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Abstract

In this paper we classify the finite groups whose abelian subgroups of equal order

(B? -groups ) are conjugate. The classification has been achieved by means of a lot

of general structure properties of B? -groups, provided in the course of the paper.
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1. Introduction

There are quite a few papers relating the order of subgroups or elements of a finite
group to questions on the existence of inner automorphisms, isomorphisms, and conju-
gacy. In the following, let us consider a list of statements all dealing with that idea; the
symbol G stands universally for a finite group. As a matter of fact, all groups regarded
in this paper are assumed to be finite. So let us introduce the following classes of groups
G.

• A - Elements of G of equal order are conjugate;

• I - Each isomorphism between two subgroups of G is induced by an automorphism
of G;

• S - Each pair of isomorphic subgroups of G is a pair of conjugate subgroups in G;
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• Z1 - Each isomorphism between cyclic subgroups of G is induced by an automor-
phism of G;

• B - Subgroups of G of equal order are conjugate in G;

• B? - Abelian subgroups of G of equal order are conjugate in G;

• Πp - For a given prime number p, all p-subgroups of G of equal order are conjugate
in G;

• C - Cyclic p-subgroups of G of equal order are conjugate in G for any prime p;

• Z2 - Subgroups of G of equal order are isomorphic.

Next we will describe, where find as much information as possible on the structure of
those finite groups mentioned in the list of the above statements.

A - There are only three groups here, to witt: {1}, the cyclic group of order 2, and the
symmetric group on three symbols. See [22] for a self contained proof of this assertion
based on methods occuring in papers before 1985; look also at the paper of Zhang Jiping
[24] from 1988, which we have not seen. The classification follows also as a corollary to
more involved investigations of Feit and Seitz published in 1988 ; see [6].

I - Consult the work done by Cherlin and Felgner [3] (it comprises the observation
of P.M. Neumann which had earlier classified the solvable groups featuring in this state-
ment). It was Li who treated the non-solvable case (to be found in [15]), whereas Zhang
Jiping [25] claims to have done all of it in an unpublished paper; view the very recent
paper [4].

S - View Stroth’s paper [18] from 1996.

Z1 - Here we refer to the paper of Zhang Jiping [25] from 1992.

B - The papers of Bensaid, Van der Waall and Lindenbergh are conclusive: see
([2], [16], [21]).

Πp - It was Gross, who dealt with the groups featured in statement Πp; see [9].
Z2 - View Zhang Jiping′s paper [26] from 1995.

C - The classification of groups occuring here has almost been carried out; see a future
paper by Sezer with some help by Van der Waall.

B? - The full classification of the groups in this rubric is the topic of the underlying
paper!
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The obvious convention of notation suggests that the reader might observe the fol-
lowing “inclusions”:

A ⊂ I ⊂ Z1, B ⊂ B? ⊂ C , S ⊂ C, B ⊂ Z2.

In general, notation will be standard or self-explanatory; see [8], [10], [11], [12] and
[17], of which Huppert’s books and Suzuki’s books are the main standard. For the sake
of convenience, we mention the following:

Sn- the symmetric group on n symbols;
An- the alternating group on n symbols;
|U |- the cardinality of the subset U of G;
H ≤ G- H is a subgroup of G;
H < G- H ≤ G and H 6= G;
H E G- H is a normal subgroup of G;
H C G- H E G and H 6= G;
G′, [G,G]- the commutator subgroup of G;
[H,K]- for subsets H and K of G, it means the group generated by all commutators

h−1k−1hk, where h ∈ H and k ∈ K;
[H,K, L]- for subsets H,K and L of G,it means that it is equal to[[H,K] , L];
Z(G)- the center of G;
Φ(G)- the Frattini subgroup of G;
F (G)- the Fitting subgroup of G;
F2(G)- F2(G)/F (G) := F (G/F (G));
Op(G)- the subgroup of G generated by all the normal p-subgroups of G where p is

a given prime;
CG(M)- {u ∈ G | um = mu for all m ∈M }, the centralizer of M in G;
NG(M)-

{
t ∈ G | t−1mt ∈ M for all m ∈ M

}
, the normalizer of M in G

Aut(G)- the group of all automorphisms of G;
Inn(G)-

{
α ∈ Aut(G) | ∃ a ∈ G such that α (g) = a−1ga, for all g ∈ G

}
, the group

of all inner automorphisms of G [the former a ∈ G does not depend on the g ∈ G in
α (g) = a−1ga];

Sylp(G)- the set of all Sylow p-subgroups of G for a given prime p;
Hallπ(G)- for a given set of primes π, H ∈Hallπ(G) if and only if all primes t dividing

the order of the subgroup H of G satisfy t ∈ π, but s/∈ π for all primes s dividing the
index of H in G;

PΓL(n, q)- the automorphism group of PSL(n, q);

141



SEZER, VAN DER WAALL

PSL(n, q)- SL(n, q)/Z(SL(n, q)) ;
Fq- the finite field consisting of q elements;
SL(n, q)-the group of all the (n × n)-matrices with coefficients in Fq, each matrix

being of determinant equal to 1;
PGL(n, q)- GL(n, q)/Z(GL(n, q));
GL(n, q)- the group of all the (n × n)- matrices with coefficients in Fq , each matrix

being of determinant unequal to zero;
ΓL(1, pn)- the group of all the semi-linear maps x 7−→ axσ, with x ∈ Fpn , p prime ,

σ ∈ Gal(Fpn/Fp), a ∈ Fpn \ {0};
Gal(Fq/Ft)- the unique subgroup U of the group H of all field automorphisms of Fq

fixing a given subfield Ft, i.e.,

U = {h ∈ H | h(f) = f, for all f ∈ Ft } ;

but notice then that here also Ft is characterized by

Ft = {f ∈ Fq | h(f) = f, for all f ∈ U } ;

Exp(G)- minimum of {t ∈ N | gt = 1, for all g ∈ G };
pa‖n-the prime p divides the positive integer n precisely a times, i.e. pa | n and

pa+1 - n.
IfX is a group and H1 ≤ X,H2 ≤ X, then we say that H1 andH2 are conjugate in

X ( notation H1 ∼X H2) if there exists an element g ∈ X with H2 =
{
g−1hg | h ∈ H1

}
.

Of course, we write alternatively H2 = g−1H1g (or H2 = Hg
1 ).

In this paper the structure of those groups R will be determined in which any two
abelian subgroups of R of equal order are conjugate. Such a group G, apparently
belonging to the class B?, is called a B?-group; we also write G ∈ B?. If some group K

satisfies statement B, then we say that K is a B-group (or K ∈ B).
It will turn out (see §3) that solvable B?-groups are B-groups. On the other hand,

there are non-solvable B?-groups that are not B-groups. Subgroups and quotient groups
of B?-groups are not always B?-groups. Therefore, straightforward induction arguments
cannot be applied to the study of the B?-groups. But in some cases one can exploit the
observation that some special type of quotients of B?-groups are B?-groups; see Lemma
1.3.

In §1 we deal with the elementary or general properties of B?-groups. Among them
are also properties of Sylow subgroups ofB?-groups. In §2 the solvability and insolvability
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properties of B?-groups are considered, such as structures on the chief factor groups. And
then, in §3, we show that solvable B?-groups are B-groups. In §4 the classification of the
non-solvable B?-groups is presented. The compilation of the structure of the Theorems
3.5, 4.2, 4.3, 4.4, 4.5, and 4.6 provides the Main Theorem of this paper:

Main Theorem The following statements hold.

a) The class consisting of all solvable B?-groups coincides with the class consisting of
all solvable B-groups.

b) Every non-solvable B?-group either is a non-solvable B-group or else is isomorphic
to a direct product of the groups M and H, where H is any solvable B-group whose order
is relatively prime to the order of M , and where M is either isomorphic

to the B?-group J1( Janko’s first simple group of order 175560 ),

or to any of the simple B?-groups PSL (2, q) with q = pf , p odd prime f = 1 or 3,
q ≥ 11, q ≡ 3 or 5 (mod8),

or isomorphic to any of the quasi-simple B?-groups SL (2, u) with u = pf , p odd
prime, f = 1 or f = 3; u ≥ 7.

In [2] it is shown that a non-solvable B-group contains either elementary abelian non-
cyclic 2-subgroups or else quaternion subgroups of order 8 as Sylow 2-subgroups. As such,
the papers [2] and [16] provide the following portemanteau theorem either explicitly or
implicitly.

Theorem P1. Let G be a non-solvable B-group. Then G is one of the following types
of groups.

a) G = N×T for any solvable B-group T with (|N | , |T |) = 1; here, N is isomorphic to
one of the groups A5, SL (2, 8) , SL (2, 5) , or to the semidirect product of U by (Cp × Cp)
for each p ∈ {11, 19, 29, 59} with U ∼= SL (2, 5) and Cp × Cp being a minimal normal
subgroup of the semidirect product of U by (Cp ×Cp) ;

b) G = (N × T ) 〈α〉; here T 〈α〉 is any solvable B-group satisfying

(|T 〈α〉| , 2046) = 1, α5 ∈ T ,N ∼= SL
(
2, 32), N 〈α〉 /

〈
α5
〉 ∼= ΓL (2, 32)

)
;

c) G is the semidirect product of U by (Cp ×Cp) × H 〈c〉; here H 〈c〉 is a solvable
B-group satisfying (|H 〈c〉| , 30p) = 1, U ∼= SL (2, 5), [U,H 〈c〉] = {1}, c−1Hc = H,
c−1tc = ti for all t ∈ Cp×Cp, |c| = βα α ≥ 0, cβ ∈ H, and {β, p, i} is one of the ordered
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triples {7, 29, 16} ,{29, 59, 4}; Cp × Cp is a minimal normal subgroup of the semidirect
product of U by (Up × Up).

Conversely, any of the groups featuring in the list of this Theorem is indeed a non-
solvable B-group.

From paper [21] we provide the following portemanteau results; see Theorems 10 and
11 of [22].

Theorem P2 Let G be a solvable group. Assume the following statements hold.

a) Any non-cyclic Sylow subgroup of G is normal in G,

and

b) Any two subgroups of G of equal order that are contained in the Fitting subgroup
F (G) of G are conjugate in G.

Then G is a B-group.

Conversely, if H is a solvable B-group, then condition b) holds trivially. But condition
a) is denied when non-cyclic Sylow 2-subgroups are not contained in F (H). In that
exceptional case it holds that Sylow 2-subgroups of H are quaternion of order 8, that
F (H) = L×C, where C is abelian satisfying (|C| , |L|) = 1 and with either L ∼= C5×C5

and H/CH (L) ∼= SL (2, 3) or else L ∼= C11 × C11 and H/CH (L) ∼= SL (2, 3)× Cu with
u = 1 or u = 5. In the exceptional case, there exists K E H satisfying K ≥ L with K/L

isomorphic to a quaternion group of order 8.

Theorem P3 Suppose T is a solvable B-group for which S ∈ Sylp (T ) is not cyclic. If
p ≥ 3, then S ≤ F (T ) holds (hence S E T ) and S is elementary abelian of order p2 or
p3. When p = 2, then S is either isomorphic to a quaternion group of order 8 or else S

is elementary abelian of order 4, 8, or 32, satisfying S E T.
It is possible to refine the structure of the Fitting subgroup of a B-group analoguously

to the lines presented in [2] and [21]; it is not the issue to carry that out here, and
we postpone it to a later occasion. See also Theorems 6, 7 and 8 of [21], handling
exhaustive results regarding the group V/CV (M), where M is a non-cyclic minimal
normal p-subgroup of the solvable B-group V.

The contents of this paper are based on the Thesis of the first author, submitted to the
graduate school of Natural and Applied Sciences of Middle East Technical University at
Ankara, Turkey, in June 1996. At that time he was conferred a fellowship as a research
assistant at that university for which he is most grateful. The first author wishes to
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express his gratitude to his former employer, the Eastern Mediterranean University at
Gazimagusa, Northern Cyprus in enabling him to do research leading to the outcome of
this paper. Both authors gratefully acknowledge the grant obtained from the Korteweg-
de Vries Institute for Mathematics at the University of Amsterdam and from the Dutch
Organization of Scientific Research, that paved the way for the stay of the first author at
the KdV- Institute at Amsterdam in September 2000.

2. Generalities on B?-groups

As mentioned in the Introduction, a finite group G is called a B?-group if any two
abelian subgroups of equal order are conjugate in G. We unravel the internal structure
of a B?-group. An overview will be given of the structure of the Sylow subgroups of
a B?-group, followed by some elementary and (non-)closure properties of the class of
B?-groups. Finally we end this section with some observations about chief factors of
B?-groups.

The Sylow subgroups of a B?-group will turn out to be of a very restricted nature.
Let G be a B?-group and let p be a prime. Then any two subgroups of G of order p2 are
conjugate (as they are abelian), whence isomorphic. Therefore either all subgroups of G
of order p2 are elementary abelian, or else all these subgroups are cyclic. If G does not
contain an element of order p2, then Exp(P ) = p for any P ∈ Sylp(G) when P > {1}.
Thus, according to ([11],III.8.2 Satz), that the following Proposition holds.

Proposition 1.1 Let P ∈ Sylp(G) with G ∈ B?. Then

(i) If p = 2, then either P is cyclic, or elementary abelian, or generalized quaternion;
(ii) If p is odd, then Exp(P ) = p or else P is cyclic.

Another elementary property of B?-groups is given in the next Proposition.

Proposition 1.2 Let G be a B?-group.

a) Let M E G and a ∈ G. Then a ∈ M , if there exists an element in M of order
|a| .

b) Let M E G with |M | = pt (p prime , t ≥ 2). Suppose that M is elementary
abelian. Then M is a ( in fact the unique) Sylow p-subgroup of G.

c) Let M E G, A ≤ M, C ≤ M, |A| = |C| . If A and C are abelian, then
#
{
mAm−1 | m ∈ M

}
= #

{
mCm−1 | m ∈M

}
.
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Proof. a) Suppose s ∈ M with |s| = |a| . Then 〈s〉 and 〈a〉 are conjugate within G.

So, as M E G, a ∈ M follows immediately.

b) Since |M | = pt ≥ p2, Exp(P ) = p will hold for any Sylow p- subgroup P of the
B?-group G as soon as M is elementary abelian. Now apply a) and the results follows.

c) As the centralizer CM (A) of A in M is conjugate to CM(C) (due to the fact that
A and C are conjugate in G), it follows that |M : CM(A)| = |M : CM (C)|, yielding the
result. 2

Now let us look at the (non-)closure properties of B?-groups. The alternating group
A4 on four symbols satisfies A4 ∈ B ⊆ B?, but P ∈ Syl2(A4) does not fulfill P ∈ B?. It
is almost clear, (see ([2]),Theorem 2), that the class of all B-groups is closed under taking
homomorphic images. On the other hand, the class of B?-groups is NOT closed under
taking homomorphic images! As an example, we mention here that G = SL(2, 7) ∈ B?.

Take c =

[
0 −1
1 3

]
∈ SL(2, 7) and d =

[
−1 −1
2 1

]
∈ SL(2, 7). Then |cZ(SL(2, 7))| =

4 within PSL(2, 7) whereas
〈
c2Z(SL(2, 7)), dZ(SL(2, 7))

〉
is elementary abelian of order

4 within PSL(2, 7). Thus PSL(2, 7) /∈ B?. Not everything is lost however, as the following
Lemma shows.

Lemma 1.3 Let G ∈ B?, M E G, |M | ≡ 1 (mod 2). Then G/M ∈ B?.
Proof. Suppose G is a counterexample of minimal order to the statement of the
Lemma. Now, within G, choose M of smallest order for which G/M /∈ B?; so M 6= {1}.
Suppose L E G,L ≤ M, L 6= {1} , where M/L is a minimal normal subgroup of G/L.
Then we get G/L ∈ B?. Since M/L is a normal subgroup of odd order of G/L and as
G/M ∼= (G/L)/(M/L) with G/M /∈ B?, the choice of G together with M implies that
L = {1}. Since M is of odd order, it is solvable (by Feit and Thompson; see [7]). Thus
M is an elementary abelian p-group for some prime p; remember that p 6= 2.

Suppose X, Y are subgroups of G containing M , for which X/M and Y/M are abelian
of equal order. If p - |X/M |, then X = MX1 for some X1 ≤ X with M ∩ X1 = {1}
(by Schur and Zassenhaus; see ([11], I.§18) Likewıs,e Y = MY1, Y1 ∩M = {1} for some
Y1 ≤ Y . Thus X1 and Y1 are abelian subgroups of G of equal order, whence conjugate
within G. So X/M and Y/M are conjugate within G/M . Hence assume that p divides
|X/M | (= |Y/M |). This implies by Propositions 1.1 and 1.2, that M is cyclic. It is
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now Proposition 1.2 yielding the cyclicity of any Sylow p-subgroup of G. Since X/M is
abelian, it follows easily that there exist some cyclic P ∈ Sylp(X) and Hall p′-subgroup
X1 of X such that X = PX1. [Notice here, that P E X as X/M is abelian]. Since
[X,X] ≤ M ≤ P, we now see that [P,X1] ≤ M ≤ Φ(P ); remember P is cyclic. Thus
X1 centralizes P/Φ(P ). Therefore [P,X1] = {1} by ([11], III 3.18 Satz). In other words,
X = PX1 is an abelian group; notice |X| = |Y |. Hence X and Y are conjugate in
G,inducing that X/M and Y/M are conjugate in G/M . So G/M ∈ B? after all. This
contradiction completes the proof of Lemma 1.3. 2

As for direct products, the following holds.

Lemma 1.4 Let G = G1 ×G2.

(i) Suppose G ∈ B?. Then G1 and G2 are both B?-groups; moreover (|G1| , |G2|) = 1;
(ii) Suppose G1 ∈ B?, G2 ∈ B?, (|G1| , |G2|) = 1. Then G ∈ B?.

Proof. (i) If G = G1 × G2 ∈ B?, it is clear that G1 and G2 are of relatively prime
order. Consider an abelian A1 ≤ G1 and an abelian B1 ≤ G1 of equal order. Then
there exists g = g1g2 ∈ G with gi ∈ Gi (i = 1, 2) such that gA1g

−1 = B1. Therefore,
B1 = gA1g

−1 = g1g2A1g
−1
2 g−1

1 = g1A1g
−1
1 . Therefore, G1 ∈ B? and likewise G2 ∈ B?.

(ii) Any subgroup of G is of the form H1H2, where H1 ≤ G1 and H2 ≤ G2. See
([19], Corollary to Ch. 2, Th (4.19)); it is used here, that (|G1| , |G2|) = 1. Sup-
pose H and K are abelian subgroups of G of equal order. So there are Hi ≤ Gi and
Ki ≤ Gi (i = 1, 2), such that H = H1H2 and K = K1K2. Furthermore, there exist
gi ∈ Gi (i = 1, 2) satisfying giHig

−1
i = Ki. Altogether we find (g1g2)H(g1g2)−1 =

(g1g2)H1(g1g2)−1(g1g2)H2(g1g2)−1 = g1H1g
−1
1 .g2H2g

−1
2 = K1K2 = K; of course it is

used here that [H1, 〈g2〉] = {1} = [H2, 〈g1〉]. This proves the claim that G ∈ B?. 2

The forgoing Lemma 1.4 tells us that in order to classify all B?-groups, it is sufficient
to know all so-called indecomposable B?-groups, i.e. those that cannot be written as a
direct product of two proper non-trivial subgroups. In this respect the following is nice
to observe.

Theorem 1.5 Every nilpotent B?-group is cyclic.

Proof. Any nilpotent group is the direct product of its Sylow subgroups; see ([11],
III.2.3 Haupsatz). Therefore, by Lemma 4, all these Sylow subgroups are B?-groups. If
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such a Sylow subgroup S is of odd order, then S must be cyclic. Otherwise, by Propo-
sition 1.2, all subgroups of S of prime order would be conjugate to each other within S,
yielding that Z(S) 6= {1} is cyclic, and all subgroups of order p would be absorbed by
Z(S), so that |S| = p, a contradiction! Likewise, such a Sylow 2-subgroup is cyclic or
generalized quaternion by Proposition 1.1. But a generalized quaternion 2-group is never
a B?-group, as a direct verification regarding cyclic subgroups of order 4 shows. Thus
our nilpotent group is a direct product of cyclic groups of relatively prime order. Hence,
it is itself cyclic. The Theorem has been proved. 2

Lemma 1.6 Let M/N be a chief factor of the B?-group G. Let p be a prime dividing
|M/N | and let P ∈ Sylp(G). If Exp(P ) = p, then P ∩M = P and P ∩ N = {1}. If
Exp(P ) > p, then either P is cyclic or else p = 2 with P ∩M = P, and |P ∩N | ≤ 2. If
p = 2 and P ∈ Syl2(G) is cyclic, then |M/N | = 2 follows.

Proof. Assume Exp(P ) = p. Since P ∩M ∈ Sylp (M), it follows that (P ∩M)N/N ∈
Sylp (M/N) is not trivial. All subgroups of order p are conjugate in G and each of them
is contained in M . So P ≤ M. If P ∩ N 6= {1}, then there exists a subgroup of N of
order p , but this subgroup cannot be conjugate to a subgroup of N (of order p). Hence
P ∩N = {1}.

So, let us assume that p = 2, Exp(P ) > 2, and P is generalized quaternion. If
|P ∩M | ≥ 4, then M contains a subgroup of order 4, necessarily being cyclic. It is true
that P is generated by its elements of order 4. So P ≤ M , by Proposition 1.2. In the
same way, |P ∩N | ≤ 2 follows. Assume now that P is a cyclic 2-group. Then Burnside’s
theorem ([11],IV.2.8 Satz) tells us that G is solvable. In particular, as 2 | |M/N |, M/N

is an elementary abelian 2-group. Hence, in fact, M/N is cyclic of order 2. 2

3. Solvability and non-solvability properties around B?-groups

Let us look at the following situation. Suppose G ∈ B?. Assume M is an elementary
abelian normal subgroup of G of order pn, with n ≥ 2, p some prime number. By
Proposition 1.2 M is a minimal normal subgroup of G and all subgroups of order p of
G (all of them are contained in M) are conjugate in G; furthermore, p does not divide
|G/M |, hence also (p, |G/CG(M)|) = 1.

Let H ∼= G/CG(M) be a subgroup of GL(n, p) with p - |H | permuting transitively
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all d-dimensional subspaces of the n-dimensional vector space V (n, p) over Fp whenever
d ∈ {0, 1, ..., n}. We will prove that the following Proposition 2.1 holds regarding the
structure of H .

Proposition 2.1 The group H ∼= G/CG(M) as defined in the beginning of §2 satisfies
precisely one of the three statements of the following list z.

z =



(a) H is isomorphic to a subgroup of ΓL(1, pn);
(b) H contains a central subgroup C, admitting a 2− group N/C

as minimal normal subgroup of H/C of order 4, where
n = 2 and p ∈ {3, 5, 7, 11, 23} ;
(c) The last member H∞ of the derived series of H is isomorphic

to SL(2, 5), where n = 2, p ∈ {11, 19, 29, 59} .

Proof. Consider the group H = HU , where by definition U = {αI |
α ∈ Fp \ {0} }, and I is the n × n-identity matrix in GL(n, p). So U ≤ Z

(
H
)

and
|U | = p − 1. Then it is possible to apply results as worked out by Hering in §5 of [10].
We now assume, until first notice, that H is not solvable. This implies that p is odd
[Indeed, by Proposition 1.2 and the Feit-Thompson Theorem we get for |M | = 2n and
n ≥ 2, that G is solvable, hence H is solvable too].

By Proposition 1.1 it follows that Sylow 2-subgroups of the B?-group G are either
generalized quaternion, cyclic, or elementary abelian. Suppose firstly that the Sylow 2-
subgroups of G are generalized quaternion. Then the Brauer-Suzuki-Wall-Glauberman
Theorem ([8],Ch. 12, Th. 11 and page 462) implies that H admits a chief factor C that is
isomorphic to the simple group PSL(2, t), where t is an odd prime power greater than 3 or
it is isomorphic to the alternating group A7; notice that the same holds for a non-abelian
(simple) chief factor of H . The group A7 is ruled out by ([10], Theorem 5.12) as it appears
then that p = 3, so that 3 - |C| = |A7| yields a contradiction. Thus C ∼= PSL (2, t)
remains. Then ([10], Theorem 5.13) together with p -

∣∣H∣∣ yields the following. Either the

last member H
∞

of the derived series ofH is isomorphic to SL(2, 5) with p = 11, 19, 29, 59,
or H ∼= SL (2, 13) with p = 3 and n = 6, or SL(n, p) ≤ H ≤ ΓL (n, p). Note that
H
∞

= (HU)∞ = H∞. The case H ∼= SL (2, 13) with n = 6 and p = 3 is ruled
out by the fact that the 360 1-dimensional subspaces of V (6, 3) cannot be transitively
permuted by H , as 9 - |SL (2, 13)| . Now by ([11],II, 6.10 Satz), SL (n, p) is equal to its
own commutator subgroup unless n = 2 and p ≤ 3. So if SL(n, p) ≤ H ≤ ΓL (n, p),
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either p divides |SL (n, p)| (hence p |
∣∣[H,H]∣∣ = |[H,H ]| producing a contradiction to

p - |H |) whenever n ≥ 3 or n = 2 together with p ≥ 5, or else H is a subgroup of one
of the solvable groups ΓL (2, 2), ΓL (2, 3) or ΓL (1, p), violating the nonsolvability of H .
Suppose now that the Sylow 2-subgroups of G are elementary abelian. Then Walter’s
theorem, as mentioned in [23] implies that a non-abelian simple group whose Sylow 2-
subgroups are elementary abelian, is either isomorphic to SL (2, 2m) with m ≥ 2, or to
PSL (2, t) with t a prime power satisfying t ≡ 3 or 5 (mod8), but t 6= 3, or to a simple
group R of Ree type in the sense of Thompson and Ree (see also the comments in the
proof of Theorem 4.6 regarding simple groups of Ree type). Therefore, consider a non-
solvable chief section C of H . By Theorems 2.3 and 4.2, C is simple. If C ∼= PSL (2, t),
we argue similarly as in the quaternionic case above. If C ∼= SL (2, 2m) with m ≥ 2,
then from ([10], Theorem 5.13) we get that either H∞ = H

∞ ∼= SL (2, 5) with p = 3
and n = 4 or p = 11, 19, 29, 59 with n = 2 for these four primes, or H ∼= SL (2, 13)
with p = 3 and n = 6 (but this case is ruled out in the same way as we did above),
or SL(n, p) ≤ H ≤ ΓL (n, p) holds. In the last case, consider H

∞
. If n ≥ 3 or if

n ≥ 2 and p ≥ 5, then SL (n, p) = [SL (n, p) , SL (n, p)] ≤ H
∞

= H∞. In this case p
divides |SL (n, p)| so p | |H |, contrary to p - |H | by assumption. On the other hand,
if n = 2 and p ≤ 3, then H is solvable, contrary to our assumption that H is not
solvable. Next, consider C ∼= J1. This case does not occur, due to ([10], Theorem
5.14). Finally, let C ∼= R. In Proposition 1.1 it was shown that a Sylow t-subgroup
T of a B?-group equals either a cyclic group or else Exp (T ) = t, whenever t is an
odd prime. Any Sylow 3-subgroup of R, however, is not abelian and its Exponent is
at least 9; see [20]. Hence C ∼= R does not occur. Suppose finally that a Sylow 2-
subgroup of G is cyclic. Then ([11],IV, 2.8 Satz) in conjunction with the Theorem of
Feit and Thompson yields the solvability of G, contrary to the assumption that H is not
solvable. Now we recall our hypothesis that H is non-solvable. Henceforth, assume H
is solvable. Assume also from now on, that p is an arbitrary prime number. Then we
are able to invoke [10], Corollary 5.6, due to Huppert, resulting in the fact that either
SL(n, p) ≤ H ≤ ΓL (n, p), or else that in Hering’s notation that H satisfies property (IV),
meaning that H contains a normal subgroup E isomorphic to an extraspecial group of
order 2n+1 with CH (E) = Z

(
H
)
, where H/Z

(
H
)
E is faithfully represented on E/Z (E)

and either n = 2 with p ∈ {3, 5, 7, 11, 23} or else n = 4 with p = 3. In our B?-group
G situation, both these possibilities for H can be sharpened as follows. Because H is
solvable, the assumption SL(n, p) ≤ H ≤ ΓL (n, p) implies that n = 2 with p ≤ 3,
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or else n = 1, yielding H ≤ H ≤ ΓL (1, p). If n = 2 and p = 2 should hold, then
SL(2, 2) ≤ H ≤ H , contrary to 6 = |SL (2, 2)| and 2 -

∣∣H∣∣. If n = 2 and p = 3 would

be the case, we have SL(2, 3) ≤ H = HU ; observe |U | = 2 holds here and that 3 - |H |
now by assumption. So, as |SL (2, 3)| = 24, we have a contradiction. Hence indeed n = 1
follows. Finally, as Sylow 2-subgroups of H are isomorphic to factor group of Sylow
2-subgroups of the B?-group G, we observe E is isomorphic to a quaternion group of
order 8 (i.e. n = 2) in the case where H satisfies property (IV) of Hering; see above.

In the proof of this theorem we began by considering H ∼= G/CG (M) and we have
now shown that the structure of H = HU is very restricted for any p. Thus, the question
arises: what can be said about a preliminary structure for H itself. When H is not
solvable, then we have shown above that all structures that has been derived for H hold
for H , too. When H is solvable and p is an arbitrary prime, then we have proved above,
that either H ≤ H ≤ ΓL (1, p) or else that H satisfies Hering’s property (IV) with E

quaternion of order 8 and with p ∈ {3, 5, 7, 11, 23}. As E and H are normalized by H ,
it follows that E ∩H is normalized by H . In particular, E ∩H is a normal subgroup of
E. As H ≤ HE ≤ HU , it follows now that HE/H ∼= E/E ∩ H is cyclic. So, E ∩ H
must contain [E,E] = Z (E). Thus |E/E ∩H | = 1 or 2. Therefore, let us assume that
the order of E ∩ H equals 4; thus observe that E ∩ H as a subgroup of a quaternion
group is cyclic. As H = HU , E ∩H is a normal subgroup of H . Thus there would exist
a chain G B B B CG (M) with E ∩H ∼= B/CG (M). We know that non-abelian Sylow
2-subgroups of a B?-group are generalized quaternion and that each of them is generated
by elements of order 4. Hence G/B would be of odd order, so that we have arrived at
a contradiction. Therefore it follows that E = E ∩ H , i.e. E ≤ H . In fact, E C H

holds because H normalizes E, as we saw above. As said before, a quaternion Sylow
2-subgroup of G is generated by its elements of order 4. This implies that E/Z (E) is a
chief section of H , whence of G, of order 4. The proof of Proposition 2.1 is complete,
writing in (b) C instead of Z (E) and N instead of E. 2

Conversely, if G/CG(M) is a group from (b) in that list zoccurring in Proposition
2.1, then CG(M) is solvable. [Indeed, assume CG(M) admits a non-solvable chief factor
E/R with E E G,R E G. Because no Sylow 2-subgroup of E is cyclic (by [11],IV.2.8
Satz, and the theorem of Feit and Thompson [7]) and as E does not contain elements of
order 4 (otherwise any Sylow 2-subgroup of G, being generalized quaternion now, would
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be contained in CG(M); see Proposition 1.3 and 2 - |G/CG(M)| which is not the case),
any Sylow 2-subgroup of E and of E/R has to be elementary abelian of order at least 4.
Then, however, any Sylow 2- subgroup of G would be elementary abelian, contradicting
G/CG(M) ∈ z(b)]. Now observe, that if G/CG(M) ∈ z(b) that there exists an abelian
subgroup U/CG(M) with U E G in such a way that U/CG(M) contains an elementary
abelian 2-subgroup of order at least 4 for which G/U is solvable. In total, it follows now,
that a B?-group G with G/CG(M) ∈ z(b) and |M | = p2 (p ∈ {3, 5, 7, 11, 23}) must be
solvable.

Next, let us once look again at the following situation. Suppose that G is a non-
solvable B?-group. Suppose that there exists an elementary abelian minimal normal
subgroup M of G of order pt with t ≥ 2, p prime. Then by Proposition 1.3 and the
Feit-Thompson theorem, p is odd. Assume G/CG(M) does not belong to z(c). Then,
by the reasoning provided above, it must be that G/CG(M) belongs to z(a),whence
G/CG(M) is solvable in that case. Therefore CG(M) is not solvable. It holds too that
CG(M) = KM with K ≤ CG(M), (|K| , |M |) = 1, [K,M ] = {1}; remember M ∈ Sylp(G)
by Proposition 1.3.

We collect some of the above properties in the following portmanteau theorem.

Theorem 2.2 Let M be an elementary abelian normal subgroup of a B?-group G.
Assume |M | = pt with t ≥ 2 and p prime. Then precisely one of the following statements
for the group G is fulfilled.

1. G/CG(M) is isomorphic to a (solvable) subgroup of ΓL(1, pt);

2. t = 2, p ∈ {3, 5, 7, 11, 23}, G is solvable, and G/CG(M) admits a 2 -group of order
4 as chief factor;

3. The last member (G/CG(M))∞ of the derived series of G/CG(M) is isomorphic
to SL(2, 5), where t = 2 and p ∈ {11, 19, 29, 59}.

Remark As we shall prove in §3, any solvable B?-group is B-group. Therefore, in a
B?-group G satisfying case 2) of the Theorem 2.2, it also holds that p = 5 or that p = 11;
see Theorems 8 and 10 of [21].

Let us look at non-solvable chief factors of the B?-groups.
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Theorem 2.3 Let {1} = N0 E N1 E.̇.E Nk E Nk+1 E.̇. E Nm = G be a chief
series of the B?- group G. Then G is solvable or there exists precisely one index
k ∈ {0, 1, ...,m− 1} such that Nk+1/Nk is non-solvable.

Proof. Assume the existence of at least one index t ∈ {0, 1, ..., m− 1} such that
Nt+1/Nt is non-solvable [otherwise G is solvable]. So G is not solvable. We have
4 | |Nt+1/Nt| , by Burnside’s theorem ([11], IV.2.8 Satz) and the Feit-Thompson the-
orem [7]. Let P ∈ Syl2(G). Since P is not cyclic, we have P = 〈a ∈ P | |a| = 4〉 or P is
elementary abelian; see ([11], I.14.9 Satz). In both these cases P ≤ Nt+1 follows. Thus
2 - |G/Nt+1|, yielding (by Feit-Thompson) the solvability of all the factorsNj+1/Nj when-
ever j ≥ t+1. From Lemma 1.6, we learned that |P ∩Nt| ≤ 2. Hence Burnside’s theorem
([11], IV.2.8 Satz) gives that Nt, whence also each factor Nr+1/Nr for r ∈ {0, 1, ..., t− 1}
in case t ≥ 1, is solvable. Hence the proof of the Theorem is done, also if t = 0 features. 2

The following Theorem will turn out to be very useful.

Theorem 2.4 Suppose M/N is a non-solvable chief factor of the B?-group G. Then there
exists a subgroup L of G such that M = NL, L = L′, L/Z(L) ∼= M/N , N ∩ L = Z(L).

Proof. Let {1} = N0 E N1 E....ENr = G be a chief series of G passing through N and
M . Then there exists k ∈ {0, 1, ..., r− 1} such that N = Nk and M = Nk+1. Consider
the set τ = {K ≤ G | KN = M,K′ = K}. Since M/N is not solvable,(M/N)u 6= {1},
where Mu (for some specific integer u) represents the last term in the derived series of
M ; note that (M/N)u = MuN/N . Since M/N is a chief factor, MuN = M follows.
Hence τ is not empty as {1} 6= Mu ∈ τ . Let now L be an element of τ of smallest order;
so indeed L 6= {1}. We will show that L ∩Nk = Z(L). Since Nk is solvable by Lemma
1.6, we see already that L 6= L ∩Nk.

Assume there exists an index i ≤ k such that (L ∩ Ni)/(L ∩ Ni−1) in the series
L ⊃ L ∩ Nk ⊇ ... ⊇ L ∩ N1 ⊇ {1} is a non-cyclic elementary abelian p-subgroup for
some prime p. [Note that (L ∩ Ni)/(L ∩ Ni−1) is isomorphic to a subgroup of the
solvable (elementary abelian) chief factor Ni/Ni−1]. As p2 | |Ni/Ni−1| , it follows from
Lemma 1.6 that Ni/Ni−1 is isomorphic to a Sylow p-subgroup of G. So p - |Nk+1/Nk|.
Therefore any Sylow p-subgroup of L is in fact, contained Ni whence contained in
L ∩ Ni. Thus an application of the Schur-Zassenhaus theorem yields that, due to
(|L/ (L ∩Ni)| , |(L ∩Ni)/ (L ∩Ni−1)|) = 1, there exists S/ (L ∩Ni−1) ≤ L/ (L ∩Ni−1)
such that L/ (L ∩Ni−1) = (S/ (L ∩Ni−1))((L ∩Ni)/ (L ∩Ni−1)) and S ∩ L ∩Ni = L ∩
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Ni−1. So |S| < |L| and S(L∩Ni) = L. It follows thatNk+1 = NkL = Nk(L∩Ni)S = NkS.
Furthermore, the last member Sv in the derived series of S satisfies SvNk = Nk+1 (with
(Sv)′ = Sv); note that M/N = (M/N)′ = M ′N/N = (SN)′N/N = S′N/N , yielding
S′N = M , etc. Thus Sv ∈ τ , a contradiction to the choice of L ∈ τ with |Sv | < |L|.

Therefore, it must be that (L ∩ Ni)/ (L ∩Ni−1) is cyclic for any i ∈ {1, ..., k}. Then
it follows from Lemma 1.6 that every Sylow subgroup of L ∩ Nk is cyclic. [Indeed, 4
divides the order of the non-solvable group M/N . Suppose P ∈ Syl2(M) is not abelian.
Then P is generalized quaternion, generated by its elements of order 4. So N does not
contain elements of order 4, due to G ∈ B?. But then any P ∈ Syl2(N) is cyclic of order
2. Again, as G ∈ B?, 4 | |M/N |, no Sylow 2-subgroup of N can be elementary abelian
of order at least 4. Now let Q ∈ Sylp (M) with p odd prime. Assume Exp(Q) = p.
Suppose there exists a ∈ (L ∩ Ni)/ (L ∩Ni−1) of order p and assume b ∈ L ∩ Ni−1 of
order p. As G ∈ B?, a ∈ L ∩ Ni−1 follows, a contradiction. Hence by Proposition 1.1,
we are done]. Now let P ∈ Sylp (L ∩Nk). The Frattini argument ([11], I.7.8 Satz) gives
L = NL(P )(L∩Nk). HenceNk+1 = LNk = NL(P )(L∩Nk)Nk = NL(P )Nk. Furthermore,
Nk+1/Nk = (Nk+1/Nk)′ = (NL(P )Nk/Nk)′ = (NL (P )Nk)′Nk/Nk = NL (P )′Nk/Nk,
yielding Nk+1 = NL (P )′Nk. This construction provides Nk+1 = NL (P )Nk, where
NL (P ) is the last term in the derived series of NL(P ). Since L ∈ τ , L ⊇ NL (P ), and
NL (P ) ∈ τ , we conclude that L = NL (P ), yielding [L, P ] ≤ P . Since now P E L,
CL(P ) E L follows with L/CL(P ) isomorphic to a subgroup of Aut(P ). As P is cyclic,
Aut(P ) is abelian. Hence we get L = CL(P ) from L = L′. Therefore L centralizes each
Sylow subgroup of L ∩Nk. So L ∩Nk ≤ Z(L). As L/(L ∩Nk) ∼= LNk/Nk = Nk+1/Nk,
Nk+1/Nk does not contain an abelian non-trivial characteristic proper subgroup. Thus
we see that Z(L)Nk = Nk, providing at last L ∩ Nk = Z(L). The Theorem has been
proved. 2

Theorem 2.5 Let G be a non-solvable B?-group and let L ≤ G be as in (the proof of)
the Theorem 2.4. Then |Z(L)| ≤ 2.

Proof. Suppose the prime p divides |Z(L)|. We have N ∩ L = Z(L) = Z(L) ∩ L =
Z(L)∩L′ ≤ Φ(L); see ([11], III.3.12 Satz). Hence ([11], III.3.8 Satz) gives, that p divides
|L/Z(L)|. Now ([13], (5.6) Theorem) maintains that (any) P ∈ Sylp(L) is not abelian.
Assume p is odd. Then by Proposition 1.1, Exp(P ) = p holds. Then Proposition 1.2
yields that any Sylow p-subgroup of G is contained in N , contradicting that p divides
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|L/Z(L)| = |L/L ∩N |. Hence Z(L) is a 2-group. Any P ∈ Syl2(L) here is not abelian,
whence P , being a subgroup of a non-abelian Sylow 2-subgroup S of G, is generalized
quaternion due to Proposition 1.1. If |Z(L)| ≥ 4, then, as S is generated by its elements
of order 4, G ∈ B? reveals that S ≤ N , i.e. 2 - |L/L ∩N | = |L/Z(L)|, a contradiction to
the fact that 2 | |L/Z(L)|, as we saw above. Hence indeed, |Z(L)| ≤ 2 holds. 2

Theorem 2.6 Let M/N be a non-solvable chief factor of the B?-group G. Then
there exists L ≤ M with L/Z(L) ∼= M/N , L = L′ and L ∩ N = Z(L). Moreover, if
Z(L) ≤ Z(G), then L E G.

Proof. The first part of the Theorem has been shown in the proof of Theorem
2.4. So assume Z(L) ≤ Z(G). Consider a chief series of G going through M and
N . If N = {1}, we are done. Thus, assume N > {1}. Let N ≥ S ≥ T be such
that S/T is a chief factor of G. We will show that L ≤ CG (S/T ). The group S/T

is solvable (whence an elementary abelian p-group) by Feit-Thompson. Consider S/T
as an additive t-dimensional vector space V over Fp. If t = 1, then L/CL (V ), as
subgroup of Aut(Cp), is abelian. Hence L = CL (V ) by L = L′. Assume t ≥ 2. Then
G/CG (V ) acts transitively on the set of all d-dimensional Fp-subspaces of V , for any
1 ≤ d < t; note here that S/T is isomorphic to an elementary abelian Sylow p-subgroup
of G. Now observe, that L/CL(V ) = L/(L ∩ CG(V )) ∼= LCG(V )/CG(V ) ≤ G/CG(V ).
If L/CL(V ) is solvable, then L = CL(V ) by L = L′. Thus assume that L/CL(V ) is
not solvable. Then the previous observations about the list z in Proposition 2.1 yields
G/CG(V ) ↪→ GL(2, p), with p odd prime, where t = 2 holds now. Even better, as
L = L′, L/CL(V ) = (L/CL(V ))′ implies that L/CL(V ) ↪→ SL(2, p).Assume L 6= CL(V ).
Then, as CL(V ) ≥ Z(L) (by Z(L) ≤ Z(G)), L/CL(V ) is isomorphic to a direct product
of isomorphic non-abelian simple groups, due to L/Z(L) ∼= M/N . On the other hand, the
Sylow 2-subgroups of SL(2, p) are generalized quaternion. Any non-abelian simple group
contains Klein four groups as subgroups. Therefore we have a contradictory embedding
L/CL(V ) ↪→ SL(2, p).

Hence indeed, L ≤ CG(S/T ) for all chief sections S/T of G underneath N . Next we
are going to show that [L,N ] = {1}. If done, we need a little additional argument to
conclude that L E G.

Let T ∈ Syl2(L). Thus T ∩ N ∈ Syl2(N). Then it follows from Lemma 1.6 that
|T ∩N | ≤ 2. So Burnside’s theorem gives N = O2′(N)(T ∩N). It follows from the above
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arguments that T centralizes all the factors (O2′(N) ∩ S)/ (O2′(N) ∩ T ) for any chief
factor S/T of G underneath N . Since

(|T |, |O2′(N)|) = 1,

it therefore follows that [T, O2′(N)] = {1}. Now, as M/N is a chief factor of G, M/N is
generated by the Sylow 2-subgroups of M/N ; likewise L/Z(L) is generated by its Sylow 2-
subgroups. Hence L itself is generated by its Sylow 2-subgroups, as |Z(L)| ≤ 2. We have
seen above that Z(L) ∈ Syl2(N). So, as Z(L) ≤ Z(G), the Schur-Zassenhaus theorem
gives that N = Z(L)O2′(N) with [Z(L), O2′(N)] = {1}. Since any Sylow 2-subgroup of
L centralizes O2′(N), we now get [L,N ] = {1}.

Thus we see that M = LO2′(N) with [L,O2′(N)] = {1} and L ∩ O2′(N) = {1} (as
L ∩O2′(N) ≤ L ∩N = Z(L) with |Z(L)| = 2).

Now look at the derived series of M . We obtain M ′ = (LO2′(N))′ = L′O2′(N)′ (where
the second equality -sign happens to be the crux), whence, as O2′(N) is solvable, we get
after f suitable steps, by invoking L = L′, that the fth- derived group Mf of M is equal
to L itself! Hence indeed L = Mf E G, as was to be shown. 2

4. Solvable B?-groups are B-groups

In this section we will show that the set of the solvable B?-groups coincides with the
set of the solvable B-groups. The theory and the properties of the solvable B-groups
have been determined in [2], [16] and [21].

The structure of the Sylow subgroups of the solvable B?-groups can be sharpened in
comparison to the general case as stated in Proposition 1.1.

Lemma 3.1 Let G be a solvable B?-group.
a) If p is an odd prime, then any Sylow p-subgroup of G is abelian. In particular,

such a Sylow group is cyclic or elementary abelian.
b) If G contains a generalized quaternion Sylow 2-subgroup Q, then |Q| = 8.

Proof. a) Let P 6= {1} be a Sylow p-subgroup of G, where p 6= 2. Suppose P is not
cyclic. Then Exp(P ) = p by Proposıtıon 1.1. There exists a chief factor M/N of G such
that p does not divide |N |, whereas M/N is an elementary abelian p-group. As G ∈ B?,
P ≤M follows. So P ∼= M/N .
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b) Suppose Q is a generalized quaternion Sylow 2-subgroup of G of order at least
16. Then O2′(G)Q E G, due to [8], Ch.12, Theorem 1.1 and Proposition 1.2. Hence
O2′(G)[Q,Q] E G. The group [Q,Q] is cyclic. We have |[Q,Q]| ≥ 4, so, as G ∈ B? and
Q = 〈a ∈ Q | |a| = 4〉, we get Q ≤ O2′ (G) [Q,Q], which is absurd. Thus |Q| = 8 follows.2

Contrary to the general case, quotient groups of solvable B?-groups are also B?-
groups.

Theorem 3.2 Any quotient group of a solvable B?- group is a B?-group.

Proof. Let G be a solvable B?-group and assume G is a counterexample of minimal
order to the Theorem. Thus there exists {1} 6= N E G of smallest order for which
G/N is not a B?-group. Let N/K be a chief factor of G. Then, if K 6= {1}, we have
G/K ∈ B? by the choice of N . Furthermore, if K 6= {1} , the solvable group G/K is
not a counterexample of minimal order to the theorem, whence (G/K)/ (N/K) ∈ B?. As
G/N ∼= (G/K) / (N/K) we get a contradiction for the choice of N . Thus we must have
K = {1}, i.e. N is an elementary abelian p-group. By Lemma 1.3 we must have p = 2 as
G/N /∈ B?.

Now let X,Y be subgroups of G satisfying N ≤ X ∩ Y , X/N and Y/N both abelian
of the same order. If 2 does not divide |X/N | (and |Y/N |), then the Schur-Zassenhaus
theorem reveals the existence of the subgroups X1, Y1 of G satisfying X = NX1, Y =
NY1, N ∩ X1 = {1} = N ∩ Y1. The groups X1 and Y1, being abelian are conjugate
in G, as |X1| = |Y1|. So X/N and Y/N are conjugate in G. So we assume 2 | |X/N |.
Then Lemma 1.3 together with the propositions 1.1 and 1.2 yield |N | = 2. So in the
same vein a Sylow 2- subgroup of X is either cyclic of order at least 4, or quaternion
of order 8. Let P ∈ Syl2(X). Since G is solvable, there exists Q ∈ Hall2′(X). The
structure of X reveals easily that X = PQ with [P,Q] = {1}. Likewise, Y = P1Q1 with
[P1, Q1] = {1} where P1 ∈ Syl2(Y ) and Q1 ∈ Hall2′(Y ). Hence Q and Q1 are both
abelian. If both P and P1 are abelian, then X and Y are abelian, whence X and Y

are conjugate in G, yielding the conjugacy of X/N and Y/N within G. Thus it re-
mains to assume that P ∈ Syl2(X) is quaternion of order 8. Hence P ∈ Syl2(G),
whence a Sylow 2-subgroup P1 of Y is also quaternion of order 8. The groups Q and
Q1 are both abelian of equal order. Then there exists g ∈ G with Qg = Q1. Now
P g ∈ Syl2 (CG (Q1)) holds. Thus there exists h ∈ CG (Q1) with (P g)h = P1. Hence

X(gh) = (PQ)(gh) = (P g)h (Qg)h = P1Q
h
1 = P1Q1 = Y . Therefore X and Y are conju-
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gate in G, thereby establishing the conjugacy of the abelian groups X/N and Y/N . So
G/N ∈ B? anyway. Hence G is not a counterexample to the Theorem. The statement of
the theorem is true. 2

Lemma 3.3 Let G be a solvable B?-group. If P is a non-cyclic elementary abelian
Sylow subgroup of G, then P is contained in the Fitting subgroup F (G) of G.

Proof. Let M be a minimal normal subgroup of G. Hence M ≤ F (G). If P∩M 6= {1},
then P ≤M ≤ F (G) by Proposition 1.2. So assume P ∩M = {1}. Then, as G/M ∈ B?
by Theorem 3.2, we have by induction that the Sylow subgroup PM/M of G/M is con-
tained in F (G/M). Also, we can assume P ∩F (G) = {1}, as otherwise P ≤ F (G) follows
immediately from Proposition 1.2. Hence (|P | , |F (G)|) = 1. Since F (G)/M ≤ F (G/M),
[P, F (G)] ≤ M now follows with F (G)P E G. If CP (M) 6= {1}, then as CG(M) E G,
Proposition 1.2 yields P ≤ CG(M). In that case, [F (G) , P, P ] = {1} together with
(|F (G)| , |M |) = 1 yields [F (G) , P ] = {1}. So P ≤ CG(F (G)). But G is solvable, so
([11],III.4.2 Satz) tells us that CG(F (G)) ≤ F (G), so that we get P ≤ F (G), a contradic-
tion to P ∩F (G) = {1}. Thus CP (M) = {1} holds. Now G/CG(M) acts irreducibly and
faithfully on M . Since PM/M E G/M (and PM/M ∈ Sylp (G/M) and as CG(M) ≥M,

we see that PCG(M)/CG(M) E G/CG(M), that PCG(M)/CG(M) ∈ Syl2(G/CG(M))
and that PCG(M)/CG(M) ∼= P (by CP (M) = {1}). Hence M can be regarded as a
homogeneous Fp [PCG(M)/CG(M)]- module; note that G acts transitively on the set

of all the t-dimensional subspaces of Ṁ , for any t ∈
{

1, ..., dimFp (M)
}

. Then ([17], 0.5
Lemma) forces PCG(M)/CG(M) to be cyclic, a contradiction. The Lemma has been
proved. 2

Lemma 3.4 Let G be a solvable B?-group. Let P ∈ Syl2(G). If P is quaternion group
of order 8, then P ≤ F (G) or else P ∩ F (G) = {1} with P ≤ F2 (G).

Proof. Since P is quaternion of order 8, it holds that F2 (G) > F (G); otherwise
we get F (G) = G, so that G is a nilpotent B?-group. This is not possible by The-
orem 1.5. By Theorem 3.3, Oq (F2(G)/F (G)) is cyclic for any odd prime q dividing
|F (G/F (G))|. When X ≤ G, put X = XF (G)/F (G). It follows that G/CG(Oq(F (G)))
is cyclic. Hence PCG(Oq(F (G)))/CG(Oq(F (G))) is cyclic. Hence CP (Oq(F (G))) is of
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order at least 4. Since G/Oq(F (G)) is a solvable B?-group, it now follows, that P ≤ H

where H/F (G) represents CG(Oq(F (G))). So PF (G) /F (G) centralizes Oq(F
(
G
)
) for

all q dividing |F (G/F (G))|. If 2 - |F (G/F (G))|, we get PF (G) ≤ F2 (G) from in-
duction. So, if 4 divides |F (G/F (G))|, then P ≤ F2 (G) as G/F (G) ∈ B?. Thus
assume 2 ‖ |F (G/F (G))|. Then PF (G) /F (G) centralizes O2(F

(
G
)
) as well, yielding

PF (G) ≤ F2 (G), i.e. P ≤ F2 (G). Thus P ≤ F2 (G) holds always. If 4 | |F (G)|, then
P ≤ F (G) follows from G ∈ B?. Thus assume 2 ‖ |F (G)|. Now consider an elementary
abelian non-trivial subgroup Or (F (G)) for some odd prime r, when it exists. [Indeed, if
F (G) is a 2-group with P ∗ := P \ {1}, such that P ∗ ∈ F2 (G) \F (G), then, by Proposi-
tion 1.1, |F (G)| = 2, which is not the case.] So Or (F (G)) is either cyclic of order r (and
then |P/CP (M)| ≤ 2, implying P ≤ CG (M) as P is generated by its elements of order 4),
or otherwise M ∈ Sylr (F (G)), meaning that F (G) ≤ CG (M). So as Z(P ) ≤ CG (M),
PCG (M)/CG (M) is an abelian normal subgroup of G/CG (M); remember F (G)P E G
as P ≤ F2 (G) . So M can be viewed as an irreducible Fp [G/CG (M)]-module. As
G ∈ B?, it is a homogeneous Fp [PCG (M)/CG (M)]-module, whence PCG (M)/CG (M)
is cyclic; see again ([17], 0.5 Lemma). Thus |P ∩ CG (M)| ≥ 4, i.e. P ≤ CG (M).
Hence P centralizes O2′(F (G))Z(P ) = F (G). So, by ([11],III.4.2 Satz), P ≤ F (G). Re-
suming: if |F2 (G)/F (G)| is divisible by an odd prime number, then P ≤ F (G) or
P ≤ (F2 (G) \F (G)) ∪ {1}. The case

{
1
}
6= F2(G)/F (G) ≤ O2 (G/F (G)) runs in a

like way as 4 always divides |F (G/F (G))| now. We always have P ≤ F2 (G), and the
hypothetical case |P ∩ F (G)| = 2 leads to a contradiction in the same way as described
before. The proof of the Lemma is complete. 2

Now we will prove the main result of this section.

Theorem 3.5 Every solvable B?-group is a B-group.

Proof. Suppose there exists a non-trivial normal subgroup N of G with N ≤ X ∩ Y ,
where X and Y are subgroups of G of equal order. Then X/N and Y/N , being subgroups
of equal order of the B?-group G/N , are conjugate in G/N by mathematical induction.
Hence X and Y are conjugate in G.

Now let M be a non-trivial normal subgroup of G. So M is an elementary abelian
p-group for some prime p. If M is cyclic and p divides |X|, then M ≤ X ∩ Y as M is the
unique subgroup of order p in G; remember G ∈ B?, where Proposition 1.1 holds. Thus,
in this case we also get that X and Y are conjugate in G. Assume again M is cyclic, but
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this time assume p - |X| and p - |Y |. Then XM/M and YM/M are subgroups of G/M
of equal order; hence by induction XgM = YM for a certain g ∈ G. Then Xg and Y are
all Hall p′-subgroups of the solvable group Y M , hence conjugate in YM . Hence X and
Y are conjugate in G here too.

Therefore, X and Y are always conjugate in G, unless for each non-cyclic elementary
abelian minimal normal subgroup N of G it holds that |X ∩N | = |Y ∩N | 6= 1; note
that N ∈ Sylp (G) for a certain prime p, by Propositions 1.1 and 1.2. In the latter
case we see that F (G) is an abelian Hall π-subgroup of G for some set π of prime
numbers. Hence F (G) ∩ X and F (G) ∩ Y are normal Hall π-subgroups of X and Y

respectively. So |F (G) ∩X| = |F (G) ∩ Y |. Now G ∈ B?, so by replacing X by a
conjugate in G if necessary, we may assume that F (G) ∩X = F (G) ∩ Y = T , say. Now
NG (T ) = F (G)L for some L ≤ NG (T ) with (|L| , |F (G)|) = 1, by the Schur-Zassenhaus
theorem. Note that X ≤ NG (T ) and that Y ≤ NG (T ). Again by the Schur-Zassenhaus
theorem (F (G) ∩X)X1 = X and (F (G) ∩ Y ) Y1 = Y for certain X1, Y1 ≤ NG (T ). Now
assume that Sylow 2-subgroups of L are cyclic. The other Sylow p-subgroups of L are
indeed cyclic for all p 6= 2, by the foregoing arguments combined with Lemma 1.6. Hence
the Hall π′- subgroup L of G is a subgroup closed B-group, by ([9], Corollary to Theorem
3). Applying Hall’s generalization of the Sylow theorems for solvable groups, we get that
X1 and Y1, being of equal order, are conjugate in NG (T ). Hence X and Y are conjugate
in NG (T ).

Thus we may assume by Lemmas 3.1 and 3.3, that a Sylow 2-subgroup of L is quater-
nion of order 8. Hence F (G) is abelian of odd order and also
F (G)P E G, where P ∈ Syl2 (G); remember Lemma 3.4. Furthermore
F (G)Z(P ) E G follows. Remember that CG (F (G)) ≤ F (G). Therefore Zassen-
haus’s theorem, see ([11], III,13.4 Satz) gives F (G) = [F (G) , F (G)Z (Q)]U , with U ∩
[F (G) , F (G)Z (Q)] = {1},where U represents{

a ∈ F (G) | tat−1 = a, for all t ∈ F (G)Z (Q)
}
.

As [F (G) , F (G)Z (Q)] E G, we see, that F (G)Z (Q) /F (G) centralızes

F (G/ [F (G) , F (G)Z (Q)]) = F (G) / [F (G) , F (G)Z (Q)] ,

which is not possible when U 6= {1}; see ([11],III.4.2 Satz). Therefore U = {1}. Thus
the unique involution of G/F (G) acts on F (G) by ınverting each element of F (G). Now,
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analogous reasoning as in the proof of ([21], Theorem 3) shows that Or (G) is elemen-
tary abelian of order rt, where 2 ≤ r ≤ 3, whenever r | |F (G)|; remember that now
|F (G)| is odd, p2 | |F (G)| for any p | |F (G)|, and all Sylow subgroups of F (G) are de
facto Sylow subgroups of G. Furthermore, {1} 6= Or (G) ∩ X = Or (G) ∩ Y 6= Or (G)
as we saw earlier. We know that L ≤ NG (T ) contains a quaternion subgroup Q (of
order 8) and that (|L| , |F (G)|) = 1. Thus we can view Or (G) as a completely reducible
Fp [LF (G)/F (G)]-module. Therefore in each possibility |Or (G)| = r2 or |Or (G)| = r3,
we see that there exists A < Or (G) with |A| = r satisfying [Q,A] ≤ [L,A] ≤ A. Now
L/CL (A) embeds in the cyclic group Aut (A). Hence Q/CQ (A) is cyclic, that is, the
involution of Q acts trivially on Or (F (G)). This is a contradiction to our knowledge
obtained above, namely that it should invert each element of Or (F (G)). The Theorem
has been proved. 2

5. The classification of the non-solvable B?-groups

In this section we shall determine the structure of the non-solvable B?-groups.

Theorem 4.1 Let G be a non-solvable B?-group. Then each chief series of G admits
precisely one non-solvable chief factor, say M/N . Moreover, the group M/N is simple.

Proof. The first assertion is proved in Theorem 2.3. It holds that N is a group of odd
order by Propositions 1.1 and 1.2. So, by Lemma 1.3, we can assume that N = {1} with-
out loss of generality. Assume M is not simple. The group M is equal to a direct product
of isomorphic copies S1, ..., St of a non-abelian simple group S, i.e. M = S1S2...St with
[Si, Sj ] = {1} for any 1 ≤ i < j ≤ t. Furthermore, by ([11],I.9.12 Satz), it holds that G
acts transitively on the set of subgroups {S1, S2, ..., St} by conjugation. Let y ∈ S1 and
w ∈ S2 be elements of equal order. So the groups 〈y〉 and 〈yw〉, being of equal order,
are not conjugate in G. This is in conflict with G ∈ B?. Therefore M is a simple group. 2

Theorem 4.2 Let G be a B?-group. Assume that G admits a non-solvable chief factor
isomorphic to the Janko group J1 or to the group PSL(2, q), q odd, q 6= 5.

Then G = MH with [M,H ] = {1}, where either
M = J1; or
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M = PSL(2, q) with q = pf , p prime, f = 1 or f = 3, q ≡ 3 or 5 ( mod 8), q - 15; or
M = SL(2, q) with q = pf , p prime, f = 1 or f = 3, q - 15.
In each of these three types for M , H is a solvable B-group, whose order is relatively

prime to the order of the corresponding M . Conversely, any of the groups M ×H of the
types mentioned above, constitutes a non-solvable B?-group.

Proof. Let K/U be a non-abelian chief factor of G of the type indicated in the
hypothesis of the theorem. Then by Theorem 2.5, there exists L ≤ G with L

′
= L,

L/Z (L) ∼= K/U , UL = K, |Z (L)| ≤ 2. We assume firstly that G contains a solvable
minimal normal subgroup 6= {1}; see next a) and b).

a) Assume Z (L) ≤ Z (G). Then L E G by Theorem 2.6. Thus LCG (L) E G and so
L/Z (L) = L/ (CG (L) ∩ L) ∼= LCG (L) /CG (L); hence LCG (L) /CG (L) is non-abelian
simple and isomorphic to K/U . The group L does not contain cyclic Sylow 2-subgroups,
by Burnside’s theorem ([11], IV.2.8 Satz) and L/Z (L) does not contain generalized
quaternion nor cyclic Sylow 2-subgroups. Suppose G has a minimal normal subgroup M

which is an elementary abelian p-group of order pt with t ≥ 2. Then p 6= 2. [If p = 2
would hold, then we would have M ∈ Syl2 (G) with |G/M | is not 0 (mod 2), whence G
is solvable which is not true.] Then G/M ∈ B?, by Lemma 1.3. Thus by mathematical
induction, G/M = (ML/M) (K/M), with ML/M ∩K/M = M/M , where both ML/M

and K/M are normal in G/M ; note that now (|ML/M | , |K/M |) = 1, where K/M is a
solvable B?-group. It follows from Theorem 2.2 that G/CG (M) /∈ z(b) and note that
G/CG (M) /∈ z(c), whence M ≤ Z (ML); see Theorem 2.3 and note that p - |G/M |.
So ML does contain, by the Schur-Zassenhaus theorem, a characteristic subgroup L

isomorphic to L. Therefore G = LK with (|L| , |K|) = 1, L ∩K = {1}, L E G, K E G,
K a solvable B-group, where L is of the shape as stated, by mathematical induction.
So perhaps G does contain precisely one solvable minimal normal subgroup M . By the
foregoing argument, it follows that |M | = p, where p is prime. Suppose firstly that p ≥ 3.
So any S ∈ Sylp (G) is cyclic, as G ∈ B?. Then, as indeed all Sylow p-subgroups of
J1 or SL(2, q), with q odd, have to be cyclic, p does not divide the Schur multiplier of
any of these groups. Hence for this prime p, p - |J1| and p - |SL(2, q)|. Therefore ML

splits centrally over M . Henceforth, by a similar argument as before, we conclude that the
Theorem holds. Now assume that G contains a unique solvable minimal normal subgroup
M , this time of order 2. If L E G would be simple, then M ∩ L = {1}. Hence ML,
whence also the B?-group G, should possess a non-abelian Sylow 2-subgroup that is not
generalized quaternion nor elementary abelian group; this is not the case! Assume now
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that L is not simple, i.e. {1} 6= Z(L) ≤ Z (G) yields Z(L) = M is of order 2. Consider
CG (L) and assume that CG (L) 6= Z (L). Let u be an odd prime dividing |CG (L) /Z(L)|.
Then u - |L/Z(L)|, because otherwise, on one hand a Sylow u- subgroup of LCG (L) is
not cyclic, whereas on the other hand such a Sylow u-subgroup being of Exponent u now,
should be completely contained in the normal subgroup L of the B?-group G; indeed this
is an impossibility. Suppose u = 2. Then a Sylow 2-subgroup of LCG (L) is not abelian,
and it turns out not to be a generalized quaternion 2-group, either! This contradicts
the fact that G has only generalized quaternion groups as Sylow 2-subgroups. Therefore
Z (L) = CG (L). Thus we have the existence of the chain G D L D Z (L) = CG (L) D {1}
with |Z (L)| = 2. Since G ∈ B? and as Z (L) is the unique normal solvable minimal
subgroup of G, it follows from the (independent)(!) Theorem 4.5, that G = L. Then
again Theorem 4.5 provides the result.

b) Now assume that Z (L) � Z (G). Then |Z (L)| = 2. Again we look at a minimal
normal subgroup M of G. If |M | = 2t with t ≥ 2, then G admits M as its unique
Sylow 2-subgroup, yielding the solvability of G which is not the case. Suppose M is an
elementary abelian p-group with p odd and of order pt with t ≥ 2. Then G/M ∈ B?.
Since now G is non-solvable and G/CG (M) ∈ z(a) by the Theorems 2.2 and 2.3, we
obtain by mathematical induction that G/M = LM/M.K/M with LM/M quasi-simple
and LM/M E G/M with the required structure, K/M being a solvable B-group with
(|LM/M | , |K/M |) = 1 and LM ≤ CG (M). Argue then further as under a), and we
obtain the wanted result. A similar trick as under a) for the case |M | = p, p odd
prime, is also applicable here, thereby providing the desired result, too. Now assume
|M | = 2. Remember that L is not normal in G, by |Z (L)| = 2 and Z (L) � Z (G). Hence
ML ∼= C2 × C2 as Z (L) � Z (G). Since G is a B?-group, the elements of order 2 in
MZ (L) have to be conjugate in G, an impossibility by M E G with |M | = 2.

c) Therefore it remains to investigate the case where the B?-group G contains only
minimal normal subgroups M that are non-solvable. Hence, by ([11], I.9.12 Satz), such
an M is isomorphic to S × ... × S (r - times), where S is a non-abelian simple group.
Fix such an M . We have seen in Theorem 4.1, that r = 1, i.e., that M is non-abelian
simple. Since G ∈ B?, it follows that 2 - |G/M |, hence that G/M is solvable. Therefore
the Jordan-Hōlder theorem ([11], I.11.5 Satz) tells us, that M ∼= PSL(2, q) with q odd,
q 6= 5, or that M ∼= J1. Consider CG (M). We have M ∩CG (M) = {1}, as CG (M) E G.
All Sylow 2-subgroups of G are de facto contained in our M , so 2 - |CG (M)|. Thus
CG (M) E G is solvable. By the condition made in c), it therefore follows immediately
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that CG (M) = {1}. From Theorem 4.5 we observe that for G ∈ B?, it must hold that
G = M and that for PSL(2, q) the prime power q is of the form q = pf with p prime
and f dividing 3. So we have shown the truth of the statements of the Theorem. The
statements about the converse situation in the Theorem will be shown in Theorem 4.5
too. 2

Theorem 4.3 Let G be a non-solvable B?-group. Then either G is a (non-solvable) B-
group or else G admits essentially one non-abelian chief factor, where that factor happens
to be either isomorphic to the Janko simple group J1 or to some simple group PSL (2, q)
with q = pf ,p odd prime and f | 3, q - 15.

Remark In Theorem 4.5 we will see that the simple groups PSL (2, q) mentioned in
Theorem 4.3 are all B?-groups themselves if and only if q ≡ 3 or 5 (mod 8); the group J1

is a B?-group too.

Proof of Theorem 4.3 Suppose G is a counterexample of minimal order. Let M
be a minimal normal subgroup of G. Then either M is a direct product of isomorphic
non-abelian simple groups or else M is elementary abelian. We split up:

a) Let M ∼= S × ... × S, S non-abelian simple. Then we have seen in Theorem 4.1,
that M ∼= S is simple. It then follows from the (independent!) Theorem 4.6 that

M ∈ {SL(2, 4);SL(2, 8);SL(2, 32);PSL(2, q),

where q > 3, q = pf , p odd prime, q ≡ 3 or 5 (mod8); J1

}
.

In the case M ∼= PSL(2, q), we refer the reader to the remarks at the end of the proof
of this Theorem 4.3 in order to deduce that f | 3. Note that in all these possibilities for
M any Sylow 2-subgroup of M is elementary abelian of order at least 4, implying (due
to Propositions 1.1 and 1.2) that any Sylow 2-subgroup of G is contained in M . Hence
G/M is solvable of odd order.

a.1) Assume M ∼= SL(2, 4) ∼= A5. ThenG/CG (M) ≤ Aut (M) ∼= S5. NowMCG (M)/
CG (M) ∼= M ∼= A5. Observe that CG (M) (∼= MCG (M) /M) is of odd order, as CG (M)
embeds in G/M . If |CG (M)| > 1, then Lemma 1.3 yields that G/CG (M) is a B?-group.
Hence any Sylow 2-subgroup of G/CG (M) must be elementary abelian, as A5 has already
elementary abelian Sylow 2-subgroups of order 4; use Proposition 1.1. Even better now,
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all involutions have to be contained in MCG (M) /M , by Proposition 1.2. Hence G � S5,
so that G = MCG (M) with M ∩ CG (M) = {1} yielding [M,CG (M)] = {1}. Since
G ∈ B?, we see from Lemma 1.4, that also M ∈ B?, CG (M) ∈ B?, (|M | , |CG (M)|) = 1.
Now A5 is a B-group, (see [2], Lemma 6). Hence, Theorem 3.5 yields CG (M) ∈ B now,
as CG (M) is solvable of odd order. Hence indeed G ∈ B by ([2], Lemma 3).

a.2) Assume M ∼= SL(2, 8). Argue in the same spirit as in a.1). We know that
Aut (SL (2, 8)) splits over Inn (SL (2, 8)), where

|Aut (SL (2, 8)) /Inn (SL (2, 8))| = 3.

The Sylow 3-subgroups of Aut (SL (2, 8)) are non-cyclic of Exponent 9. Hence
Aut (SL (2, 8)) /∈ B?. This means that G = MCG (M) with M ∼= SL(2, 8), M∩CG (M) =
{1}. Hence G ∈ B?, [M,CG (M)] = {1} and so (|M | , |CG (M)|) = 1. Just by ([2], Lemma
6) we know that SL(2, 8) ∈ B. Again CG (M) ∈ B? by Lemma 1.4. As CG (M) is solvable
(of odd order), CG (M) ∈ B follows from Theorem 3.5. Therefore G ∈ B by ([2], Lemma
3).

a.3) Assume M ∼= SL(2, 32). Consider G/CG (M) ↪→ Aut (SL (2, 32)) ∼= 〈SL(2, 32), α〉,
where α is a field automorphism of F32, of order 5, acting as such on the coefficients of
the matrices in SL(2, 32). We know from ([2], Lemma 6) that SL (2, 32) /∈ B? but that
Aut (SL (2, 32)) ∈ B. Now notice that here (|M | , |CG (M)|) = 1 by Proposition 1.2.
Also 5 - |M |. Hence (|G/M | , |M |) = 1. Thus the Schur-Zassenhaus theorem provides a
subgroup T of G with G = MT , T ∩M = {1}. There exists a 5-element β ∈ T such that
[〈β〉 , SL(2, 32)] 6= {1}, just as |G : MCG (M)| = 5. Since β acts “like a field automor-
phism on the coefficients of the matrices of SL (2, 32)”, it must be that β5 ∈ CG (M). As
〈CG (M) , β〉 ≤ T (all Sylow p-subgroups of CG (M) with p 6= 5 are Sylow p-subgroups
of G and of T ), it follows that 〈CG (M) , β〉 = T . Therefore G = (M ×CG (M)) 〈β〉
with β5 ∈ CG (M). Let HiM/M with i ∈ {1, 2}, be abelian subgroups of equal order
of G/M , where of course Hi ≤ G holds. Since (|Hi/ (Hi ∩M)| , |Hi ∩M |) = 1, there
exists by the Schur-Zassenhaus theorem, Li ≤ G with |Li| = |Hi/ (Hi ∩M)|, satisfying
Hi = Li (Hi ∩M). Therefore the L1 and L2 are abelian of equal order, whence conju-
gate in G. Therefore, as for i = 1, 2 HiM/M = Li (Hi ∩M)M/M = LiM/M , we see
that H1M/M and H2M/M are conjugate within G/M . Then G/M ∈ B?, whence also
T ∈ B?. As 2 - |T |, T is solvable; whence T ∈ B by Theorem 3.5.In ([2], Theorem 7

′′
) it

is indicated that our G is then also a B-group itself. The case a) is done.
b) Let M 6= {1} be a solvable minimal normal subgroup of G. Then M is an

165



SEZER, VAN DER WAALL

elementary abelian p-group for some prime p. We split up:

b.1) Suppose p 6= 2. Then G/M is a non-solvable B?-group, by Lemma 1.3. Since
G is a minimal counterexample to the Theorem, G/M is non-solvable B-group (such a
strategem holds for any T E G with T 6= {1},|T | =odd; we can assume G/T ∈ B). Look
at the essentially unique non-abelian chief factor of G/M . Then, by ([2], Theorems 5 and
10), that factor is isomorphic to SL (2, 4), to SL (2, 8), to SL (2, 32), or to PSL (2, 5) (note
that SL (2, 4) ∼= PSL (2, 5) ∼= A5, the alternating group on five symbols). Suppose firstly
that Sylow 2-subgroups of G are elementary abelian. Then ([2], Theorem 9) reveals the
existence of N E G with N/M ∼= SL (2, 4) , SL (2, 8) or SL (2, 32), just by G/M ∈ B. By
Theorem 2.4,N = ML for some L ≤ G with L

′
= L and L/Z (L) ∼= N/M , Z (L) = L∩M .

By Theorem 2.4, it holds that |Z (L)| ≤ 2. Assume Z (L) ≤ Z (G). Then L E G (by
Theorem 2.6). If Z (L) = {1}, then we are in case a): we get G ∈ B. So, assume
|Z (L)| = 2. This violates Z (L) = L ∩ M being of odd order. Now, as G/M ∈ B,
we apparently have that Sylow 2-subgroups of G/M are not abelian, so that they are
quaternion of order 8. This means, that the (essentially unique) non-abelian chief factor
of G is isomorphic to PSL (2, 5) (∼= SL (2, 4)). Now look at the proof of ([2], Theorem 10).
We work here in the situation where any G/T ∈ B, if |T | =odd > 1. A proper reading of
the proof of ([2], Theorem 10) (of course, one has to be careful in handling B?-situations
and B-situations !) does instruct you, as it did to us, that G is not a counterexample
to the Theorem, unless G does not contain precisely one minimal normal non-trivial
subgroup whereas that subgroup happens to be of order 2! This brings us immediately
to part b.2) of the proof.

b.2) It remains to investigate the case where G has only one minimal normal subgroup
M , where moreover M happens to be an elementary abelian 2-group. Now, if |M | ≥ 4,
then M is the unique, whence normal, Sylow 2-subgroup of G; so G/M is solvable of odd
order. But then G is solvable, which is not the case. Hence we must have |M | = 2. It
follows now from Propositions 1.1 and 1.2, in conjunction with ([11], IV.2.8 Satz) that the
Sylow 2-subgroups of G are generalized quaternion. Thus by ([19], Ch.6, Theorems 8.6
and 8.7) a non-abelian chief factor N/M of G exists satisfying the property that M = M

with N/M ∼= PSL (2, q) (q odd prime power with q > 3) or N/M is isomorphic to the
alternating group A7. Now if N/M ∼= A7, it holds that Aut(A7) ∼= S7, whence G /∈ B?
in that case [indeed, there are now (at least) two conjugacy classes of subgroups of order
6 inside N which are not conjugate in G]. Therefore N/M ∼= PSL (2, q) holds. Next

observe, that N = N
′

and that M , being of order 2, equals N
′ ∩ Z

(
N
)
. If q 6= 9, then
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the Schur multiplier of our PSL (2, q) has order 2, yielding the fact that N ∼= SL (2, q);
see ([11],V.25.7 Satz). Assume q = 9. Then PSL (2, 9) ∼= A6, the alternating group
on 6 symbols. As G ∈ B?, it holds that 2 does not divide

∣∣G/N∣∣. Note that here∣∣Aut (N/M) : N/M
∣∣ = 4; see ([5], Pages 4 and 5). Hence G/M = (N/M)CG/M(N/M)

follows clearly. So as the group A6 contains (at least) two conjugacy classes of subgroups
of order 3, we conclude that G is not a B?-group in this case too. Therefore, we land
into the case where N = SL (2, q), with q = pf , p odd prime, q > 3. Rewrite N = S.

We will investigate now what it means to have G ∈ B?, if S E G with S ∼= SL(2, q),
q = pf , p odd prime q > 3, without assuming per sė that Z (S) is the unique minimal
normal subgroup of G. We will prove that f equals at most 3 and that f 6= 2. Look at the
group K/Z (S) := CG/Z(S) (S/Z (S)) (thus [K, S] ≤ Z (S),|Z (S)| = 2, K E G). Suppose
an odd prime t divides |S/Z (S)| and |K/Z (S)|. Then Pt ∈ Sylt (G) is not cyclic; whence
Exp (Pt) = t. Also, any element of Pt is now contained in S. Hence t - |K/Z (S)|, a
contradiction. Any Sylow 2-subgroup of G is generalized quaternion (hence generated
by its elements of order 4); see Propositions 1.1 and 1.2. So 2 - |K/Z (S)|, as G ∈ B?.
Hence it is clear that SK = SV , whence (|S| , |V |) = 1, S ∩ V = {1}, [S, V ] = {1}.
Thus V is characteristic in SK, whence normal in G. Since 2 - |V |, it follows that
G/V ∈ B?. Therefore we focus our attention on the case where V = {1} and the
corresponding subgroup K/Z (S) is trivial: K/Z (S) = Z (S) /Z (S) =

{
1
}

. In the same
way we see that it follows that CG (S) = Z (S). By ([19],Ch.6, §8) it holds then that
altogether G/S ∼= G/S induces field automorphisms on S, i.e. |G/S| divides f . Now
we will concentrate on the groups G = G/Z(S) and S = S/Z(S). All the Sylow p-
subgroups of S are elementary abelian of order pf ; they are all conjugate to each other
in G. Assume f ≥ 2. Therefore, since G ∈ B?, p does not divide |G/S|. Look at
P :=

{
R | R ≤ G and |R| = p2

}
. By Burnside’s theorem ([11], IV.2.5 Hilfssatz) it follows

now that all elements of P which are contained in a given Sylow p-subgroup P of G (and
of S) are conjugate within NG (P ). Hence, for R ∈ P with R ≤ P it holds that

# {R | P ∈ P with R ≤ P } =
pf − 1
p2 − 1

pf−1 − 1
p− 1

=
∣∣NG (P ) : NNG(P) (R)

∣∣ .
This number should also divide |G/S| |NG (P ) : CG (P )| = f(pf − 1)/2. Hence, 2(pf−1 −
1) ≤ f

(
p2 − 1

)
(p− 1) < fp3 . If p ≥ 7 and f ≥ 5, we get that fp3 < pf−4 · p3 = pf−1,

a contradiction to the inequality of integers just found. If p = 5 and f ≥ 5, we find
already that 5f−1 − 1 ≤ f · 24 · .4 = 96 · f , which does not hold when f ≥ 5. And if
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p = 3, we see that 3f−1 − 1 ≤ f.8.3 = 24.f is false when f ≥ 6. If p = 3 and f = 5,
we get that

[(
35 − 1

)
/(32 − 1)

]
.
[(

34 − 1
)
/ (3− 1)

]
does not divide 5.

(
35 − 1

)
/2. The

case f = 4 can be disposed of easily for all odd primes p,by the same strategy The case
f = 2 gives rise to G = S. As G is a B?-group by assumption, all subgroups U of order
p of S are conjugate in S, that is |S : NS (U)| = p+ 1 (we know that there are precisely
(p+ 1) subgroups of order p in S, anyway). The “actual” value of |S : NS (U)|, where

U =

{[
1 0
x 1

]
: x ∈ Fp

}
, however, equals (p+ 1)/2, as a straightforward computation

shows. SoG ∼= SL
(
2, p2

)
is not a B?-group when p is an odd prime! Therefore, inside this

proof of Theorem 4.3, we wish to stress the result just obtained, as a separate property.

Theorem 4.4 Let G be a B?-group and assume there exists S E G with S ∼= SL (2, q),
q = pf , q > 3, p odd prime. Then f divides 3.

End of proof of Theorem 4.3 Now, we will elucidate here a structure that was
left over from the beginning of the proof of Theorem 4.3. Namely, look at the case
M ∼= PSL (2, q) , M E G, G ∈ B?, with q = pf , p odd prime, q > 3. By means of
the independent Theorem 4.6, we also derive that q ≡ 3 or 5 (mod 8). As it turns
out f will divide 3 in that case, as well. In order not to annoy the reader, we omit the
details of the proof of this last assertion. Namely halfway that “adapted” proof to the
corresponding way of proving Theorem 4.4 as shown above, the reader will observe that
the structure of Aut (PSL (2, q)) /Inn (PSL (2, q)) can be retrieved from the structure
of Aut (SL (2, q)) /Inn (SL (2, q)). For a more precise statement of this remark, see for
instance ([1], Theorem 1.3), which is a modern reference. With these remarks given, the
proof of Theorem 4.3 is finished.

Now we have reached the point where the statements of the next Theorem 4.5 (closed
on its own account!) make the proof of the Theorem 4.2 totally complete, and where
it reflects on Theorem 4.3. In fact, it contributes so the full classification of the (non-
solvable) B?-groups; see the Main Theorem after the proof of Theorem 4.6. 2

Theorem 4.5 Suppose S is a non-solvable normal subgroup of a group G, where either
S ∼= SL (2, s) with s an odd prime or the third power of an odd prime,
or S ∼= PSL (2, q) with q = pf , q ≡ 3 or 5 (mod8), q > 3, p prime, f dividing 3,
or S ∼= J1, the simple first Janko group.
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Assume CG (S) = Z (S) in any of the before mentioned cases. Then G is a B?-group
if and only if G = S.

Proof. a) Assume G is a B?-group. Suppose S ∼= PSL (2, q) where q satisfies the
given numerical conditions. Then G ∼= (G/CG (S)) is isomorphic to a subgroup of
Aut (S) = PΓL (2, q) with G/S of odd order, due to ([19],Ch.6, Th. 8.10). So |G/S| = 1
or 3. If G = S we are done. Thus assume {1} 6= R ∈ Syl3 (G) with |G/S| = 3. As 3
divides |PSL (2, q)|, we get R ∩ S 6= {1}. Thus R should be cyclic by Proposition 1.2.
On the other hand, a Sylow 3-subgroup of PΓL

(
2, p3

)
is not cyclic, since PΓL

(
2, p3

)
is

a semi-direct product of PGL
(
2, p3

)
with a group of order 3. Thus G is not a B?-group

if G > S with S ∼= PSL (2, q) for the indicated numerical constraints on q.
b) Assume G is a B?-group with S ∼= SL (2, q) where q = pf , p odd prime, f = 1 or

f = 3. Put K/Z (S) = CG/Z(S) (S/Z (S)). Then K E G. The group S/Z(S) is simple.
By Proposition 1.2, we get (|K/S| , 2 |S/Z (S)|) = 1. Hence by the Schur-Zassenhaus
theorem, there exists U ≤ K withK = UZ (S) and U∩Z (S) = {1}. As U char K, U E G
follows with [U, S] = {1}. Since it is given that CG (S) = Z (S), we have U ≤ CG (S),
yielding U = {1}. Thus K = Z (S). Altogether we thus have the embedding chain

G/Z (S) /CG/Z(S) (S/Z (S)) = G/Z (S) /Z (S) /Z (S)

∼= G/Z (S) ↪→ Aut (S/Z (S)) ,

and so
∣∣(G/Z (S)) / (S/Z (S))CG/Z(S) (S/Z (S))

∣∣ = 1 or 3. If that value equals 1, we
get G = S. Also, that value cannot be equal to 3. Indeed, if so, G/Z (S) (hence also
G) contains non-cyclic Sylow 3-subgroups (see the corresponding argument under a)) so
that, due to Proposition 1.1, 3 does not divide |G/S|, a contradiction. So G = S holds
anyway.

c) Assume G is a B?-group with S ∼= J1. From ([5], Page 36) we borrow that
|Aut (J1) /Inn (J1)| ≤ 2. Now G (∼= G/CG (S)) embeds in Aut (J1). So |G/S| ≤ 2. Since
J1 contains elementary abelian Sylow 2-subgroups of order at least 4, see [14], it follows
that |G/S| = 1, i.e. G = S.

So now our task is to show that the given SL (2, q), PSL (2, q) and J1 with their
respective constraints on the prime powers q, are indeed B?-groups. Let us look firstly
at J1. Suppose H1 and H2 are two abelian subgroups of J1 of equal order. Assume the
prime p divides |H1|. Since |J1| = 23.3.5.7.11.19 and since J1 contains precisely one class
of involutions (by [14]), we can apply Sylow’s theorem in order to see that it is of no loss
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of generality to assume that 〈H1, H2〉 ≤ CJ1 (a), where a ∈ H1 has order p. It follows
from ([14], § 1) that any of the groups CJ1 (b), where b ∈ J1 is of odd prime order, is a
B-group and that CJ1 (a2) ∈ B? for any involution a2 of J1. That is, H1 and H2 are
conjugate within J1 after all. Hence indeed J1 ∈ B?. [Observe that J1 /∈ B; it contains
two subgroups both of order 6 which are not isomorphic; see also ([5],Page 36)]. Now
let us look at the groups PSL (2, q), where q is a power of an odd prime p. From ([11],
Kapitel II.§8) we recall the following properties in respect to the group PSL (2, q), to be
mentioned as “the list”.

Any Sylow p-subgroup of PSL (2, q) is isomorphic to the additive group of the field
Fq ; PSL (2, q) contains cyclic subgroup of order (q − 1) /2 (they are all conjugate to each
other) and also cyclic subgroups of order (q + 1) /2 (they are all conjugate to each other;
all these beformentioned proper subgroups of PSL (2, q) intersect pairwise trivially; in
fact all these subgroups of PSL (2, q) constitute a partition of PSL (2, q), i.e. every non-
identity element of PSL (2, q) is contained in precisely one of all these beformentioned
proper subgroups of PSL (2, q); when D ≤ PSL (2, q) with |D| = (q ± 1) /2, then for any
t ∈ D with t 6= 1, the normalizer NPSL(2,q) (〈t〉) is a dihedral group of order 2 |D|.

Thus, let A be an abelian subgroup of PSL (2, q). Hence, by the above, A is contained
in a Sylow p-subgroup of PSL (2, q) as soon as |A| is divisible by p. Now let us assume
firstly that p does not divide |A|; assume furthermore that an odd prime s does divide
|A|. Then it follows immediately from the above that all abelian subgroups of order
|A| of PSL (2, q) are conjugate to A in PSL (2, q)! In that situation, also any two
abelian subgroups of SL (2, q) of the same order, are conjugate in SL (2, q), as they are
cyclic and as they correspond one-to-one to cyclic groups of PSL (2, q) of half that order.
Furthermore, let now A be a 2-subgroup of PSL (2, q) (or SL (2, q)); assume in addition,
that q ≡ 3 or 5 (mod8) when we focus our attention to PSL (2, q). Those PSL (2, q)
contain Klein-Fourgroups. By one of the above principles we conclude here, that any
two abelian 2-subgroups of equal order of these PSL (2, q) are conjugate in PSL (2, q).
Another condition we will add to these groups PSL (2, q) is that q = p or that q = p3. In
the case q = p, it remains to consider A ∈ Sylp (PSL (2, p)) , thereby finishing the proof
of PSL (2, q) ∈ B? when p = q ≡ 3 or 5 (mod8). In the case q = p3, the following remains.
Let A be a subgroup of a Sylow p-subgroup of SL (2, q) with |A| = p. In particular, the
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group

S =

{[
1 0
x 1

]
| x ∈ Fq

}

is an elementary abelian Sylow p-subgroup of SL (2, q), of order p3 = q.

Put

A :=

{[
1 0
a 1

]
: a ∈ Fp

}
.

We have

N := NSL(2,q) (S) =

〈
S,

[
b 0
0 b−1

]
: b ∈ F∗q

〉
.

The group

C :=

{[
c 0
0 c−1

]
: c ∈ Fq , c2 ∈ F∗p

}

satisfies NN (A) = 〈S, C〉; note that c2 ∈ F∗p implies c ∈ F∗p. Now consider[
d−1 0
0 d

][
1 0
1 1

] [
d 0
0 d−1

]

with d ∈ Fq ; this expression equals

[
1 0
d2 1

]
. Suppose that

[
1 0
e2 1

]
and

[
1 0
g2 1

]
(eg 6= 0) are contained in the same cyclic subgroup of SL (2, q). Then te2 = g2 for some
t ∈ F∗p; in particular, t is a square of an element w ∈ Fp, as |w| | p− 1. So g = ±we. This
means that there are precisely (q − 1) / (p− 1) conjugate subgroups to A in SL (2, q), de
facto they represent all of the subgroups of order p of S. So from “the list” of properties
for any PSL (2, q), with odd q, we conclude that all subgroups of order p are conjugate,
either contained in PSL (2, q) or in SL (2, q). In the case where q = p3, we see that
# {A | A ≤ S, |A| = p} = p2 + p + 1 =

{
#B | B ≤ S, |B| = p2

}
. Again we observe that

all subgroups of order p2 are conjugate, either contained in PSL (2, q), or in SL (2, q);
note that NSL(2,q) (S) acts transitively on the set of all the subgroups of order p2 under
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conjugation, just as it does on the set of all the subgroups of order p (remember Maschke’s
theorem ([11],I.17.7 Satz). Therefore, we see that PSL

(
2, p3

)
∈ B? when p ≡ 3 or 5 (mod

8). Now return to SL (2, q) with q = pf , p any odd prime, f = 1 or 3. Let A be an abelian
2-subgroup of SL (2, q). Since Sylow 2-subgroups of SL (2, q) are generalized quaternion,
A will be cyclic. Let C be another cyclic group of order |A|. This can only be done if

A 6=
{[
−1 0
0 −1

]
,

[
1 0
0 1

]}
=: Z.

Due to a property of the above “list”, A/Z ≤ S2/Z and C/Z ≤ S2/Z, where S2/Z and
S2/Z are distinct cyclic Sylow 2-subgroups of SL (2, q)/Z. Hence indeed A and C are
conjugate in SL (2, q).

Thus, all contingencies are accounted for. The proof of Theorem 4.5 is complete. 2

The final touch of §4 is the following Theorem, needed in the proof of Theorem 4.3.

Theorem 4.6 Let G be a B?-group. Suppose there exists a non-abelian simple normal
subgroup M of G. Then either M ∼= SL

(
2, 2f

)
, where f is a prime dividing 30, or

M ∼= PSL (2, q) for prime powers q with q ≡ 3 or 5 (mod8) and q ≥ 5, or M ∼= J1.
Each type of group does indeed occur as a normal subgroup of a B?-group.

Proof. Each Sylow 2-subgroup of M has at least four elements by ([11], IV.2.8 Satz).
As a Sylow 2-subgroup of M is isomorphic to a subgroup of a Sylow 2-subgroup S of
G, where S is generalized quaternion, we see that each of the Sylow 2-subgroups of M
must be elementary abelian (use [11], IV.2.8 Satz and Proposition 1.1). Therefore, due to
Walter’s theorem mentioned in [23], M is a group from one of the following four classes
of groups:

1) PSL (2, 2n), n ≥ 2;
2) PSL (2, q) , where q is a prime power, q > 3, q ≡ 3 or 5 (mod8);

3) Janko’s simple group J1;
4) the simple groups of Ree type in the sense of Thompson and Ree.
Let us first tackle class 4). It has been shown by Bombieri (Inventiones Math.,Vol. 58

(1980), p.77–100) that indeed Walter’s theorem provides precisely the Ree-type groups
that were described earlier in time as the so-called Ree-groups by Thompson and Ree;
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see ([20]) and Bombieri’s paper for the precise story. Therefore, by Thompson, a Sylow
3-subgroup T of such a Ree group satisfies precisely all of the properties as described
in Theorem 1 of [20]. In particular, it happens that [T, T ] =

〈
a ∈ T | a3 = 1

〉
and that

[T, T ] is not cyclic, whereas of course [T, T ] < T , yielding now Exp (T ) > 3. Hence, in
this case, G cannot be a B?-group by Proposition 1.1.

Let us now consider the groups of class 1). As to class 1) the reader is referred to an
analogue of the proof of Theorem 5 of [2]. It has to do with the fact, that all Klein four
subgroups of SL (2, 2n), where n ≥ 2, are all conjugate to each other within the B?-group
G, whereas that property can only be accomplished when n ∈ {2, 3, 5}. The rest of the
assertion in Theorem 4.6 has been shown above in this paper.

The proof of the Theorem 4.6 is complete. 2

The proof of Theorem 4.6 concludes the classification of the B?-groups. It is provided
by compiling Theorems 3.5, 4.2, 4.3, 4.4, 4.5 and 4.6, and it has been formulated in the
statement of the Main Theorem as it appeared in the Introduction.

Main Theorem

a) The class consisting of all solvable B?-groups coincides with the class consisting of
all solvable B-groups.

b) Every non-solvable B?-group either is a non-solvable B-group, or else it is isomor-
phic to a direct product of the groups M and H, where H is any solvable B-group whose
order is relatively prime to the order of M , and where M is

either isomorphic to the B?-group J1(Janko’s first simple group of order 175560),

or to any of the simple B?-groups PSL (2, q) with q = pf , p odd prime, f = 1 or 3,
q ≥ 11, q ≡ 3 or 5 (mod8),

or isomorphic to any of the quasi-simple B?-groups SL (2, u) with u = pf , p odd
prime, f = 1 or f = 3; u ≥ 7. 2

Herewith the classification of all the B?-groups is complete.
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