckn
∣∣∂kn ckn ? 0} is a subgroup in Ckn, which is called the group of

cycles of bi-dimension (n, k); its elements are called cycles of bi-dimension (n, k). The
set Im∂kn+1 =

{
ckn | ckn = ∂kn+1c

k
n+1

}
is also a subgroup in Ckn, which is called the group

of boundaries of bi-dimension (n, k); its elements are called boundaries of bi-dimension
(n, k).

Theorem 7 implies that Im∂kn+1 ⊂ ker ∂kn.

Definition 8 The factor-group of group of cycles relatively subgroup of boundaries,
ker ∂kn/Im∂

k
n+1, is called a group of (n, k)-dimensional homologies of complex K.

It is denoted by Hk
n(K).

The cycles /ckn , //ckn from one of the classes of contiguity are called linear ( L )-
homologous and denote this as /ckn ˜ //ckn .

The singular theory. Let σkn is a Hilbert simplex of bi-dimension (n, k), X is a real
Hilbert space.

Definition 9 The continuous mapping fkn : σkn → X is called (n, k)-dimensional singular
simplex, if

a) fkn is a affine invertible mapping on each layer Hk
α = α×Hk, α ∈ σn;

b) co-dim fkn (Hk
α) = k, α ∈ σn;

c) fkn,α = fkn
∣∣
Hkα

depends continuously on α.

Definition 10 The formal linear combination (finite)
∑
i

gi · fkn,i of (n, k)-dimensional

singular simplexes of space X with coefficients gi ∈ Z is called a (n, k)-dimensional
singular chain of X.

The set of all the (n, k)-dimensional singular chains of space X is denoted by C̃kn (X).
It is an Abelian group relatively of addition of chains, as linear combinations. This group
is free, since gi ∈ Z, Z is the ring of integers.
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Definition 11 We define the differential

∂̃kn : C̃kn(X)→ C̃kn−1(X)∀n ≥ 1, ∀k

as follows

∂̃knf
k
n =

∑
(−1)i

(
fkn

∣∣∣σkn−1,i

)
,

where σkn−1,i is (n − 1, k)-dimensional bound of simplex σkn and extend it on all group

C̃kn(X) by addition. For n = 0 suppose that ∂̃k0 : C̃k0 → 0 ∀k.

Theorem 12 The equality

∂̃kn−1 ◦ ∂̃kn = 0

holds for all n ≥ 1 and k.
The proof is analogous to that in finite dimensional case.
By analogy to simplex case can be defined the groups ker ∂̃kn, Im∂̃kn+1, H̃k

n, accordingly
of (n, k)-dimensional of cycles, boundaries, homologies.

The theory of relative homologies in X is more interesting which is stated in the next
paragraph.

2. The Relative Linear Homologies

Let X be the real Hilbert space, D a bounded domain in X. In this paragraph the
definition of linear homologies of pair (X,X \D) is given. For simplicity, we consider the
case, when D = B(R) is open ball in X of radius R and with center at zero.

Definition 13 The (n, k)-dimensional chain from C̃kn(X) is called a relative cycle of

bi-dimension ( n, k), if its boundary enters C̃kn−1(X \B (R)).
Now we occupy ourselves with the definition of homology to zero of relative cycle (see

definition 17).

Definition 14 {Y nα } is called a family with the finite-dimensional opening, if it can be
divided to family {Y m

β } of parallel planes of some co-dimension m ≥ n 1.
1A (affine) bundle (Y1, p1,B1) is called a dividing of (affine) bundle (Y2, p2,B2), if Y1 = Y2 and

∀α ∈ B1 ∃β ∈ B2, p−1
1 (α) ⊂ p−1

2 (β).
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Definition 15 fkn is called a singular simplex with the finite-dimensional opening, if the
family {fkn(Hk

α)} has a finite-dimensional opening.

By analogy, σ̃kn =
m∑
1
gi · fkn,i will call the chain with the finite-dimensional opening, if

each simplex fkn,i, i = 1, ..., m, has a finite-dimensional opening. In this case, without loss

of generality, we will propose that all the families {Xk
i,α \Xk

i,α = fkn,i(H
k
α)}, i = 1, ..., m,

are divided into one family of parallel plains.
We now provide the supportive material in order to define the most important concept,

i.e. homology of relative cycle to zero.
A) Using the continuity of family of plains and the compactness of basis of each

singular simplex fkn,i, entering into the chain σ̃kn, by sufficient little perturbing (i.e.

unimportant motion), this chain can be approximated (in ball of radius R and with center

at zero), by chain ′σ̃kn =
m∑
1
gi ·′ fkn,i, satisfying the following conditions:

1) ′σ̃kn has the finite-dimensional opening2

2) if ′σ̃kn is relative cycle, then ′σ̃kn also will be relative cycle.
B) Let ′fkn,i be some simplex from ′σ̃kn, {′Xk

i,α \′Xk
i,α =′ fkn,i(H

k
α), α ∈ σn} is

correspondent to the family plains (which has finite dimensional opening) and {′Xk′
i,α,β}

is the dividing of {′Xk
i,α} on parallel plains of co-dimension k′, k′ ≥ k,

(∝, β) ∈ σn ×Rk′−k,

that is

′Xk
i,α =

⋃
β

′Xk′
i,α,β ∀i ∈ σn;

∀(i1 , α1, β1), (i2, α2, β2) ′Xk′
i1,α1,β1

‖′ Xk′
i2,α2,β2

3.

Transfer it dividing (by mappings (′fkn,i,α)−1, α ∈ σn) on σkn. Then the plains Hk
α of

σkn = σn ×Hk are also divided to parallel plains of co-dimension k′. Let s : σn → σkn is
some continuously section of trivial affine bundle (πn, σkn, σn), πn : σkn → σn. Consider

orthogonal supplements (in Hk
α) to one from parallel plains (′fkn,i,α)−1(′Xk′

i,α,β), (α, β) ∈
σn × Rk′−k, going by section s : σn → σkn. Then get the affine bundle with basis σn

2See [1].
3See [1].
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and layers of dimension (k′ − k). Denote that bundle by σn′ , n′ = n + (k′ − k) and
the layers by Hk′−k,α. Because basis σn (of bundle σn′) convex (σn is n -dimensional

simplex), then σn′ is trivial. Now consider the affine bundle, induced by families {Hk′
i,α,β

\Hk′
i,α,β = (′fki,n,α)−1(′Xk′

α,β,i)}. Denote it by σk
′
n′. σn′ is the basis of σk

′
n′. Because the set

σn′ is contractible, then σk
′
n′ is trivial. Hence, without restriction of generality, one can

suppose that the trivial affine bundle σkn = σn × Hk divided on the trivial affine bundle

σk
′
n′ = σn′ × Hk′ . Divide the basis σn′ = σn × Hk′−k by σn′,i, where σn′,i, i = 1, 2...,

are parallel prisms of dimension n′. Take the Cartesian product σn′,i ×Hk′. Obviously,
the dividing of σn′ on to prisms can be made so, that the contraction fkn only on one
from these prisms have intersection with B(R). It is possible, because of the linearity
fkn on each Hk

α, uniformly continue fkn,α at α and bounded ness of B(R) ; the other
contractions in this case will be consisted out of B(R). In this case, the orientation of

one of the simplexes σk
′
n′,i = σn′,i × Hk′ get out arbitrary and the orientations of other

simplexes coordinate with it.Therefore each of two neighboring simplexes σk
′
n′,i, σ

k′
n′,i÷1,

i = 0,±1,±2, ..., induce on its general bound contrary orientations.

Definition 16 The contraction of fkn on the (n′, k′) -dimensional cylinder is called its
(n′, k′) -dimensional bearer, if

a) n′ − n = k′ − k ;

b) the image of this contraction consists all the points of intersection fkn(σkn) with
B(R).

By analogy, well call the chain σ̃k
′
n′ =

m∑
1
gi · fk

′
n′,i the (n′, k′) -dimensional bearer of the

chain σ̃kn =
m∑
1
gi · fkn,i, if fk

′
n′,i is (n′, k′) -dimensional bearer of fkn,i for each i.

In this case, without restriction of generality, well suppose that all the plains from
all the simplexes, induced by the bearers, entering σ̃k

′
n′, parallel to each other. Let σ̃kn

be a relative singular cycle. Lets orient each simplex fk
′

n′,i, i = 1, ..., m, so that for two

simplexes fkn,i and fkn,i′ from σ̃kn, having a general bound, according to their simplexes fk
′

n′,i

and fk
′

n′,i′ induce on that bound opposite orientations. So, the oriented relative cycle σ̃k
′
n′

can be constructed (with two possible ways). So, we have finished preparatory material.
We now present our main definition.
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Definition 17 The relative cycle σkn is called homological to zero, if for some number

l ≥ 0, its (n+ l, k + l)-dimensional bearer σ̃k+l
n+l homological to zero.

From this definition it is easy to get that sum of (n, k)-dimensional relative cycles, ho-
mologized to zero, is also (n, k)-dimensional relative cycle, homologized to zero. Therefore,
(n, k)-dimensional relative cycles, homologized to zero, make subgroup of group (n, k)-
dimensional relative cycles.

Lemma 18 Relative cycles σ̃kn, ′σ̃kn from point A), are homologized to each other in sense
of definition 17 (for this l = 0), at sufficiently little ε >0, right

2ε < dist(B(R),
⋃
i

⋃
α

Xk
i,α),

where α ∈ ∂σn, i = 1, ..., m,Xk
i,α is arbitrary plain from ∂̃knσ̃

k
n.

3. Calculation H̃k
n(X,X \ B(R))

Theorem 19

H̃k
n(X,XnB(R)) =

{
0, n 6= k,

Z, n = k.

The proof reduces to calculation of the group H̃n+l(Xk+l, Xk+l \Bk+l(R)), where Xk+l

is (k + l)-dimensional subspace X,Bk+l(R) is open bull in Xk+l of radius R with center
at zero. More precisely, taking into consideration the isomorphism

H̃n+l1 (Xk+l1 , Xk+l1\Bk+l1 (R)) = H̃n+l2(Xk+l2 , Xk+l2\Bk+l2 (R)),

proves that

H̃k
n(X,X\B(R)) = H̃n(Xk, Xk\Bk(R))

and

H̃n(Xk, Xk\Bk(R)) =

{
0, n 6= k,

Z, n = k.

Here n, k, l, l1, l2 are arbitrary natural numbers.
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4. The Homological degree of an FQL-mapping

Let X, Y be the real Hilbert spaces, F : X → Y be an FQL-mapping. Suppose, the a
priori estimate

‖x‖x ≤ Φ(‖F (x)‖y) (1)

where Φ is some positive monotonous function. Let Bx(R) be a ball in X of radius R
with center at zero, x ∈ X \Bx(R), that is ‖x‖x ≥ R.

Lemma 20 At above said conditions,

∃R′ > 0, F (x) ∈ Y \By(R′),

where BY (R′) is a ball in Y of radius R′ with center at zero.
Here for simple, it is supposed that Φ is an identical mapping. From lemma 20 follows,

that F is mapping of pairs (X,X \Bx(R)), (Y, Y \By(R′)).

Lemma 21 Let Fm : X → Y,m = 1, 2, 3, ..., be the sequence of FL-mappings, uniformly
converging F in each bounded ball and F satisfy estimate (1).Then at sufficiently large
m, FL-mapping Fm will be mapping of pairs.

Obviously, at sufficiently large m, FL-mapping Fm induced the homomorphism

Fm,∗ : H̃n
n (X,X\Bx(R))→ H̃n

n (Y, Y \By(R′ − ε)),

where ε > 0 is the arbitrary positive number. Let [σ̃nn ] be a generator of group H̃n
n(X,X

\Bx(R)) and [ω̃nn ] = Fm,∗ [σ̃nn ]. As H̃n
n (Y, Y \By(R′ − ε)) = Z, then [ω̃nn ] corresponds

some of the numbers from Z. Let denote that number by degH(Fm).

Definition 22 The number degH(Fm) is called of homological degree of FL- mapping
Fm.

The signum degH(Fm) depended at selected generators in groups H̃n
n(X,X \Bx(R))

and H̃n
n(Y, Y \By(R′ − ε)). The correction of definition 22 is easily proved. It is easy to

prove that at sufficiently large m, degH(Fm) is stabilized. Because of this we can give the
following.
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Definition 23
degH(F ) = lim

m→∞
degH(Fm).

Theorem 24 Let {Ft} be the family of FQL-mappings, which depend continuously (but
in each sphere is uniformly continuous) on parameter t ∈ [0, 1] and for all t ∈ [0, 1] the a
priori estimate (1), where the function Φ is independent on t, is satisfied. Then

degH(F1) = degH(F0).

Let F : X → Y be an FQL-mapping, satisfying condition (1), deg1(F ) is degree of F
as FQL-mapping, defined by A.I.Shnirelman (see [7]).

Theorem 25
degH(F ) = deg1(F )

Consequence 26 If degH(Fm) 6= 0, then ∀y ∈ By(R′ − ε) the equation Fm(x) = y has
solution in Bx(R).

Theorem 27 Let F : X → Y is FQL-mapping, satisfying of a priori estimate (1) and
degH(F ) 6= 0. Then the equation F (x) = y has solution ∀y ∈ Y .

Proof. Consider y0 ∈ F . Since at sufficiently large m

∀x ∈ Bx(R) ||F (x)− Fm(x)||y < ε,

then from condition (1) follows that solutions of equation Fm(x) = y0 belong to ball
Bx(R0), where R0 = Φ(||y0||y + 2ε). Then mappings Fm will transfer X \Bx(R0)
in Y \By(||y0||y + ε). As degH(F ) = lim

m→∞
degH(Fm), then at sufficiently large m

degH(Fm) = degH(F ). Hence ∀m� degH(F ) 6= 0. Therefore from consequence 26 follows
that Fm(x) = y0 has solution. The proof of existence of solution of equation F (x) = y0

is conducted analogous to as given in [7]. 2

5. Appendix

Let X, Y be real Banach spaces, let Ω be abound domain in X and suppose that
πn : X → Xn is a linear mapping fromX to a n -dimensional space Xn and Xn

α = π−1(α),
α ∈ Xn.
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Definition 28 Continuous mapping fn : Ω→ Y is called a Fredholm Linear (FL), if
a) some linear mapping πn : X → Xn is fixed;
b) on each plane Xn

α , α ∈ Xn, passing through Ω, fnα ≡ fn | Xnα is an affine invertible
mapping from Xn

α on to its image Y nα = f(Xn
α ) that is, closed in Y and has co-dimension

n and fnα depends continuously on α.

Definition 29 inuous mapping f : X → Y is called Fredholm Quasi-Linear (FQL), if
there exists a sequence FL-mappings { fnk }, uniformly approximating f on each bounded
domain Ω ⊂ X, such that

‖fnkα ‖ < C(Ω),
∥∥(fnkα )−1

∥∥ < C(Ω),

with k > k0(Ω), if α ∈ πnk(Ω) and C(Ω) does not depend on k, if k > k0(Ω).
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of LerayñSchauder,UMN, 32 , 4 (196), (1977). (in Russian)

[4] Eells, J.: Fredholm structures, Proc. Sump. Pure Math. Soc. Providence, R.I. 62 (1970).

[5] Hilton P.J., Wylie S., Homology Theory, Cambridge, 1960.

[6] Spanier, E.H.: Algebraic Topology, New York, 1966.

[7] Shnirelman, A.I.: The Degree of Quasi-Linear Mapping and Nonlinear Problem of Hilbert,

Mat. Sb., 89, (131), 3, 366-389 (in Russian), (1972).

Akif ABBASOV

Faculty of Economics and Management

Univertsity of Kocaeli

Umuttepe 41380, İzmit-TURKEY
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