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Abstract

We show that the completion of a uniform hermitian p-normed algebra is a

commutative C∗-algebra.
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Preliminaries and Introduction

Let E be a complex algebra. A linear p-norm on E, 0 < p ≤ 1, is a non-negative
function x 7−→ ‖x‖p such that ‖x‖p = 0 if and only if x = 0, ‖x+ y‖p ≤ ‖x‖p + ‖y‖p and

‖λx‖p = |λ|p ‖x‖p, for all x, y in E. By a p-normed algebra
(
E, ‖.‖p

)
, we mean an algebra

E endowed with a linear p-norm ‖.‖p such that ‖xy‖p ≤ ‖x‖p ‖y‖p, for all x, y ∈ E. A
complete p-normed algebra is called a p-Banach algebra. For a unitary p-normed algebra(
E, ‖.‖p

)
, we denote by G(E) the group of invertible elements in E. A p-normed algebra(

E, ‖.‖p
)

is called a Q-algebra if G(E) is open. A uniform p-norm, on E, is an algebra

p-norm ‖.‖p satisfying
∥∥x2
∥∥
p

= ‖x‖2p , for every x ∈ E. A vector involution x 7−→ x∗ ([1])

on a complex algebra E is said to be an algebra involution if (xy)∗ = y∗x∗, for every
x, y ∈ E. An element a of E is said to be hermitian (resp., normal) if a = a∗ (resp.,

a∗a = aa∗). We designate by H(E) the set of hermitian elements of E. Let
(
E, ‖.‖p

)
,
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0 < p ≤ 1, be a p-normed algebra and a ∈ E. The radius of boundedness β of an element
a is defined by β(a) = inf

{
α > 0 :

(
α−1a

)n
, n = 1, 2, ..., is bounded

}
, with inf ∅ = +∞.

The reader can prove that β(a) = lim
n→+∞

‖an‖ 1
np

p , for every a ∈ E. Throughout this

paper, all algebras considered will be associative, complex and with a unit element. We
denote Pták’s function by |.| , that is |a|2 = β(a∗a), for every a ∈ E. The spectrum and
spectral radius of an element a of E will be denoted by SpEa and ρE(a) respectively,
where SpEa = {λ ∈ C : λ− a is not invertible in E} and ρE(a) = sup {|z| : z ∈ SpEa}.

Let
(
E, ‖.‖p

)
, 0 < p ≤ 1, be a uniform p-normed Q-algebra. In this paper, we give

Proposition 2.1 below, in the a p-normed case, as a version of Theorem 1 (ii) of S. J.
Bhatt and D. J. Karia in [2, p. 499]. More precisely, we show that if ‖.‖q, 0 < q ≤ 1, is

a q-norm on E such that
(
E, ‖.‖q

)
is a uniform Q-algebra, then ‖x‖1

q
q = ‖x‖ 1

p
p , for every

x ∈ E. We also prove Proposition 3.1 below, in the non complete p-normed case, a version
of the celebrated Theorem of V. Ptàk [7, p. 267], on the characterization of hermiticity
on Banach algebras with not necessarily continuous-involution, in terms of the (so called

Ptàk) inequality β(a) ≤ |a| = β(a∗a)
1
2 , for every a ∈ E. In the main result (Theorem 3.4)

of this paper, we prove that the completion of a uniform, hermitian p-normed algebra is
a commutative C∗-algebra. A counter-example (see Remark 3.6) shows that hermiticity
is not superfluous.

1. Some General Results

Proposition 1.1 Let
(
E, ‖.‖p

)
, 0 < p ≤ 1, be a p-normed algebra. Then

1. β(a) ≤ ρE(a), for every a ∈ E.

2. If
(
E, ‖.‖p

)
is a Q-algebra, then ρE(a) ≤ ‖a‖ 1

p
p , for every a ∈ E.

Proof. 1. It follows from the equality

β(a) = sup
{
|λ| : λ ∈ Sp

cEpa
}
,

where Sp
cEpa is the spectrum of a in the completion Êp of (E, ‖ · ‖p).

2. The proof is the same as in the normed case. 2
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Proposition 1.2 Let
(
E, ‖.‖p

)
, 0 < p ≤ 1, be a p-normed algebra. The following are

equivalent:

1.
(
E, ‖.‖p

)
is a uniform p-normed algebra.

2. β(a) = ‖a‖ 1
p

p , for every a ∈ E.

Proof. 1. =⇒ 2. By iteration, one has
∥∥a2n

∥∥
p

= ‖a‖
2n

p , for all n. Hence β(a) =

lim
n→+∞

∥∥a2n
∥∥ 1

2np

p
= ‖a‖ 1

p

p , for every a ∈ E.

2. =⇒ 1. Since β(a2) = β(a)2, for every a ∈ E, the reader can prove that 2) implies

the uniformity of the algebra
(
E, ‖.‖p

)
. 2

Let
(
E, ‖.‖p

)
, 0 < p ≤ 1, be a p-normed algebra. Denote by Êp the completion of

the p-normed algebra
(
E, ‖.‖p

)
. The p-norm in Êp will also be designated by ‖.‖p.

Definition 1.3. A p-normed algebra
(
E, ‖.‖p

)
with involution x 7−→ x∗ is said to be

hermitian if Sp
cEp

(h) ⊂ R, for every h ∈ H(E), where Sp
cEp

(h) is the spectrum of h in

∧
Ep.

It is clear that if
(
E, ‖.‖p

)
, 0 < p ≤ 1, is hermitian in the classical sense (the spectrum

of every hermitian element is real), then it is hermitian in the sense of definition 1.3. The
converse is false in general as the following example shows.

Example 1.4. Let B be a radical and involutive Banach algebra in which 0 is the only
nilpotent element (e.g. L1 ([0, 1])). Let x0 6= 0 be a hermitian element of B and let A
be the algebra C [x0] endowed with the induced norm and involution. Then x0 is not an
algebraic element in A. Indeed, in the contrary case, there exists f ∈ C [X], f 6= 0, such
that f(x0) = 0. Write f = Xrg, where g ∈ C [X], and g(0) 6= 0. Then xr0g(x0) = 0. Since
g(0) 6= 0 and B is a radical Banach algebra, it follows that g(x0) is invertible. Whence
xr0 = 0, which is impossible, since 0 is the only nilpotent element of B. Consider the
map ϕ : A −→ XC [X]:

∑n
i=1 aix

i
0 7−→

∑n
i=1 aiX

i. It is easy to verify that ϕ is an
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isomorphism of A into XC [X]. Since the spectrum of every non-zero element of XC [X]
equals to C, it follows that

SpAx = C, for every x ∈ A, x 6= 0.

On the other hand, since B is a radical Banach algebra, xn −→
n

0, for every x ∈ A. Thus

any non zero character of A should be no continuous. This implies that the completion
∧
A, of the normed algebra A, is a radical Banach algebra. Whence

Sp∧
A
x = {0} , for every x ∈

∧
A.

To give a non trivial example, let E be any hermitian Banach algebra. Consider the algera
A×E with usual operations and involution. Then the algebra A×E is hermitian in the
sense of definition 1.3 but not hermitian in the classical sense.

2. Uniform p-Normed Algebras

The structure of a uniform p-normed, 0 < p ≤ 1, Q-algebra is unique as the following
result shows.

Proposition 2.1 Let
(
E, ‖.‖p

)
, 0 < p ≤ 1, be a p-normed Q-algebra. If ‖.‖q, 0 < q ≤ 1,

is a uniform q-norm on E, then

1. ‖x‖ 1
q
q ≤ ‖x‖

1
p
p , for every x ∈ E,

2. If moreover, ‖.‖p is a uniform p-norm and ‖.‖q is a Q-algebra q-norm, then ‖x‖ 1
q
q =

‖x‖ 1
p
p , for every x ∈ E.

Proof. 1. Since
(
E, ‖.‖p

)
, 0 < p ≤ 1, is a p-normed Q-algebra, ρE(x) ≤ ‖x‖ 1

p
p , for

every x ∈ E. On the other hand, denote by Êp the completion of the q-normed algebra(
E, ‖.‖q

)
. Then, for every x ∈ E, we have

‖x‖ 1
q
q = lim

n→+∞

[(∥∥∥x2n
∥∥∥
q

) 1
2n
] 1
q

= sup
{
|λ| : λ ∈ Sp

cEq
x
}
≤ ρE(x).
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Thus ‖x‖ 1
q
q ≤ ‖x‖

1
p
p , for every x ∈ E.

2. By hypothesis, we have ‖x‖ 1
p
p ≤ ρE(x), for every x ∈ E, for the algebra

(
E, ‖.‖p

)
is uniform. Whence, by 1),

‖x‖ 1
p
p = ρE(x), for every x ∈ E.

Now since ‖.‖q is a Q-algebra q-norm on E, ρE(x) ≤ ‖x‖ 1
q
q , for every x ∈ E. This implies

that ‖x‖ 1
p
p ≤ ‖x‖

1
q
q , for every x ∈ E. Hence

‖x‖ 1
p
p = ‖x‖ 1

q
q , for every x ∈ E.

2

An immediate consequence (p = 1) of Proposition 2.1 is the following.

Corollary 2.2 Let (E, ‖.‖) be a Q-normed algebra. If ‖.‖′ is a uniform norm on E, then

1. ‖x‖′ ≤ ‖x‖, for every x ∈ E,

2. If moreover, ‖.‖ is a uniform norm and ‖.‖′ is a Q-algebra norm, then ‖x‖′ = ‖x‖,
for every x ∈ E.

3. Uniform Hermitian p-Normed Algebras

In [7, p. 267], V. Ptàk has proved that ρE(a) ≤ ρE(a∗a)
1
2 , for every a ∈ E, is the

fundamental inequality in the theory of hermitian Banach algebras. In the non complete
p-normed case, an analog of the preceding inequality is the following.

Proposition 3.1 Let
(
E, ‖.‖p

)
, 0 < p ≤ 1 be a p-normed algebra with involution

x 7−→ x∗. Then the following conditions are equivalent:

1. E is hermitian.

2. β(a) ≤ |a|, for every a ∈ E.
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Proof. 1. =⇒ 2. The inequality of 2. is equivalent the following implication

(λ ∈ C, |λ| > |x|) =⇒ λ− x is invertible in Êp. (3.1)

It suffices, however, to prove the following weaker implication:

(λ ∈ C, |λ| > |x|) =⇒ λ− x has a left inverse in Êp. (3.2)

Indeed, since

|x|2 = β(x∗x) = sup
{
|z| : z ∈ Sp

cEp
(x∗x)

}
= sup

{
|z| : z ∈ Sp

cEp
(xx∗)

}
= β(xx∗) = |x∗|2 ,

the assumption |λ| > |x| gives
∣∣λ∣∣ > |x∗| so that λ − x∗ has a left inverse in Êp. Hence

both (λ − x) and (λ− x)∗ have left-inverse in Êp. Thus λ − x has an inverse in Êp. Let
us now show (3.2). We have(

λ + x∗
)

(λ − x) = |λ|2 − x∗x+ λx∗ − λx

=
(
|λ|2 − |x|2

)
+
(
|x|2 − x∗x

)
+ i
(
iλx− iλx∗

)
.

Since |x|2 − x∗x ≥ 0 and iλx− iλx∗ ∈ H(E), it follows that

Sp
cEp

[(
|x|2 − x∗x

)
+ i
(
iλx− iλx∗

)]
⊂ R+ + iR

and

ReSp
cEp

[(
λ + x∗

)
(λ− x)

]
≥ |λ|2 − |x|2 > 0,

so that
(
λ + x∗

)
(λ − x) is invertible in Êp, hence also (λ − x) is invertible in Êp.

2. =⇒ 1. Suppose that there exists a ∈ H(E) and γ + iδ ∈ Sp
cEp
a, where γ, δ ∈ R,

δ 6= 0. Then, for every real t, we have

γ + iδ + it ∈ Sp
cEp

(a+ it) and β (a+ it)2 ≥ γ2 + (δ + t)2
.

On the other hand

|a+ it|2 = β [(a− it) (a+ it)] = β
(
a2 + t2

)
≤ β(a2) + t2.

226



EL KINANI

Thus

(δ + t)2 ≤ β (a+ it)2 ≤ |a+ it|2 ≤ β(a2) + t2.

So that 2δt + δ2 ≤ β(a)2 for each real number t. This is impossible unless δ = 0. Hence
Sp

cEp
a ⊂ R. 2

It is known that every uniform normed algebra is automatically semi-simple and
commutative (see [6], p. 275 for any uniform lmc algebra). This result remain valid
for p-normed algebras, 0 < p ≤ 1, as the following result shows.

Lemma 3.2 Let
(
E, ‖.‖p

)
, 0 < p ≤ 1 be a p-normed algebra such that

∥∥a2
∥∥
p

= ‖a‖2p for every a ∈ E, (3.3)

then E is commutative and semi-simple.

Proof. Observe first that, from hypothesis, one has

‖a‖ 1
p
p ≤ ρE(a), for every a ∈ E.

And since the Jacobson’s radical of E is contained in the set of quasi-nilpotent elements
of E, we deduce that the algebra E is semi-simple. It remains to show that the algebra
E is commutative. Let Êp be the completion of E with respect to the p-norm ‖.‖p. The

p-norm in Êp will also be designated by ‖.‖p. Then we have∥∥a2
∥∥
p

= ‖a‖2p for every a ∈ Êp. (3.4)

In the p-Banach algebra
(
Êp, ‖.‖p

)
, the spectral radius ρ

bEp
satisfies, for every a ∈ Êp,

ρ
bEp

(a)p = lim
n

∥∥∥a2n
∥∥∥2−n

p
= ‖a‖p , (3.5)

which yields in particular that Êp is semi-simple. Now we will show that the algebra Êp
is commutative. By the previous relation, we have

‖ab‖p = ‖ba‖p for every a ∈
(
Êp

)1

= Êp ⊕ C and b ∈ Êp. (3.6)
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For any x ∈ Êp, put

‖x‖ = inf
n∑
i=1

‖xi‖
1
p
p ,

where the infimum is taken over all decompositions of x =
∑n

i=1 xi, xi ∈ Êp. By [8, p.

262], ‖.‖ is a submultiplicative semi-norm on Êp such that

ρ
bEp

(x) ≤ ‖x‖ ≤ ‖x‖ 1
p
p , for every x ∈ Êp. (3.7)

It follows from (3.6) and (3.7), that

‖xy‖ ≤ ‖yx‖ 1
p
p , for every x ∈

(
Êp

)1

and y ∈ Êp. (3.8)

If Êp is not unitary, consider its unitization
(
Êp

)1

. For a, b ∈ Êp, consider the map f

defined, on C, by

f(λ) = (exp(λa)) b exp(−λa).

One checks that, for any ϕ in the topological dual of
(
Êp, ‖.‖

)
, ϕ ◦ f is holomorphic.

It is also bounded by (3.8). By Liouville’s theorem ϕ ◦ f is constant, and so the coeffi-
cient of λ in the power series expansion of ϕ ◦ f is zero, i.e., ϕ (ab− ba) = 0. Whence

ab − ba ∈ RadÊp, by Hahn-Banach theorem and (3.7). But Êp is semi-simple, hence

ab = ba. Whence the commutativity of
∧
Ep. It follows that E is commutative too. This

completes the proof. 2

Remark 3.3 In [2, p. 499], S. J. Bhatt and D. J. Karia have proved that a seminorm
with square property on a commutative algebra is automatically submultiplicative. In [4,
p. 52], H. V. Dedania has proved the same result in the noncommutative case. In [5], we
extend this result to the p-seminorm case.

We will prove the following theorem.
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Theorem 3.4 (The main result) Let
(
E, ‖.‖p

)
, 0 < p ≤ 1 be a hermitian p-normed

algebra such that ∥∥a2
∥∥
p

= ‖a‖2p for every a ∈ E,

then the completion of
(
E, ‖.‖p

)
is a commutative C∗-algebra.

Proof. By Lemma 3.2, the algebra
(
E, ‖.‖p

)
is commutative and semi-simple. It

follows that
(
Êp, ‖.‖p

)
is commutative and semi-simple too and hence ‖.‖ 1

p
p is an algebra

norm. It remains to show that
(
Êp, ‖.‖p

)
is a C∗-algebra. Since Êp is semi-simple, the

involution x 7−→ x∗ is continuous. Let α > 0 such that

‖x∗‖p ≤ α ‖x‖p , for every x ∈ Êp.

Now since E is hermitian, by proposition 2.1, we have

β(a) ≤ |a| , for every a ∈ E.

But

|a|2 = β(a∗a) = ρE(a∗a) ≤ ‖a∗a‖ 1
p
p ≤ α ‖a‖

2
p , for every a ∈ E.

Hence

|a| ≤ α 1
2p ‖a‖ 1

p
p , for every a ∈ E.

and

β(a) ≤ α 1
2p ‖a‖ 1

p
p , for evrey a ∈ E.

Whence the continuity of β and |.|. This implies that the inequality β(a) ≤ |a|, for every

a ∈ E, can be extended to the completion Êp and we have

β(a) ≤ |a| , for every a ∈
∧
Ep.

So, it follows from Proposition 2.1 that,
(
Êp, ‖.‖

1
p
p

)
is a hermitian Banach algebra. Now,

since the involution is continuous, the elements exp(ih) are normal. So, by (4), we have

‖exp(ih)‖ 1
p
p = ρ

bEp
(exp(ih)) = 1
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for every hermitian element h of Êp. Finally, by [7, p. 284],
(
Êp, ‖.‖

1
p
p

)
is a C∗-algebra.

This completes the proof. 2

An immediate consequence (p = 1) of Theorem 3.4. is the following corollary

Corollary 3.5 Let (E, ‖.‖) be a hermitian normed algebra such that∥∥a2
∥∥ = ‖a‖2 for every a ∈ E.

Then the completion of (E, ‖.‖) is a commutative C∗-algebra.

Remark 3.6 One may ask if the hermiticity of the algebra E, in theorem 3.3, can be
omitted. The answer is negative, as the following example shows.

Let E = C × C with pointwise addition and product. Define scalar multiplication,
involution and p-norm, 0 < p ≤ 1, in E by

λ (z1, z2) =
(
λz1, λz2

)
(z1, z2)∗ = (z2, z1)

‖(z1, z2)‖p = max (|z1|p , |z2|p) .

It is easy to verify that
(
E, ‖.‖p

)
, 0 < p ≤ 1, is a commutative p-Banach algebra with

involution but
(
E, ‖.‖ 1

p
p

)
is not a C∗-algebra. The algebra E is not hermitian. Indeed

let h = (i, i) be an element of E. It is clear that h ∈ H(E) and SpEh = {i,−i} is not
contained in R.
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