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Abstract

In 2004, Al-Hawary and Al-Omari introduced and explored the class of ωo−open

sets which is strictly stronger than the class of ω−open sets and weaker than

that of open sets. In this paper, we introduce what we call ωo− continuity and

ωoX−continuity and we give several characterizations and two decompositions of

ωo−continuity. Finally, new decompositions of continuity are provided.
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1. Introduction

Let (X,T) be a topological space (or simply, a space). If A ⊆ X, then the closure
of A and the interior of A will be denoted by ClT(A) and IntT(A), respectively. If no
ambiguity appears, we use A and Ao instead. By X, Y and Z we mean topological spaces
with no separation axioms assumed. Ts tan dard, Tindiscrete, Tleftray and Tcocountable stand
for the standard, indiscrete, left ray and the cocountable topologies, respectively. A space
(X,T) is anti locally countable if all non-empty open subsets are uncountable.

In [3], the concept of ω-closed subsets was explored where a subset A of a space (X,T)
is ω-closed if it contains all of its condensation points. In [4], several characterizations of
ω-continuity were provided where a map f : X → Y is ω-continuous at x ∈ X if for every
open subset V in Y containing f(x), there exists an ω-open subset U in X containing
x such that f(U) ⊆ V. f is ω-continuous if it is ω-continuous at every x ∈ X. Several
properties of ω-continuous mappings were also explored. Analogous to [4, 5, 8, 9], in
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Section 2 we introduce the relatively new notion of ωo-continuity, which is closely related
to continuity and ω-continuity. In fact, properly placed between them. Moreover, we show
that ωo-continuity preserves Lindelof property and a space (X,T) is Lindelof if and only
if (X,Tωo) is Lindelof, where Tωo is the collection of all ωo-open subsets of X. Sections
3 is devoted for studying four weaker notions of ωo-continuity by which we provide two
decompositions of ωo-continuity. Finally, in Section 4 we give several decompositions of
continuity which seem to be new.

Next, we recall several necessary definitions and results from [1].

Definition 1 A subset A of a space (X,T) is called ωo-open if for every x ∈ A, there

exists an open subset Ux ⊆ X containing x such that Ux\
o

A is countable. The complement
of an ωo-open subset is called ωo-closed.

Clearly every open set is ωo-open and every ωo-open is ω-open.

Theorem 1 If (X,T) is a space, then (X,Tωo) is a space such that T ⊆ Tωo ⊆ Tω,

where Tω is the collection of all ω-open subsets of X.

Corollary 1 If (X,T) is anti locally countable and A is ωo-closed, then IntT(A) =
IntTωo (A).

2. ωo-Continuous Mappings

We begin this section by introducing the notion of ωo-continuous mappings. Several
characterizations of this class of mappings are also provided.

Definition 2 A map f : X → Y is ωo-continuous at x ∈ X if for every open subset
V in Y containing f(x), there exists an ωo-open subset U in X containing x such that
f(U) ⊆ V. f is ωo-continuous if it is ωo-continuous at every x ∈ X.

As every open set is ωo-open and every ωo-open set is ω-open, every continuous map
is ωo-continuous and every ωo-continuous map is ω-continuous. The converses need not
be true.

Example 1 Let X = {a, b}, T1 = {∅, X, {a}} and T2 = {∅, X, {b}}. Then the identity
map id : (X,T1)→ (X,T2) is ωo-continuous but not continuous.
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Example 2 Let Y = {0, 1} and T = {∅, Y, {0}}. Then the map f : (R,Ts tandard) →

(Y,T) defined by f(x) =

{
1
0

x ∈ Q
x ∈ R\Q

is ω-continuous but not ωo-continuous.

The proofs of the following three results are similar to those for ω-continuous maps
given in [4] and are thus omitted.

Lemma 1 Let X, Y and Z be spaces. Then
(1) If f : X → Y is ωo-continuous surjection and g : Y → Z is continuous surjection,

then g ◦ f is ωo-continuous.
(2) If f : X → Y is ωo-continuous surjection and A ⊆ X, then f |A is ωo-continuous.

(3) If f : X → Y is a map such that X = X1 ∪X2 where X1 and X2 are closed and
both f |X1 and f |X2 are ωo-continuous, then f is ωo-continuous.

(4) If f1 : X → X1 and f2 : X → X2 are maps and g : X → X1 × X2 is the map
defined by g(x) = (f1(x), f2(x)) for all x ∈ X, then g is ωo-continuous if and only if f1

and f2 are ωo-continuous.

Lemma 2 For a map f : X → Y, the following are equivalent:
(1) f is ωo-continuous.
(2) The inverse image of every open subset of Y is ωo-open in X.

(3) The inverse image of every closed subset of Y is ωo-closed in X.

(4) The inverse image of every basic open subset of Y is ωo-open in X.

(5) The inverse image of every subbasic open subset of Y is ωo-open in X.

Lemma 3 A space (X,TX) is Lindelof if and only if (X,Tωo) is Lindelof.

Next we show that being Lindelof is preserved under ωo-continuity.

Theorem 2 If f : (X,TX) → (Y,TY ) is ωo-continuous and X is Lindelof, then Y is
Lindelof.

Proof. Let B = {Vα : α ∈ ∇} be an open cover of Y. Since f is ωo-continuous,
A = {f−1(Vα) : α ∈ ∇} is a cover of X by ωo-open subsets and as X is Lindelof,
by Lemma 3, A has a countable subcover {f−1(Vαn) : n ∈ N}. Now Y = f(X) =
f(∪{f−1(Vαn) : n ∈ N)} ⊆ ∪{Vαn : n ∈ N}. Therefore Y is Lindelof. 2
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If X is a countable space, then every subset of X is ωo-open and hence every map
f : X → Y is ωo-continuous. Next, we show that if X is uncountable such that every
ωo-continuous map f : X → Y is a constant map, then X has to be connected.

Theorem 3 If X is uncountable space such that every ωo-continuous map f : X → Y is
a constant map, then X is connected.

Proof. If X is disconnected, then there exists a non-empty proper subset A of X which
is both open and closed. Let Y = {a, b} and TY = {∅, Y, {b}} and f : X → Y defined by
f(A) = {a} and f(X\A) = {b}. Then f is a non-constant ωo-continuous map. 2

The converse of the preceding result need not be true even when X is uncountable.

Example 3 The identity map id : (R,Tleftray) → (R,Tindiscrete) is a non-constant ωo-
continuous.

3. Decompositions of ωo−Continuity

We begin by recalling the following well-known two definitions.

Definition 3 A map f : X → Y is weakly continuous at x ∈ X if for every open
subset V in Y containing f(x), there exists an open subset U in X containing x such that
f(U) ⊆ V . f is weakly continuous if it is weakly continuous at every x ∈ X.

Definition 4 A map f : X → Y is W ∗-continuous if for every open subset V in Y ,

f−1(Fr(V )) is closed in X, where Fr(V ) = V \
o

V .

Weakly continuity and W*-continuity are independent notions that are weaker than
continuity and the two together characterize continuity (see for example [7]). Next we
give two relatively new such definitions.

Definition 5 A map f : X → Y is weakly ωo-continuous at x ∈ X if for every open
subset V in Y containing f(x), there exists an ωo-open subset U in X containing x such
that f(U) ⊆ V . f is weakly ωo-continuous if it is weakly ωo-continuous at every x ∈ X.

Clearly, every ωo-continuous and every weakly continuous map is weakly ωo-continuous.
Non of the converses need be true as shown next.
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Example 4 Let Y = {a, b, c} and T = {∅, Y, {a}, {c}, {a, c}}. Then the map f :
(R,Tcocountable) → (Y,T) defined by f(x) = a for all x ∈ R. Then f is weakly ωo-
continuous but not ωo-continuous.

Example 5 Let Y = {a, b, c} and T = {∅, Y, {a}, {c}, {a, c}}. Then the map f :

(R,Tcocountable) → (Y,T) defined by f(x) =

{
a

b

x ∈ Q
x ∈ R\Q

for all x ∈ R. Then f

is weakly continuous and hence weakly ωo-continuous but not ωo-continuous.

Definition 6 A map f : X → Y is coweakly ωo-continuous if for every open subset V

in Y , f−1(Fr(V )) is ωo-closed in X, where Fr(V ) = V \
o

V .

Clearly, every ωo-continuous is coweakly ωo-continuous. The converse need not be
true.

Example 6 Let X = Y = {a, b}, TX = {∅, X} and TY = {∅, Y, {a}, {b}}Then the
identity map id : X → Y is coweakly ωo-continuous but not ωo-continuous.

Our first characterization of ωo-continuity in terms of the preceding two notions of
continuity is given next.

Theorem 4 The following are equivalent for a map f : (X,TX)→ (Y,TY ) :

(1) f is ωo-continuous.

(2) f : (X,Tωo)→ (Y,TY ) is continuous.

(3) f : (X,Tωo)→ (Y,TY ) is weakly continuous and W*-continuous.

Proof. (1)⇒ (2) : Obvious.

(2)⇒ (3) : Follows from Theorem 1.
(3) ⇒ (1) : Since f : (X,Tωo) → (Y,TY ) is W*-continuous, it is coweakly ωo-

continuous and as it is weakly-continuous, it is weakly ωo-continuous. Thus by Theorem
1, f : (X,TX)→ (Y,TY ) is ωo-continuous. 2

We show that weakly ωo-continuity and coweakly ωo-continuity are independent no-
tions, but together they characterize ωo-continuity. This will be our first decomposition
of ωo-continuity which is analogous to the result that can be found in [2] for ω-continuity.
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Example 7 The map id in Example 6 is coweakly ωo-continuous but not weakly ωo-
continuous.

Example 8 Let Y = {a, b} and T = {∅, Y, {a}}. Then the map f : (R,Tcocountable) →

(Y,T) defined by f(x) =

{
a

b

x ∈ Q
x ∈ R\Q

for all x ∈ R. Then f is weakly ωo-continuous

but not coweakly ωo-continuous.

Theorem 5 A map f : X → Y is ωo-continuous if and only if f is both weakly and
coweakly ωo-continuous.

Proof. ωo-continuity implies weakly and coweakly ωo-continuity is obvious. Conversely,
suppose f : X → Y is both weakly and coweakly ωo-continuous and let x ∈ X and V be
an open subset of Y such that f(x) ∈ V. Then as f is weakly ωo-continuous, there exists
an ωo-open subset U of X containing x such that f(U) ⊆ V . Now Fr(V ) = V \V and
hence f(x) /∈ Fr(V ). So x ∈ U\f−1(Fr(V )) which is ωo-open in X since f is coweakly
ωo-continuous. For every y ∈ f(U\f−1(Fr(V ))), y = f(a) for some a ∈ U\f−1(Fr(V ))
and hence f(a) = y ∈ f(U) ⊆ V and y /∈ Fr(V ). Thus f(a) = y /∈ Fr(V ) and thus
f(a) ∈ V. Therefore, f(U\f−1(Fr(V ))) ⊆ V and hence f is ωo-continuous. 2

Next, we define a new class of open sets that is independent of ω-open class, but
together they characterize ωo-open.

Definition 7 For a space (X,T), let ωoω =: {A ⊆ X : IntTωo (A) = IntTω(A)}. A is
ωoω-set if A ∈ ωoω.

Clearly every ωo-open set is ωoω-set, but the converse need not be true.

Example 9 Consider R with the standard topology Ts tandard. Then Q is an ωoω-set which
is neither ωo-open nor ω-open.

Even an ω-open subset need not be an ωoω-set.

Example 10 Consider R with the standard topology Ts tan dard. Then R\Q is an ω-open
which is not an ωoω-set.

Theorem 6 A subset A of a space X is ωo-open if and only if A is ω-open and an ωoω-set.
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Proof. Trivially every ωo-open is ω-open and an ωoω-set. Conversely, let A be an ω-open
set that is ωoω-set. Then A = IntTω (A) = IntTωo (A) and therefore A is ωo-open. 2

Definition 8 A map f : X → Y is ωoω-continuous if the inverse image of every open
subset of Y is an ωoω-set.

Clearly every ωo-continuous map is ωoω-continuous, but the converse need not be true
as not every ωoω-set is ωo-open. An immediate consequence of Theorem 6 is the following
decomposition of ωo-continuity.

Theorem 7 A map f : X → Y is ωo-continuous if and only if f is ω-continuous and
ωoω-continuous.

4. Decompositions of Continuity

We begin this section by introducing the notion of an ωoX -set. We then introduce the
notion of ωoX-continuity which gives an immediate decomposition of continuity.

Definition 9 For a space (X,T), let ωoX =: {A ⊆ X : IntTωo (A) = IntT(A)}. A is an
ωoX -set if A ∈ ωoX .

The proof of the following result follows immediately from Corollary 1.

Corollary 2 If (X,T) is anti locally countable, then ωoX contains all ωo-closed subsets
of X.

We remark that, in general, an ωo-closed set need not be an ωoX-set as shown in the
next example.

Example 11 Let X = {a, b} and T = {∅, X, {a}}. Set A = {b}. Then A is ωo-closed
but not an ωoX -set.

As every open set is ωo-open, every open set is an ωoX-set but the converse need not
be true.

Example 12 Consider R with the standard topology Ts tan dard. Then Q is an ωoX-set
which is not open.
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Next, we show that the notions of ωoX-set and ωo-open are independent, but together
they characterize open sets.

Example 13 In Example 11, A is ωo-open but not an ωoX-set.

Example 14 In Example 12, Q is an ωoX-set which is not ωo-open.

Theorem 8 A subset A of a space X is open if and only if A is ωo-open and an ωoX-set.

Proof. Trivially every open set is ωo-open and an ωoX-set.. Conversely, let A be an
ωo-open set that is ωoX-set. Then A = IntTωo (A) = IntT(A) and therefore A is open. 2

In a similar manner, for a space (X,T) let ωX =: {A ⊆ X : IntTω(A) = IntT(A)}
and call a subset A is ωX-set if A ∈ ωX . Then we have the following result.

Theorem 9 A subset A of a space X is open if and only if A is ω-open and an ωX-set.

Definition 10 A map f : X → Y is ωoX-continuous (respectively, ωX -continuous) if the
inverse image of every open subset of Y is an ωoX -set (respectively, ωX-set).

Clearly every continuous map is ωoX -continuous, but the converse need not be true as
not every ωoX -set is open. An immediate consequence of Theorems 5, 7, 8 and 9 are the
following decompositions of continuity, which seem to be new.

Theorem 10 For a map f : X → Y, the following are equivalent:
(1) f is continuous.
(2) f is ωo-continuous and ωoX -continuous.
(3) f is ω-continuous and ωoX-continuous.
(4) f is both weakly ωo-continuous, coweakly ωo-continuous and ωoX-continuous.
(5) f is ω-continuous, ωoω-continuous and ωoX -continuous.
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