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Quasi-Dual Modules

M. Tamer Koşan

Abstract

Let R be a ring, M be a right R-module and S = EndR(M). M is called a

quasi-dual module if, for every R-submodule N of M , N is a direct summand of

rM (X) where X ⊆ S. In this article, we study and provide several characterizations

of this module classes. We show that if M is quasi-dual module, then, for all m ∈M ,

rM `S(m) = mR⊕K for some submodule K of M . We also show that every quasi-

dual module is a Kasch module and Z(SM) ⊆ Rad(MR).
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1. Introduction

Throughout this paper, R is an associative ring with identity, modules are right and
unitary over it and S = EndR(M) is the ring of R-endomorphisms of M . Submodules of
M will be right R-modules unless specified otherwise. Clearly, the module M is a left S
and right R-bimodule.

A ring R is called a right dual ring if every right ideal of R is an annihilator and R

is called right quasi-dual ring if every right ideal of R is a direct summand of a right
annihilator. Right dual and, as a generalization of right dual rings, right quasi-dual rings
were discussed in detail in [4] and [9]. Some of the known results on right quasi-dual rings
can be recalled as follows: R is a right quasi-dual ring if and only if r`(I) = I for every
essential ideal I of R; if R is a right quasi-dual ring then, R is a right Kasch ring and
r`(Soc(RR)) = Soc(RR) and r`(J(R)) = J(R).

In this paper, the notion of a quasi-dual module is introduced as a generalization of
quasi-dual rings to modules.
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2. Preliminaries

Let R and S be rings and SMR be a bimodule. For any X ≤M and T ⊆ S, denote
`S(X) = {s ∈ S : sX = 0} and rM (T ) = {m ∈M : Tm = 0}.

Lemma 2.1 For a right R-module M , let S = EndR(M), N ≤M , I ≤ RR, J ≤ SS and
0 ∈ S; we then have

rM (0) = M

`S(0) = S

rM (S) = `S(S) = `S(M) = 0

`M (rR(`M (I))) = `M (I)

`S(rM (`S(N))) = `S(N)

rR(`M (rR(N))) = rR(N)

rM (`S(rM (J))) = rM (J)

`S(⊕i∈INi) = ∩i∈I`S(Ni).

Proof. See [2, 12]. 2

Definition 2.2 A ringR is said to be a right dual if every right ideal ofR is an annihilator
([4]).
Definition 2.3 A ring R is called a right quasi-dual if every right ideal of R is a direct
summand of a right annihilator ([9]).

Definition 2.4 A module M is called Ikeda-Nakayama module if

`S(A ∩B) = `S(A) + `S(B)

for any submodules A,B of MR (see [10]).

Definition 2.5 A module M is called Kasch module if M̂ is an (injective) cogenerator

in σ[M ], where M̂ is injective hull of M in σ[M ] ([1]).
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The notations, “≤” will denote a submodule, “≤e” an essential submodule, and “<<”
a small submodule.

We will refer to [2, 3, 4, 8, 9, 11] for all undefined notions used in the text, and also
for basic facts concerning (quasi-)dual rings and annihilators.

3. Quasi-Dual Modules

In this paper, we shall introduce the notion of quasi-dual modules and try to give a
module theoretic characterizations of quasi-dual ring.

Definition 3.1 (See [5]) Let R be a ring, M be a right R-module and S = EndR(M).
M is called a dual module if

1. rM `S(N) = N for every submodule N of M ;
2. `SrM(I) = I for every right ideal I of S.

Definition 3.2 Let R be a ring, M be a right R-module and S = EndR(M). We shall
call M a quasi-dual module if, for every R-submodule N of M , N is a direct summand
of rM(X), where X ⊆ S(compare with [6] and [7]). Trivially,

1. A right quasi-dual ring is a quasi-dual module as right module.
2. Every dual module is a quasi-dual module.
3. Every semisimple module is a quasi-dual module.

Lemma 3.3 The following conditions are equivalent for a right R-module M .

1. M is a quasi-dual module.
2. For every essential submodule K of M , rM `S(K) = K

3. For every submodule L of M , L is a direct summand of rM `S(L).

Proof. (1) ⇒ (2) Let M be a quasi-dual module and K be an essential submodule
of M . Then K is a direct summand of rM (Y ) for some Y ⊆ S. Let rM (Y ) = K ⊕ K′
for some K′. Then K = rM(Y ). Note that `S(K) = `SrM(Y ) implies rM`S(K) =
rM `SrM (Y ) = rM (Y ) = K.
(2) ⇒ (3) Let L be a submodule of M . If L is essential in M , rM`S(L) = L by (2).
Hence L is a direct summand of rM`S(L). Assume that L is not essential in M . Then
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L⊕L′ is an essential for some submodule L′ of M . By (2), rM `S(L⊕L′) = L⊕L′. Since
L ⊆ rM `S(L) ⊆ rM`S(L⊕ L′), L is a direct summand of rM `S(L) by modularity.
(3)⇒ (1) clear. 2

Following [10], M is called almost principally injective (AP-injective for short) if, for any
m ∈ M , there exists an S-submodule K of M such that rM `S(m) = mR ⊕K.

Theorem 3.4 Every quasi-dual right R-module is an AP-injective module.

Proof. Clear. 2

Let N be any module. N is said to be M−cyclic module ifN is isomorphic to M/X for
some X ≤M , and in case N ≤M and N is M -cyclic module then it is called M−cyclic
submodule of M and N is called M -singular if N ∼= M/K with K ≤e M .

Proposition 3.5 Let M be an R-module. Then

1. If, for every essential submodule K of M , rM `S(K) = K then, every M -cyclic
singular R-module is cogenerated by M .

2. If every singular factor submodule (i.e. M -cyclic submodule) of M is cogenerated
by M , then rM `S(K) = K for every essential submodule K of M .

Proof. (1) Let N be a singular R-module with N ∼= M/K and K ≤e M . Since
K is essential in M , rM`S(K) = K by assumption. Let I = `S(K). We define
φ : M/K −→ Πα∈IMα by m + K → φ(m + K) = (αm)α∈I . Let (αm)α∈I = 0. Then
αm = 0 for all α ∈ I . Hence α ∈ `S(K) and so m ∈ rM `S(K) = K. Therefore φ is a
monomorphism.
(2) Let M/K be a singular module for some K ≤e M . By hypothesis, there exists
a monomorphism σ : M/K −→ Πα∈IMα for some index set I with Mα = M for all
α ∈ I. We consider the natural epimorphism π : M −→ M/K and canonical projection
pα : Πα∈IMα −→ Mα. Then pασπ ∈ `S(K). Let m ∈ rM `S(K). Then pασπ(m) = 0
for all α ∈ I. Therefore σπ(m) ∈ Ker(pα) for all α ∈ I and so σπ(m) ∈ ∩α∈IKer(pα).
Since ∩α∈IKer(pα) = 0, σπ(m) = 0. But σ is a monomorphism, so π(m) = 0. Therefore
m ∈ K. Other side is obvious. Hence rM`S(K) = K. 2
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σ[M ] will denote the full subcategory of left R-modules whose objects are the sub-
modules of M−generated modules. Hence

σ[M ] = {N ∈ R−Mod : N ∼= K/L ≤M (Λ)/L for some Λ}.

Following [1], a module M is called Kasch module if M̂ is an (injective) cogenerator in

σ[M ], where M̂ is injective hull of M in σ[M ].

Proposition 3.6 For a module M , the following are equivalent;

1. M is a Kasch module;

2. Any simple module in σ[M ] can be embedded in M ;

3. Any simple module in σ[M ] is cogenerated by M ;

4. Hom(C,M) 6= 0 for any nonzero (cyclic) R-module C from σ[M ];

5. `S(N) 6= 0 for every proper submodule N of M ;

6. rM `S(N) = N for every maximal submodule N of M .

Proof. 1 ⇔ 2 ⇔ 3 ⇔ 4 by [1, Proposition 2.6], the other equivalences follows from
Lemma 3.3 and Proposotion 3.5. 2

Theorem 3.7 Let M be a quasi dual module.

1. rM `S(Soc(M)) = Soc(M).

2. For every maximal submodule N of M , rM `S(N) = N . Therefore, M is a Kasch
module and rM `S(Rad(M)) = Rad(M).

3. If L is a submodule of M , then rM `S(L) = L ⊕ L′ for a submodule L′ with
`S(L) ≤ `S(L′).

Proof. (1) Let M be a quasi dual module. Then, for each essential submodule K of
M , rM`S(K) = K by Lemma 3.3. By Proposition 3.5, M/K is cogenerated by M . Since
Soc(M) is the intersection of all essential submodules, M/Soc(M) is cogenerated by M .
Since Soc(M) is an essential submodule of M and M/Soc(M) is singular factor module,
so rM `S(Soc(M)) = Soc(M) by Lemma 3.3.
(2) Let N be a maximal submodule of M . Assume that rM `S(N) 6= N . By maximality
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of N , rM `S(N) = M . Note that, for x ∈ `S(N), xN = 0 implies xM = 0. Since M is
a quasi-dual module, N is a direct summand of rM `S(N) by Lemma 3.3, and so of M .
Let M = N ⊕ N ′ for some submodule N ′ of M . We consider the canonical projection
π on N ′. Since π(N) = 0 implies π(M) = 0, we have M = N . It is a contradiction by
maximality ofN . Hence rM`S(N) = N . So, M is a Kasch module by Proposition 3.6. Let
x ∈ rM `S(Rad(M)). Then `S(Rad(M))x = 0. Note that M/Rad(M) = M/∩N≤maxMN .
We consider

M
π→M/Rad(M) = M/ ∩N≤maxM N

σ→ ΠN≤maxMM/N
β→ Πα∈IMα

pα→Mα = M.

We know that σ and β are one to one. Since pαβσπ ∈ `S(Rad(M)), we have (pαβσπ)(x) =
0 for all α ∈ I. Then βσπ(x) = 0 and so π(x) = 0. This implies that x ∈ Rad(M). Other
side is obvious.
(3) Let L be a submodule of M . Then rM`S(L) = L⊕L′ for a submodule L′ by Lemma
3.3. Note that `S(rM `S(L)) = `S(L ⊕ L′) = `S(L) ∩ `S(L′) by Lemma 2.1. Hence
`S(L) ≤ `S(L′), as required. 2

Recall that;
(C1) Every complement submodule is a direct summand.
(C2) If every submodule isomorphic to a direct summand ofM is itself a direct summand.
(C3) If N and K are direct summands of M and N ∩ K = 0, then N ⊕ K is a direct
summand of M .

M is called a continous (or a quasi-continous) module if M has C1 and C2 (or C1
and C3 ).

Theorem 3.8 Let M be a finitely generated Kasch module such that, any complement
submodule N of M , rM`S(N) = N . Then M is quasi-continuous.

Proof. Let N1 and N2 be submodules of M such that they are complements of each
other in M . Then N1 ∩N2 = 0. So 0 = N1∩N2 = rM`S(N1)∩rM `S(N2) = rM(`S(N1)+
`S(N2)). Since M is a Kasch module, by Proposition 3.6, `S(N1) + `S(N2) = M . Hence
M is a quasi-continuous by [11, Theorem 8]. 2

Question : When M is a semiperfect module with essential socle in σ[M ] under the
conditions of Theorem 3.8 ?
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Proposition 3.9 The following conditions are equivalent for a right R-module M .

1. M is a quasi-dual module and, for every right ideal I of S, I is a direct summand
of `S(K) where K ≤M .

2. (a) For every essential submodule K of M , rM `S(K) = K

(b) For every essential right ideal I of S, `SrM(I) = I

3. (a) For every submodule L of M , L is a direct summand of rM`S(L)

(b) For every essential right ideal I of S, I is a direct summand of `SrM (I).

Proof. Similar to Lemma 3.3. 2

Definition 3.10 We shall call M a strongly quasi-dual module if, for every R-submodule
N of M and for every right ideal I of S, N is a direct summand of rM(X) and I is a
direct summand of `S(K) where X ⊆ S and K ≤M .

Let R and S be any rings and M be an S − R-bimodule. Following [6,7], if M is
strongly quasi-dual module, then M is called quasi-dual bimodule

Proposition 3.11

1. Let M be a quasi-dual module and A be a submodule of M . Then we have:

(i) If `S(A) = 0, then A = M .

(ii) If M is an IN -module and `S(A) << S, then A ≤e M .

2. Let M be a strongly quasi dual module and I be a right ideal of S. Then we have:

(i) If rM (I) = 0, then I = S.

(ii) If `S(A) ≤e S, then A << M .

(iii) If M is indecomposable and A ≤e M , then `S(A) << S.

(iv) If rM(I) ≤e M , then I << S.

Proof. 1.(i) Assume that A is an essential submodule of M . By Lemma 3.3,
rM `S(A) = A. But `S(A) = 0 and M is a quasi-dual module, we have M = A. If
A is not essential submodule of M , then there exists a submodule B of M such that
A ⊕ B is essential. So M = A ⊕ B. Let πB projection on B. Then πB(A) = 0, and so
πB ∈ `S(A). Therefore B = 0.
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(ii) Assume that A is not essential in M . Then there exist a non-zero submodule
K of M such that A ∩ K = 0. Hence `S(A ∩ K) = S. Since M is an IN -module,
`S(A ∩K) = `S(A) + `S(K) = S. Then `S(K) = S. Therefore, K = 0.
2. (i) Similar to 1.(i).

(ii) Let A+B = M for some submoduleB ofM . Then `S(A+B) = `S(A)∩`S(B) = 0.
By assumption, `S(B) = 0. By 1.(i), we have B = M .

(iii) Let `S(A) + X = S for X ⊆ S. Then rM (`S(A) + X) = rM(S) = 0. But
rM (`S(A)+X) = rM`S(A)∩rM (X) = A∩rM (X) = 0. Since A is an essential submodule
of M , rM (X) = 0. Then X = S by 2.(i).

(iv) Let I + J = S for some J ⊆ S. Then 0 = rM (I + J) = rM (I) ∩ rM (J). Since
rM (I) is essential in M , rM (J) = 0 and so J = S by 2.(i). 2

In Theorem 3.4, shown that every quasi-dual module is AP-injective. Following [9],
we have Z(RR) = J(R), where J(R) and Z(MR) denote Jacobson radical of R and the
singular submodule of an R-module M , respectively. Therefore,

Theorem 3.12 Let M be a quasi-dual module. Then Z(SM) ⊆ Rad(MR).

Proof. If x ∈ Z(SM), then xR is small in M by Proposition 3.12 and hence
x ∈ Rad(MR). 2

Question : Let M be a quasi-dual module. When Z(SM) ⊆ Rad(MR)?
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