Turk J Math 30 (2006) , 187 – 195. © TÜBİTAK

Decompositions of Continuity

Talal Al-Hawary, Ahmad Al-Omari

Abstract

In 2004, Al-Hawary and Al-Omari introduced and explored the class of ω^o -open sets which is strictly stronger than the class of ω -open sets and weaker than that of open sets. In this paper, we introduce what we call ω^o - continuity and ω_X^o -continuity and we give several characterizations and two decompositions of ω^o -continuity. Finally, new decompositions of continuity are provided.

Key Words: ω^{o} -open, ω^{o} -continuity, Continuity.

1. Introduction

Let (X, \mathfrak{T}) be a topological space (or simply, a space). If $A \subseteq X$, then the closure of A and the interior of A will be denoted by $Cl_{\mathfrak{T}}(A)$ and $Int_{\mathfrak{T}}(A)$, respectively. If no ambiguity appears, we use \overline{A} and A^o instead. By X, Y and Z we mean topological spaces with no separation axioms assumed. $\mathfrak{T}_{s \tan dard}, \mathfrak{T}_{indiscrete}, \mathfrak{T}_{leftray}$ and $\mathfrak{T}_{cocountable}$ stand for the standard, indiscrete, left ray and the cocountable topologies, respectively. A space (X, \mathfrak{T}) is anti locally countable if all non-empty open subsets are uncountable.

In [3], the concept of ω -closed subsets was explored where a subset A of a space (X, \mathfrak{T}) is ω -closed if it contains all of its condensation points. In [4], several characterizations of ω -continuity were provided where a map $f: X \to Y$ is ω -continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an ω -open subset U in X containing x such that $f(U) \subseteq V$. f is ω -continuous if it is ω -continuous at every $x \in X$. Several properties of ω -continuous mappings were also explored. Analogous to [4, 5, 8, 9], in

²⁰⁰⁴ AMS Mathematics Subject Classification: 54C08, 54C05, 54C10.

Section 2 we introduce the relatively new notion of ω^{o} -continuity, which is closely related to continuity and ω -continuity. In fact, properly placed between them. Moreover, we show that ω^{o} -continuity preserves Lindelof property and a space (X, \mathfrak{T}) is Lindelof if and only if $(X, \mathfrak{T}_{\omega^{o}})$ is Lindelof, where $\mathfrak{T}_{\omega^{o}}$ is the collection of all ω^{o} -open subsets of X. Sections 3 is devoted for studying four weaker notions of ω^{o} -continuity by which we provide two decompositions of ω^{o} -continuity. Finally, in Section 4 we give several decompositions of continuity which seem to be new.

Next, we recall several necessary definitions and results from [1].

Definition 1 A subset A of a space (X, \mathfrak{T}) is called ω° -open if for every $x \in A$, there exists an open subset $U_x \subseteq X$ containing x such that $U_x \setminus \overset{\circ}{A}$ is countable. The complement of an ω° -open subset is called ω° -closed.

Clearly every open set is ω^{o} -open and every ω^{o} -open is ω -open.

Theorem 1 If (X, \mathfrak{T}) is a space, then $(X, \mathfrak{T}_{\omega^o})$ is a space such that $\mathfrak{T} \subseteq \mathfrak{T}_{\omega^o} \subseteq \mathfrak{T}_{\omega}$, where \mathfrak{T}_{ω} is the collection of all ω -open subsets of X.

Corollary 1 If (X,\mathfrak{T}) is anti locally countable and A is ω° -closed, then $Int_{\mathfrak{T}}(A) = Int_{\mathfrak{T}_{\omega^{\circ}}}(A)$.

2. ω^{o} -Continuous Mappings

We begin this section by introducing the notion of ω^{o} -continuous mappings. Several characterizations of this class of mappings are also provided.

Definition 2 A map $f : X \to Y$ is ω° -continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an ω° -open subset U in X containing x such that $f(U) \subseteq V$. f is ω° -continuous if it is ω° -continuous at every $x \in X$.

As every open set is ω^{o} -open and every ω^{o} -open set is ω -open, every continuous map is ω^{o} -continuous and every ω^{o} -continuous map is ω -continuous. The converses need not be true.

Example 1 Let $X = \{a, b\}$, $\mathfrak{T}_1 = \{\emptyset, X, \{a\}\}$ and $\mathfrak{T}_2 = \{\emptyset, X, \{b\}\}$. Then the identity map $id : (X, \mathfrak{T}_1) \to (X, \mathfrak{T}_2)$ is ω^o -continuous but not continuous.

Example 2 Let $Y = \{0,1\}$ and $\mathfrak{T} = \{\emptyset, Y, \{0\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{s \tan dard}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ is ω -continuous but not ω^{o} -continuous.

The proofs of the following three results are similar to those for ω -continuous maps given in [4] and are thus omitted.

Lemma 1 Let X, Y and Z be spaces. Then

(1) If $f: X \to Y$ is ω° -continuous surjection and $g: Y \to Z$ is continuous surjection, then $g \circ f$ is ω° -continuous.

(2) If $f: X \to Y$ is ω° -continuous surjection and $A \subseteq X$, then $f|_A$ is ω° -continuous. (3) If $f: X \to Y$ is a map such that $X = X_1 \cup X_2$ where X_1 and X_2 are closed and both $f|_{X_1}$ and $f|_{X_2}$ are ω° -continuous, then f is ω° -continuous.

(4) If $f_1: X \to X_1$ and $f_2: X \to X_2$ are maps and $g: X \to X_1 \times X_2$ is the map defined by $g(x) = (f_1(x), f_2(x))$ for all $x \in X$, then g is ω° -continuous if and only if f_1 and f_2 are ω° -continuous.

Lemma 2 For a map $f : X \to Y$, the following are equivalent:

- (1) f is ω^{o} -continuous.
- (2) The inverse image of every open subset of Y is ω^{o} -open in X.
- (3) The inverse image of every closed subset of Y is ω° -closed in X.
- (4) The inverse image of every basic open subset of Y is ω° -open in X.
- (5) The inverse image of every subbasic open subset of Y is ω° -open in X.

Lemma 3 A space (X, \mathfrak{T}_X) is Lindelof if and only if $(X, \mathfrak{T}_{\omega^o})$ is Lindelof.

Next we show that being Lindel of is preserved under $\omega^o\text{-continuity.}$

Theorem 2 If $f : (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ is ω° -continuous and X is Lindelof, then Y is Lindelof.

Proof. Let $\mathfrak{B} = \{V_{\alpha} : \alpha \in \nabla\}$ be an open cover of Y. Since f is ω^{o} -continuous, $\mathfrak{A} = \{f^{-1}(V_{\alpha}) : \alpha \in \nabla\}$ is a cover of X by ω^{o} -open subsets and as X is Lindelof, by Lemma 3, \mathfrak{A} has a countable subcover $\{f^{-1}(V_{\alpha_n}) : n \in \mathbb{N}\}$. Now $Y = f(X) = f(\bigcup\{f^{-1}(V_{\alpha_n}) : n \in \mathbb{N}\}) \subseteq \bigcup\{V_{\alpha_n} : n \in \mathbb{N}\}$. Therefore Y is Lindelof. \Box

If X is a countable space, then every subset of X is ω^{o} -open and hence every map $f: X \to Y$ is ω^{o} -continuous. Next, we show that if X is uncountable such that every ω^{o} -continuous map $f: X \to Y$ is a constant map, then X has to be connected.

Theorem 3 If X is uncountable space such that every ω° -continuous map $f: X \to Y$ is a constant map, then X is connected.

Proof. If X is disconnected, then there exists a non-empty proper subset A of X which is both open and closed. Let $Y = \{a, b\}$ and $\mathfrak{T}_Y = \{\emptyset, Y, \{b\}\}$ and $f: X \to Y$ defined by $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is a non-constant ω^o -continuous map. \Box

The converse of the preceding result need not be true even when X is uncountable.

Example 3 The identity map $id : (\mathbb{R}, \mathfrak{T}_{leftray}) \to (\mathbb{R}, \mathfrak{T}_{indiscrete})$ is a non-constant ω^{o} -continuous.

3. Decompositions of ω^o -Continuity

We begin by recalling the following well-known two definitions.

Definition 3 A map $f : X \to Y$ is weakly continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an open subset U in X containing x such that $f(U) \subseteq \overline{V}$. f is weakly continuous if it is weakly continuous at every $x \in X$.

Definition 4 A map $f : X \to Y$ is W^* -continuous if for every open subset V in Y, $f^{-1}(Fr(V))$ is closed in X, where $Fr(V) = \overline{V} \setminus \overset{o}{V}$.

Weakly continuity and W^{*}-continuity are independent notions that are weaker than continuity and the two together characterize continuity (see for example [7]). Next we give two relatively new such definitions.

Definition 5 A map $f: X \to Y$ is weakly ω° -continuous at $x \in X$ if for every open subset V in Y containing f(x), there exists an ω° -open subset U in X containing x such that $f(U) \subseteq \overline{V}$. f is weakly ω° -continuous if it is weakly ω° -continuous at every $x \in X$.

Clearly, every ω^{o} -continuous and every weakly continuous map is weakly ω^{o} -continuous. Non of the converses need be true as shown next.

Example 4 Let $Y = \{a, b, c\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{cocountable}) \to (Y, \mathfrak{T})$ defined by f(x) = a for all $x \in \mathbb{R}$. Then f is weakly ω^{o} -continuous but not ω^{o} -continuous.

Example 5 Let $Y = \{a, b, c\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}, \{c\}, \{a, c\}\}$. Then the map f : $(\mathbb{R}, \mathfrak{T}_{cocountable}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} a & x \in \mathbb{Q} \\ b & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ for all $x \in \mathbb{R}$. Then f is weakly continuous and hence weakly ω^{o} -continuous but not ω^{o} -continuous.

Definition 6 A map $f: X \to Y$ is coweakly ω^{o} -continuous if for every open subset V in Y, $f^{-1}(Fr(V))$ is ω^{o} -closed in X, where $Fr(V) = \overline{V} \setminus \overset{o}{V}$.

Clearly, every ω^o -continuous is coweakly ω^o -continuous. The converse need not be true.

Example 6 Let $X = Y = \{a, b\}$, $\mathfrak{T}_X = \{\emptyset, X\}$ and $\mathfrak{T}_Y = \{\emptyset, Y, \{a\}, \{b\}\}$ Then the identity map $id : X \to Y$ is coweakly ω° -continuous but not ω° -continuous.

Our first characterization of ω^{o} -continuity in terms of the preceding two notions of continuity is given next.

Theorem 4 The following are equivalent for a map $f: (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$:

- (1) f is ω^{o} -continuous.
- (2) $f: (X, \mathfrak{T}_{\omega^o}) \to (Y, \mathfrak{T}_Y)$ is continuous.
- (3) $f: (X, \mathfrak{T}_{\omega^o}) \to (Y, \mathfrak{T}_Y)$ is weakly continuous and W*-continuous.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (3)$: Follows from Theorem 1.

 $(3) \Rightarrow (1)$: Since $f : (X, \mathfrak{T}_{\omega^o}) \to (Y, \mathfrak{T}_Y)$ is W*-continuous, it is coweakly ω^o continuous and as it is weakly-continuous, it is weakly ω^o -continuous. Thus by Theorem 1, $f : (X, \mathfrak{T}_X) \to (Y, \mathfrak{T}_Y)$ is ω^o -continuous. \Box

We show that weakly ω^{o} -continuity and coweakly ω^{o} -continuity are independent notions, but together they characterize ω^{o} -continuity. This will be our first decomposition of ω^{o} -continuity which is analogous to the result that can be found in [2] for ω -continuity.

Example 7 The map id in Example 6 is coweakly ω° -continuous but not weakly ω° -continuous.

Example 8 Let $Y = \{a, b\}$ and $\mathfrak{T} = \{\emptyset, Y, \{a\}\}$. Then the map $f : (\mathbb{R}, \mathfrak{T}_{cocountable}) \to (Y, \mathfrak{T})$ defined by $f(x) = \begin{cases} a & x \in \mathbb{Q} \\ b & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ for all $x \in \mathbb{R}$. Then f is weakly ω^{o} -continuous but not coweakly ω^{o} -continuous.

Theorem 5 A map $f : X \to Y$ is ω° -continuous if and only if f is both weakly and coweakly ω° -continuous.

Proof. ω^{o} -continuity implies weakly and coweakly ω^{o} -continuity is obvious. Conversely, suppose $f: X \to Y$ is both weakly and coweakly ω^{o} -continuous and let $x \in X$ and V be an open subset of Y such that $f(x) \in V$. Then as f is weakly ω^{o} -continuous, there exists an ω^{o} -open subset U of X containing x such that $f(U) \subseteq \overline{V}$. Now $Fr(V) = \overline{V} \setminus V$ and hence $f(x) \notin Fr(V)$. So $x \in U \setminus f^{-1}(Fr(V))$ which is ω^{o} -open in X since f is coweakly ω^{o} -continuous. For every $y \in f(U \setminus f^{-1}(Fr(V)))$, y = f(a) for some $a \in U \setminus f^{-1}(Fr(V))$ and hence $f(a) = y \in f(U) \subseteq \overline{V}$ and $y \notin Fr(V)$. Thus $f(a) = y \notin Fr(V)$ and thus $f(a) \in V$. Therefore, $f(U \setminus f^{-1}(Fr(V))) \subseteq V$ and hence f is ω^{o} -continuous. \Box

Next, we define a new class of open sets that is independent of ω -open class, but together they characterize ω^{o} -open.

Definition 7 For a space (X, \mathfrak{T}) , let $\omega_{\omega}^{o} := \{A \subseteq X : Int_{\mathfrak{T}_{\omega^{o}}}(A) = Int_{\mathfrak{T}_{\omega}}(A)\}$. A is ω_{ω}^{o} -set if $A \in \omega_{\omega}^{o}$.

Clearly every ω^{o} -open set is ω_{ω}^{o} -set, but the converse need not be true.

Example 9 Consider \mathbb{R} with the standard topology $\mathfrak{T}_{s \tan dard}$. Then \mathbb{Q} is an ω_{ω}^{o} -set which is neither ω^{o} -open nor ω -open.

Even an ω -open subset need not be an ω_{ω}^{o} -set.

Example 10 Consider \mathbb{R} with the standard topology $\mathfrak{T}_{s \tan dard}$. Then $\mathbb{R} \setminus \mathbb{Q}$ is an ω -open which is not an ω_{ω}^{o} -set.

Theorem 6 A subset A of a space X is ω° -open if and only if A is ω -open and an ω_{ω}° -set.

Proof. Trivially every ω^{o} -open is ω -open and an ω_{ω}^{o} -set. Conversely, let A be an ω -open set that is ω_{ω}^{o} -set. Then $A = Int_{\mathfrak{T}_{\omega}}(A) = Int_{\mathfrak{T}_{\omega}^{o}}(A)$ and therefore A is ω^{o} -open. \Box

Definition 8 A map $f : X \to Y$ is ω_{ω}^{o} -continuous if the inverse image of every open subset of Y is an ω_{ω}^{o} -set.

Clearly every ω^{o} -continuous map is ω^{o}_{ω} -continuous, but the converse need not be true as not every ω^{o}_{ω} -set is ω^{o} -open. An immediate consequence of Theorem 6 is the following decomposition of ω^{o} -continuity.

Theorem 7 A map $f: X \to Y$ is ω° -continuous if and only if f is ω -continuous and ω°_{ω} -continuous.

4. Decompositions of Continuity

We begin this section by introducing the notion of an ω_X^o -set. We then introduce the notion of ω_X^o -continuity which gives an immediate decomposition of continuity.

Definition 9 For a space (X, \mathfrak{T}) , let $\omega_X^o =: \{A \subseteq X : Int_{\mathfrak{T}_{\omega^o}}(A) = Int_{\mathfrak{T}}(A)\}$. A is an ω_X^o -set if $A \in \omega_X^o$.

The proof of the following result follows immediately from Corollary 1.

Corollary 2 If (X, \mathfrak{T}) is anti locally countable, then ω_X^o contains all ω^o -closed subsets of X.

We remark that, in general, an ω^{o} -closed set need not be an ω_{X}^{o} -set as shown in the next example.

Example 11 Let $X = \{a, b\}$ and $\mathfrak{T} = \{\emptyset, X, \{a\}\}$. Set $A = \{b\}$. Then A is ω° -closed but not an ω_X° -set.

As every open set is ω^{o} -open, every open set is an ω_{X}^{o} -set but the converse need not be true.

Example 12 Consider \mathbb{R} with the standard topology $\mathfrak{T}_{s \tan dard}$. Then \mathbb{Q} is an ω_X^o -set which is not open.

Next, we show that the notions of ω_X^o -set and ω^o -open are independent, but together they characterize open sets.

Example 13 In Example 11, A is ω^{o} -open but not an ω_{X}^{o} -set.

Example 14 In Example 12, \mathbb{Q} is an ω_X^o -set which is not ω^o -open.

Theorem 8 A subset A of a space X is open if and only if A is ω° -open and an ω_X° -set.

Proof. Trivially every open set is ω^o -open and an ω^o_X -set. Conversely, let A be an ω^o -open set that is ω^o_X -set. Then $A = Int_{\mathfrak{T}\omega^o}(A) = Int_{\mathfrak{T}}(A)$ and therefore A is open. \Box

In a similar manner, for a space (X, \mathfrak{T}) let $\omega_X =: \{A \subseteq X : Int_{\mathfrak{T}_{\omega}}(A) = Int_{\mathfrak{T}}(A)\}$ and call a subset A is ω_X -set if $A \in \omega_X$. Then we have the following result.

Theorem 9 A subset A of a space X is open if and only if A is ω -open and an ω_X -set.

Definition 10 A map $f: X \to Y$ is ω_X^o -continuous (respectively, ω_X -continuous) if the inverse image of every open subset of Y is an ω_X^o -set (respectively, ω_X -set).

Clearly every continuous map is ω_X^o -continuous, but the converse need not be true as not every ω_X^o -set is open. An immediate consequence of Theorems 5, 7, 8 and 9 are the following decompositions of continuity, which seem to be new.

Theorem 10 For a map $f : X \to Y$, the following are equivalent:

- (1) f is continuous.
- (2) f is ω^{o} -continuous and ω_{X}^{o} -continuous.
- (3) f is ω -continuous and ω_X^o -continuous.
- (4) f is both weakly ω° -continuous, coweakly ω° -continuous and ω_X° -continuous.
- (5) f is ω -continuous, ω^o_ω -continuous and ω^o_X -continuous.

References

- [1] Al-Hawary, T.A. and Al-Omari, A.: Between Open and ω -Open Sets, Submitted.
- [2] Al-Sa'ad, W.: Study of Some Weak Forms of Continuous Functions, Master's Thesis, Jordan University, 1993.

- [3] Hdeib, H.: ω-Closed Mapping, Revista Colombiana de Mathematics XVI, 65–78, 1982.
- [4] Hdeib, H.: ω -Continuous Functions, Dirasat XVI (2), 136-142, 1989.
- [5] Ganster, M. and Reilly, I.: A Decomposition of Continuity, Acta Math. Hung. 56(3-4), 299-301, 1990.
- [6] Munkres, J.: Topology a First Course, Prentice_Hall inc., New Jersey, 1975.
- [7] Noiri, T.: On Weakly Continuous Mappings, Proc. Amer. Math. Soc., 46, 120-124, 1974.
- [8] Tong, J.: A Decomposition of Continuity, Acta Math. Hung. 48(1-2), 11-15, 1986.
- [9] Tong, J.: On Decompositions of Continuity in Topological Spaces, Acta Math. Hung. 54(1-2), 51-55, 1989.

Talal AL-HAWARY, Ahmad AL-OMARI Department of Mathematics & Statistics Mu'tah University P. O. Box 6, Karak-JORDAN e-mail: drtalal@yahoo.com Received 04.10.2004