On the Power Subgroups of the Extended Modular Group $\bar{\Gamma}$

(Corrigendum - Turk. J. Math. 28, 143-151, 2004)

Recep Şahin, Sebahattin İkikarde§, Özden Koruoğlu

In [1], we proved that, if N is a non-trivial normal subgroup of $\bar{\Gamma}$ different from $\bar{\Gamma}, \Gamma$, Γ^{2}, Γ^{3}, then N is a free group. When we were doing this proof, we used the fact that an element of order 2 in $\bar{\Gamma}$ is conjugate to T or to R and an element of order 3 in $\bar{\Gamma}$ is conjugate to a power of S.

But while determining some low indexed normal subgroups of the extended modular group, we found two non-free normal subgroups of the extended modular group $\bar{\Gamma}$ having index 2 (except for the modular group Γ) and a non-free normal subgroup of the extended modular group having index 6 (except for the subgroup Γ^{3}). Also, when we were investigating conjugacy classes of finite order elements in $\bar{\Gamma}$ (see [2]), we determined a conjugacy class of reflection with representative $T R$, except the other conjugacy class of reflection with representative R. Thus we want to restate results related free normal subgroups of the extended modular group $\bar{\Gamma}$, specificially (the lemma 3.2, theorem 3.3 and theorem 3.4).

Before giving the main theorem we need the following lemmas.

Lemma 3.1 $\bar{\Gamma}$ has no normal subgroups of index 3.
Suppose $N \triangleleft \bar{\Gamma}$ with $|\bar{\Gamma}: N|=3$. Let $A=\bar{\Gamma} / N$ and so $|A|=3$ and thus A is abelian. Therefore $N \supset \bar{\Gamma}^{\prime}$, which is impossible since $\left|\bar{\Gamma}: \bar{\Gamma}^{\prime}\right|=4$.

Lemma 3.2 There are exactly 3 normal subgroups of index 2 in $\bar{\Gamma}$. Explicitly these are:
$\bar{\Gamma}_{1}=\Gamma=<T, S\left|T^{2}=S^{3}=I>\cong C_{2} * C_{3}, \bar{\Gamma}_{2}=<R, S, T S T\right| R^{2}=S^{3}=(T S T)^{3}=$ $(R S)^{2}=(R T S T)^{2}=I>\cong D_{3} *_{\mathbb{Z}_{2}} D_{3}$, and $\bar{\Gamma}_{3}=<T R, S \mid(T R)^{2}=S^{3}=I>\cong C_{2} * C_{3}$.
Proof. Let $N \triangleleft \bar{\Gamma}$ with $|\bar{\Gamma}: N|=2$. Since $\bar{\Gamma} / N$ is abelian we have $\bar{\Gamma} \supset N \supset \bar{\Gamma}^{\prime}$.
Now $\bar{\Gamma} / \bar{\Gamma}^{\prime}=C_{2} \times C_{2}=D_{2}$, a Klein 4 -group. This has exactly 3 normal subgroups of index 2 . Therefore these pull back to exactly 3 normal subgroups of index 2 in $\bar{\Gamma}$ containing $\bar{\Gamma}^{\prime}$. Since N contains $\bar{\Gamma}^{\prime}, N$ must be one of $\bar{\Gamma}_{1}, \bar{\Gamma}_{2}$ and $\bar{\Gamma}_{3}$.

Lemma 3.3 There are exactly 2 normal subgroups of index 6 in $\bar{\Gamma}$. Explicity these are $\Gamma^{3}=<T, S T S^{2}, S^{2} T S \mid T^{2}=\left(S T S^{2}\right)^{2}=\left(S^{2} T S\right)^{2}=I>\cong C_{2} * C_{2} * C_{2}$, and $\bar{\Gamma}_{4}=<T R, R S T S, R S^{2} T S^{2} \mid(T R)^{2}=(R S T S)^{2}=\left(R S^{2} T S^{2}\right)^{2}=I>\cong C_{2} * C_{2} * C_{2}$.

Lemma 3.4 Let N be a non-trivial normal subgroup of finite index in $\bar{\Gamma}$. Then N is free if and only if it contains no elements of finite order.
Proof. Please see proof of the Lemma 3.1 in [1].

Lemma 3.5 The only normal subgroups of finite index in $\bar{\Gamma}$ containing elements of finite order are

$$
\bar{\Gamma}, \bar{\Gamma}_{1}=\Gamma, \bar{\Gamma}_{2}, \bar{\Gamma}_{3}, \Gamma^{2}, \Gamma^{3} \text { and } \bar{\Gamma}_{4}
$$

Proof. Let N be a normal subgroup of finite index in $\bar{\Gamma}$ containing an element of finite order. Then N contains an element of order 2 or an element of order 3 , or two elements of order 2 or two elements of order 2 and 3 , or three elements of with two elements are of order 2 and an element is of order 3. From [2], we know that an element of order 2 in $\bar{\Gamma}$ is conjugate to T or to R or to $T R$ and an element of order 3 in $\bar{\Gamma}$ is conjugate to a power of S. Therefore if a normal subgroup N contains an element of finite order, then it contains T or R or $T R$ or S. Therefore there are nine cases:
(i) N contains T, R and S (clearly $T R$). Then $N=\bar{\Gamma}$.
(ii) N contains T and S, but not R and $T R$. Then $N \neq \bar{\Gamma}$ and $\Gamma \subset N$, by (1) and the fact that N is normal. Since $|\bar{\Gamma}: \Gamma|=2$, it follows that $N=\Gamma$.
(iii) N contains R and S, but not T and $T R$. Then $N \neq \bar{\Gamma}$ and $\bar{\Gamma}_{2} \subset N$, and the fact that N is normal. Since $\left|\bar{\Gamma}: \bar{\Gamma}_{2}\right|=2$, it follows that $N=\bar{\Gamma}_{2}$.
(iv) N contains $T R$ and S, but not T and R. Then $N \neq \bar{\Gamma}$ and $\bar{\Gamma}_{3} \subset N$, and the fact that N is normal. Since $\left|\bar{\Gamma}: \bar{\Gamma}_{3}\right|=2$, it follows that $N=\bar{\Gamma}_{3}$.

ŞAhin, íkikardeş, KORUOĞLu

(v) N contains T and R, but not S. This is impossible by (ii) and (iii).
(vi) N contains T but not $R, T R$ and S. Then $N \neq \bar{\Gamma}, \Gamma, \bar{\Gamma}_{2}, \bar{\Gamma}_{3}$, and $\Gamma^{3} \subset N$, as N is normal. Since $\left|\bar{\Gamma}: \Gamma^{3}\right|=6$ and from lemma 3.3, we have $N=\Gamma^{3}$.
(vii) N contains S but not T and R. Then $N \neq \bar{\Gamma}, \Gamma, \bar{\Gamma}_{2}, \bar{\Gamma}_{3}$ and $\Gamma^{2} \subset N$, by (2) and the fact that N is normal. Since $\left|\bar{\Gamma}: \Gamma^{2}\right|=4$, it follows that $N=\Gamma^{2}$.
(viii) N contains $T R$ but not T, R and S. Then $N \neq \bar{\Gamma}, \Gamma, \bar{\Gamma}_{2}, \bar{\Gamma}_{3}$, and $\bar{\Gamma}_{4} \subset N$, as N is normal. Since $\left|\bar{\Gamma}: \bar{\Gamma}_{4}\right|=6$ and from lemma 3.3, we have $N=\bar{\Gamma}_{4}$.
(ix) N contains R but not $T, T R$ and S. This is impossible by (iii).

Theorem 3.5 Let N be a non-trivial normal subgroup of finite index in $\bar{\Gamma}$ different from $\bar{\Gamma}, \Gamma, \bar{\Gamma}_{2}, \bar{\Gamma}_{3}, \Gamma^{2}, \Gamma^{3}$ and $\bar{\Gamma}_{4}$. Then N is a free group.

Proof. It can be easily seen as an immediate consequence of the lemmas.

Theorem 3.6 Let N be a normal subgroup of finite index in $\bar{\Gamma}$ different from $\bar{\Gamma}, \Gamma, \bar{\Gamma}_{2}$, $\bar{\Gamma}_{3}, \Gamma^{2}, \Gamma^{3}$ and $\bar{\Gamma}_{4}$ such that $|\bar{\Gamma}: N|=\mu<\infty$. Then μ is divisible by 12.
Proof. Please see proof of Theorem 3.4 in [1].

References

[1] Sahin, R., İkikardes, S. and Koruoğlu, Ö.: On the power subgroups of the extended modular group $\bar{\Gamma}$, Tr. J. of Math., 29, 143-151, (2004).
[2] Yılmaz Özgür, N. and Sahin, R.: On the extended Hecke groups $\bar{H}\left(\lambda_{q}\right)$, Tr. J. of Math., 27, 473-480, (2003).

Recep ŞAHİN, Sebahattin İKİKARDES,

