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Algebras
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Abstract

In this paper we first review the definitions of crossed module [10], pullback

crossed module and cat1-object in the category of commutative algebras. We then

describe a certain pullback of cat1- commutative algebras.
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1. Introduction

The terms of crossed modules over groups and algebras, Cat1-groups and algebras are
very useful in Category theory. Interest in these subjects has been heightened by their
exploration via computer. A good example is the program GAP [8] (Groups, Algorithm
and Programming)∗ which is used to calculate crossed modules and cat1-groups over
groups. The applications of crossed modules and cat1-groups were introduced by Alp and
Wensley [3] as a GAP share package known as XMod†. Crossed modules were introduced
by J. H. C. Whitehead in [10]. Loday defined cat1-groups and showed that the category
of crossed modules is equivalent to the category of cat1-groups in [7]. Later, Brown and
Wensley defined Pullback crossed module over groups in [5]. Using the equivalence of
these two categories, Pullback cat1-group was defined by Alp [1]. Crossed modules and
Pullback crossed module over algebra were presented in [9]. Pullback cat1-commutative
algebra is presented in this paper.
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It is hoped this paper will give good motivation for future studies into crossed square
and induced crossed module of commutative algebras. The crossed module of commu-
tative algebra and its pullback will constitute a square which will be a crossed square.
The defining action of commutative algebras will play very important role in the crossed
square case.

2. Crossed modules and Cat1-commutative Algebra

Fix a commutative ring A (with unit). Recall that a commutative algebra over A is
an A-module M with a bilinear map M × M → M, (m, m′) �→ mm′ satisfying

mm′ = m′m

(mm′)m′′ = m(m′m′′)

for all m, m′, m′′ ∈ M. We shall assume all commutative algebras to be over A [6].
Let M and N be commutative algebras. A map M × N → N, (m, n) �→ mn is a

commutative action if and only if

COMACT1: k(mn) = (km)n = m(kn)
COMACT2: m(n+ n′) = mn +mn′

COMACT3: (m+m′)n = mn+ m′
n

COMACT4: m(nn′) = (mn)n′ = n(mn′)
COMACT5: (mm′)n = m(m

′
n)

for all k ∈ k, m, m′ ∈ M, n, n′ ∈ N.

Let M be a k-algebra with identity. A crossed module of commutative algebras is
an M -algebra N, together with a commutative action of M on N and an M -algebra
morphism ∂ : N → M such that for all n ∈ N, m ∈ M

COMCM1: ∂(mn) = m(∂n)
COMCM2: (∂n)n′ = nn′.

The standard examples of crossed modules are [2] and [9]:

1. Let I be any ideal of a k algebra M. Consider an inclusion map ι : I → M is a
crossed module.
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2. Let R be an M -module. It can be considered as an M -algebra with zero multipli-
cation, and then 0 : R → M is a crossed M -module.

3. Assume given a simplicial algebra E and a simplicial ideal I. The inclusion ι : I → E

induces a map ∂ : π0(I)→ π0(E) and E acting on I by multiplication an action of
π0(E) on π0(I), so ∂ is a crossed module.

4. Any ideal I in P gives an inclusion map, inc : I → P, which is a crossed module.
Conversely given an arbitrary crossed P -module ∂ : M → P, one easily sees that
the Peiffer identity implies that ∂P is an ideal in R.

5. Given any morphism θ : L → C of P -modules we can form the semidirect product
P � C with its usual multiplication

(p, c)(p′, c′) = (pp′, pc′ + p′c),

where cc′ = 0 by zero multiplication. Giving L the zero multiplication and a P �C

module structure via the projection from P � C onto P, one obtains a crossed
(P � C)-module

θ̂ : L → P � C, θ̂(l) = (0, θ(l)).

A morphism between two crossed modules from (∂ : N → M) and (∂′ : N ′ → M ′) is a
pair 〈θ, φ〉 of k-algebra morphisms such that θ(mn) = φ(m)θ(n) and ∂′θ(n) = φ∂(n).

Given a crossed M -module ∂ : N → M we form the k−algebra R = M � N, again
the semidirect product algebra with multiplication

(m, n)(m′, n′) = (mm′, mn′ +m′n+ nn′).

There are two morphism t, s : R → M given by t(m, r) = m and s(m, r) = m+ ∂r. There
is also the obvious morphism [9] e : M → R, e(m) = (m, 0). These morphisms satisfy the
axiom of cat1-algebra:

COMCAT1: tes = s and set = t;
COMCAT2: ker t ker s = 0.

3. Pullback Crossed Module of Commutative Algebras

Pullback crossed module of commutative algebra was presented in [9]. In that study
the verification of crossed modules axioms were not proven. We will re-organize pullback
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crossed modules presentation here. Let N, M be commutative algebras. Let X =
(∂ : N → M) be a crossed module of commutative algebras and ι : Q → M be a
homomorphism. Then

ι∗∗N ��

∂∗∗

��

N

∂

��
Q ι

�� M

ι∗∗X = (∂∗∗ : ι∗∗N → Q), is the pullback crossed module of commutative algebras by ι,

where ι∗∗N = {(q, n) ∈ Q×N | ιq = ∂n, q ∈ Q, n ∈ N} and ∂∗∗(q, n) = q. The action of
Q on ι∗∗N is given by q(q1, n) = (qq1,

ιqn).

Proposition 3.1 ι∗∗N is a commutative algebra in which scalar multiplication k(q, n) =
(kq, kn), addition is (q1, n1)+(q2, n2) = (q1+q2, n1+n2) and multiplication is (q1, n1)(q2, n2) =
(q1q2, n1n2).

Proposition 3.2 The map is a commutative algebra action of Q on ι∗∗N.

Proof. To complete proof we must show that the conditions of commutative algebra
action are satisfied.

COMACT1:

k(q(q1, n1) = k(qq1,
ιqn1)

= ((kq)q1, k(ιqn1))

= (kqq1,
kιqn1)

= (qkq1,
ιqkn1)

= q(kq1, kn1).

COMACT2:
q((q1, n1) + (q2, n2)) = q(q1 + q2, n1 + n2)

= (q(q1 + q2), ιq(n1 + n2))

= (qq1 + qq2,
ιqn1 + ιqn2)

= (qq1,
ιqn1) + (qq2,

ιqn2)

= q(q1, n1) + q(q2, n2).
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COMACT3:

(q1+q2)(q, n) = (q1+q2q, ι(q1+q2)n)

= (q1q + q2q,
ιq1+ιq2n)

= (q1q,
ιq1n) + (q2q,

ιq2n)

= q1(q, n) + q2 (q, n).

COMACT4:

q(q1, n1)(q2, n2) = q(q1q2, n1n2)

= (qq1q2,
ιq(n1n2))

= (qq1q2, nn1n2)

= (q(q1, n1))(q2, n2).

And since multiplication is commutative qq1 = q1q, then

(qq1q2, nn1n2) = (q1qq2, n1nn2)

= (q1, n1)q(q2, n2).

Finally,
COMACT5:

q1q2(q, n) = (q1q2q,
ιq1q2n2)

= q1 (q2q,
ιq2q)

= q1 (q2(q, n)).

�

Theorem 3.3 The homomorphism ∂∗∗ : ι∗∗N → Q has the structure of a crossed
module.

Proof. Boundary homomorphism ∂∗∗(q, n) = q and commutative algebra action of Q

on ι∗∗N, q(q1, n1) = (qq1,
ιqn1) satisfy the COMCM1 and COMCM2 conditions:

COMCM1:

∂∗∗(q(q1, n1)) = ∂∗∗(qq1,
ιqn1)

= qq1

= q∂∗∗(q1, n1)
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COMCM2:

∂∗∗(q,n)(q1, n1) = q(q1, n1)

= (qq1,
ιqn1)

= (qq1, nn1) since ιqn1 = ∂nn1

= (q, n)(q1, n1)

Thus the axioms of crossed module are satisfied. �

4. Pullback Cat1-Commutative Algebra

A Pullback Cat1-commutative Algebra is defined as

ι∗∗R

t∗∗

��

π

���
��

��
��

��
��

��
��

��
s∗∗ �� Q

����
e∗∗

��

ι

���
��

��
��

��
��

��
��

��

Q

ι

���
��

��
��

��
��

��
��

��

��

��

e∗∗

��

R
s ��

t

��

M

����
e

��

M

��

��

e

��

Let CL = (e; t, s : R → M) be a cat1-commutative algebra and let ι : Q → M be a
homomorphism. Define ι∗∗R = (e∗∗; t∗∗, s∗∗ : ι∗∗R → Q) to be the pullback of R, where

ι∗∗R = {(q1, r, q2) ∈ Q × R × Q | ιq1 = tr, ιq2 = sr},

t∗∗(q1, r, q2) = q1, s∗∗(q1, r, q2) = q2 and e∗∗(q) = (q, eιq, q). Multiplication in ι∗∗R is
componentwise. Let’s show that COMCAT1 and COMCAT2 are satisfied:
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COMCAT1:

t∗∗e∗∗s∗∗(q1, r, q2) = t∗∗e∗∗(q2) = t∗∗(q2, eιq2, q2)

= q2

= s∗∗(q1, r, q2);

s∗∗e∗∗t∗∗(q1, r, q2) = s∗∗e∗∗(q1) = s∗∗(q1, eιq1, q1)

= q1

= t∗∗(q1, r, q2).

To prove COMCAT2, suppose a = (q′1, r1, q1) ∈ ker t∗∗, b = (q2, r2, q
′
2) ∈ ker s∗∗.

Then q′1 = q′2 = 0; so, by the definition of ι∗∗, we have r1 ∈ ker t, r2 ∈ ker s. Then
[a, b] = (0, [r1, r2], 0) = (0, 0G, 0) and [ab] = 0 so that COMCAT2 is satisfied. It is easily
verified that t∗∗ and s∗∗ are homomorphisms.

Proposition 4.1 If ι∗∗X is the pullback of the crossed module X over ι : Q → M

and if R,D are the cat1-commutative algebras obtained from X , ι∗∗X , respectively, then
D ∼= ι∗∗R.

Proof.

ι∗∗N ��

∂∗∗

��

N

∂

��
Q ι

�� R.

Starting with the pullback crossed module ι∗∗X = (∂• : ι∗∗N → Q), the source
algebra of D is defined as the semi-direct product Q � ι∗∗N.

Q � ι∗∗N

��

s•t•

��

�� M � N

��

st

��
Q ι

�� M
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The target, source and embedding of D are respectively given by

t•(q′, (q, n)) = q′

s•(q′, (q, n)) = q′∂∗∗(q, n)

= q′q

e•(q) = (q, (1Q, 1N)).

We then define an isomorphism of cat1-commutative algebra (ψ, idQ) : D → ι∗∗C as

Q � ι∗∗N

��

s•t•

��

ψ �� ι∗∗(M � N)

��

s∗∗t∗∗

��
Q

id
��

��

��

e•

��

Q
�	

��

e∗∗

��

where

ψ(q′, (q, n)) = (q′, (ιq′, n), q′q).

First note that ψ(q′, (q, n)) ∈ ι∗∗(M � N) because

t(ιq′, n) = ιq′

and

s(ιq′, n) = (ιq′)(∂n) = (ιq′)(ιq) = ι(q′q).

We verify that ψ is a homomorphism

ψ((q′1, (q1, n1))(q′2, (q2, n2)) = ψ(q′1q
′
2, (q

q′
2

1 q2, n
ιq′

2
1 n2))

= (q′1q
′
2, (ι(q

′
1q

′
2), n

ιq′
2

1 n2), q′1q1q
′
2q2)

ψ(q′1, (q1, n1))ψ(q′2, (q2, n2)) = (q′1, (ιq
′
1, n1), q′1q1)(q′2, (ιq

′
2, n2), q′2q2)

= (q′1q
′
2, (ιq

′
1, n1)(ιq′2, n2), q′1q1q

′
2q2)

= (q′1q
′
2, ((ιq

′
1)(ιq

′
2), n

ιq′
2

1 n2), q′1q1q
′
2q2).
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The inverse of ψ is given by ψ−1(q1, (m, n), q2) = (q1, (q−1
1 q2, n)).

Then

t∗∗ψ(q′, (q, n)) = t∗∗(q′, (ιq′, n), q′q)

= q′

= t•(q′, (q, n)),

s∗∗ψ(q′, (q, n)) = s∗∗(q′, (ιq′, n), q′q)

= q′q

= s•(q′, (q, n)),

ψe•(q) = ψ(q, (1Q, 1N))

= (q, (ιq, 1n), q)

= e∗∗(q),

so the diagram commutes and the proof is complete. �

The universal property of induced cat1-commutative algebra is the following. Let C =
(e; t, s : R → M) be a cat1-commutative algebra and let ι∗∗C = (e∗∗; t∗∗, s∗∗ : ι∗∗N → Q)
be induced by the homomorphism ι : Q → M as given by the diagram

H

��

t′
s′

��

ψ

		
ψ′




ι∗∗N

��
t∗∗s∗∗

��

π �� N

��
ts

��
Q ι

�� M.

The pair (π, ι) is a morphism of cat1-commutative algebra such that, for any cat1-
commutative algebra H = (e′; t′, s′ : H → Q) and any morphism of cat1-commutative
algebra (ψ, ι) : C → H, there is a unique morphism ((ψ′, 1) : ι∗∗C → H)) of cat1-
commutative algebra such that πψ′ = ψ.
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