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The Restriction and the Continuity Properties of

Potentials Depending on A-distance

M. Zeki Sarikaya, Hiseyin Yildirim

Abstract

In this study we establish theorems on the restriction and continuity of the

generalized Riesz potentials with the non-isotropic kernels depending on A-distance.
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1. Introduction

It is well known that the classical Riesz Potentials I, = ¢ * |2|*~™ are bounded
operators from L, (R™) to L, (R™) for é = 11—7 -2 0<a<n, 1<p<qg<ooll]. For
these potentials, Y. Mizuta showed continuity and restriction properties [2],[3]. In this
article we define the non-isotropic generalized Riesz potential generated by A-distance and

study the restriction and continuity properties of these potentials. The generalized Riesz
1
2
Here particular importance of the non-isotropic kernel is that it doesn’t have the classical

potential generated by A-distance is the classical Riesz potential for \; = 5, i =1,2,...,n.

triangle inequality.

2. Preliminaries

The A-distance between points x = (21, ...,2,) and y = (y1, ..., yn) is defined by the

following formula given in [4]:
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1 1 1
|z —ylx = (lzr — 1> +lze — 922 + o+ |zn —yn| ™),

where A = (A1, A, .., An), M >0,k=1,2,....,n,|A| = A1 + A2+ ... + \,. Note that this

distance has the following properties of homogeneity for any positive ¢:

L E
(|t)‘1x1| Mo+ [, *") = ¢ lz|,, t>0.

This equality gives us that the non-isotropic A-distance has order of homogeneous function

%l. So the non-isotropic A-distance has the following properties:

1 |z|,=0s2z=46, 6=(0,0,...,0);
N
2. ||y =1t Jaly;

1 [A]
14— YA
( +>‘min) v

3. Jr+yly, <2 " (lzly + lyly)-

Here, we consider A-spherical coordinates by the following formulas

2)\17 . )2)\71.

x1 = (pcos 1) Xy = (psin p1sings... sin g, 1

2[A
G

. It can be seen that the Jacobian Jy(p, ¢) of this transfor-

We obtain that |z|y = p
mation is Jy(p,©) = p?MNT1Qx(p), where Qy(p) is the bounded function, which only
depends on angles 1, @2, ..., pn—1. It is clear that, if \; = %, i =1,...,n, the A-distance
is Euclidean distance.

Now for 0 < a < n, we shall consider the generalized Riesz potential with the non-

isotropic kernel depending on A-distance

Ioxf(z) Z/Iw—yli’_"f(y)dy» (2.1)
]Rn

1
2
1,...,n. For a positive r and any = € R"™, we denote the open A-ball By (z,r) with radius

where 2 € R™. Equality (2.1) is a well-known classical Riesz potential for \; = i =

r and a center x as

By(x,r)={y:|ly—x[, <r }.
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In this article we need the following Theorems given in [3].

Theorem 2.1 (Young’s inequality): Let 1 < p,q < oo and % = -+ é —-1>0 I

feL,(R") and g € L,(R™), then
P q

1 *gll, < 1711, llgllg -

Theorem 2.2 (Hardy’s inequalities): If f is a nonnegative measurable function on
Rt and r > 0, then

1

{?(:f(y)dyfw‘r‘ldw}% < (Zo[yf(y)]py‘r‘ldy>p

3=

and

1

(:fo[yf(y)]py“ldy> '

IN
aIE

(1 (From)

There are various ways of proving restriction and continuity of classical Riesz poten-
tials [3]. In this paper we study the restriction and continuity properties of generalized
Riesz potentials with the non-isotropic kernel depending on A-distance for functions in
L,.

3. Restriction properties

Our main aim is to give a proof of restriction of I, .

Theorem 3.1 Let 0 < %(a —1)< =. Then

1
P

=

Ia, fovxl _Ia, fovyl i
Lo JOZ) = L dTOSIE gy | < ar

Pt G ey P
Yix

n—1 |$/_y/|>\<1 |LL'

where x € R"™ and x = (z1, ..., xn) = (x1,2'), &' = (z2, ..., Tp).

In order to prove the Theorem 3.1, we need the following Lemmas.
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Lemma 3.1 Let 0 < aw < n. Then there is the following inequality.

a—n a—n a—n—1

[z —ylx " =y =27 < Mrle -yl

where y € R™ — By(x,2r) and M is a constant independent of x and y.

Proof. Let r = |z —2|,, [t —yl, = a, [y—2], = band a # 0, b # 0. Thus
0 <a—-r <b<a+r Now we consider f(t) = -, where t € [a,b] (or t € [b,a]),
n —a = [ > 0. Then function f(¢) is continuous and continuously differentiable in [a, b]

(or [b,al]). Therefore, there is the following equality from Lagrange Theorem, that
0) = f(@) = |1 ©|b—al &eab] or €€ ball.
Here, |b — a| < r we have the inequality

.

11
b3 af

1
~|-ogm

1

If a < £ < b, then we have

a—n—1

r < Mrlx—yly

b af

1 1
‘ <8 5

Ifb<é<a, £€(a—rya),=a—0r 0<6<1,then we have

1 o
=f———zr < Mrl|z -yl !

(a — Or)s+1

11
b af

The proof is completed. O

Lemma 3.2 If %a < 1, then
Nja—n ’ ﬁia—l
/|(21»2)|A dz' < M |z |07

The proof of this Lemma can be easily seen with change of variable

A2 An

_ A1 _ A
Z2 =1loz{",...; 2n = tnz

and using \-spherical coordinates in the integral.
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Lemma 3.3 If 2L(a—1) <1, then

n)q

a—n a—n ﬂa_ —
(21,0 + RIS = N0, @) 37" da’ < MWL @707 (3.2)

{z": |2'[\>2|z1]}

Proof. From Lemma 3.1 we have the inequality

[, IS~ a) 5| da” < i ()" .

{z’: |2/ >2z1]} {@': |2/|, >2|21}

Thus from Lemma 3.2 we obtain (3.2). O

Proof of Theorem 3.1 We will adapt to our paper the proof given by Mizuta [3] for
the classical Riesz potential. Note that

Tanf(0,2") Z/ / [(—z1,2" = 2)|5 " f(21, 2")d21d7’

]Rl ]Rn—l
and

o nf(0,2" + 1) — Io 2 f(0,27)]
</ ( J
R \Rn—1

Hence by Young’s inequality we have the inequality

|(z1,2" + B = 25" = |(=z1,2" = 2)|S" |f(21,z')|dz'> dz.

(e’ + WIS = |(—z )" da

| anf O, 1) = Iaxf0.)], < f( J
R \Rn—

g

)

1

><< J |f(21,z')|pdz'> dz.
R

n—1
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In case a < 1, and in view of Lemma 2.2 and Lemma 2.3, we have

HI@,)\f(Ov -+ hl) - Ia,)\f(ov )Hp

IN

IN

’ DL a—1)-1 ,
M [ W]y [z £ (21, 2", d=1
Rl

/ L a—1)-1 ,
MW [ =™ £ (21, 2)l,, d21
[z1]<|h/[y
Bl (a-1) /
+M [ [ [ f(z1,2")[l, d=1
[z1] >[R[y

M[L(R) + L()].

Passing to the A-spherical coordinates, we obtain

J

(12 (W)

!’

]Rn—l |h,|

[A]

(n—2+(F3k (a=1)+1)p)
A

2|\

Here for w = r=-1 | we have

[ [
:M/u%%(@—ﬂp /|z1|%<a—1>—1Hf(zl,z')npdzl du.
0 0

By Hardy’s inequality we get

268
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Rn—

M

T

M [ ;T

2-n—(EL(@=1)+1)p)

1
p
I

|
Ay (a—1)—1 I1£(21, 2|l dz1 | dR’

RSN
oo 2|/ bY
f r nl—ll (2_7‘_%‘1)\‘1 (a—1)p)—1
0
2[7| p

Iz

' DL a_1)—
[ 1l T f (e, )| dz | dre
0

p

o0 A NI P
M [ |z) 7 1>P[|zl|m1< V£, N, d=
0

M [f(z1, 2, d=
0

Ml -
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In the same way, we find

00 2|)\| (Al

M -5k (a=1)+1)p) -1

[Tz ()" dh'

RA-1 [ l(n 24+(BE @-n+1p)

IN

p

x® NESIpo
< 1 |73 T e, 2| d | dre
>\

IN

Mflzll (R D40 [0 3R @D £y, )]

Mf I1f (21, 2)II}, dza
0

M-

Thus the case a < 1 is proved.

In case a = 1, we must replace I; by

Ly = 1og(2"’")|f<z1,.>|pdzl
[z1|<|h/]

< a1 () e, de
[EESIZAIN

for 0 < € < 1 and apply Hardy’ inequality.
Incase 1 < a <2,

a—1)—1
BEY <M, [ I RO 1 e,
[z1]<[R!]
which can be treated similarly. O

Now we give the following theorem which is classical Sobolev’s inequality for \; =

1 . _
bR 1= 1,2,...,7@

Theorem 3.2 Let z% = -2 If1<p<ooand z% > 0, then

1
P

(S Hanf@P de)™ < M,

Proof. Let z% =1_ 2. We may assume that f is nonnegative. For r > 0, we write

3
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Iaonf(x) = [ Je—=y3 " fly)dy+ [ lz —yl3 " fly)dy
By (z,2r) R” —Bx(x,27)

I(lx,,\(w) + 1(2!7/\(:5).

Since (o — n)p’ + n > 0, we have the following inequality by Hélder’s inequality

W »
( J ey dy) ( J fp(y)dy>
By (z,2r) By (z,2r)

PIRY

< Mr[ o (a—n)p'+2|A]] Hf”p

IN

I(lx,,\(w)

By Holder’s inequality

1
o7

=

2 a(x) < o =yl dy>

R”—Bx(x,2r)
o2 g
p

( T (y)dy>
R”—Bj(z,2r)

< Ml

For any p > 0, choose » > 0 so that

My 2B ) = p.

Then it follows that

Ha: Loaf(z) > 20} < Hx:[é)\(x)>p}‘
< J(E2) @
< m[rtept g,
i
p

This implies that f — I, af is of weak type (p,p*). In view of the Marcinkiewicz
interpolation theorem, the mapping is seen to be of strong type (p, p*).

The proof is completed. O
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Theorem 3.3 Let ap > 1 and z% = 11—7 — 727 > 0. Then there is the inequality

(S 1an ) dz)™ < M,
Proof. Note that

In A f(0,2") :/ / |(—z1,2" — z')|;¥_n f(z1,2)dzd2.
Rl R’rl*l

Hence we have by Hoélder’s inequality ,

[Taxf(0,27)] < [ (f |(=21,2" — 2') f\“_")p, d21> ’ (f fp(Zl,z')dZ1> ds!

Rrn—1 \R1 R1

1
3

a—n +L1,
< M [ |2 - z'|§\ R [ fP(z1,2)dz | d2.
Rn—1 R1
The required inequality can be established by applying Theorem 3.2 O

4. Continuity properties

In this chapter, assume that ap = n. Let ¢ be a positive nondecreasing function on

the interval (0, 0o) satisfying
A7p(r) < p(r?) < Ap(r). (4.3)

By condition (4.3), we have the doubling condition
A7l p(r) < p(2r) < Ap(r), (4.4)
and for v > 1
A@)Tle(r) < o(r') < A(v)p(r). (4.5)

Our aim in this chapter is to discuss the continuity of I,  f when

/ (L4 [yl ™" f)dy < oo (4.6)
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and

/%(If(y)l)dy < o0, (4.7)

where @,(r) = rPp(r).

Lemma 4.1 Ifv > 0, then

sUp(s™h) < Mt p(t™) whenever 0 < s < t.

The proof of this Lemma is given in [5].
Theorem 4.1 Let ¢ satisfy the following condition:
1
/(p(r_l)_ﬁT_ldr < 00 (4.8)
0

and set

If f satisfies (4.6) and (4.7), then I [ is continuous on R™ and, moreover,
Hanf(@) = Lanf(2)] = o(¢*(|z — 2,)) as |z —2z[, = 0.

Proof. Letr= |z —z|, < 1. We write

Ia,)\f(z)

[ l=ulS " fwdy+ [ 2=yl fy)dy
By (z,2r) R” —Bj(x,27)

Il(Z) + _[2(2) .
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For 0 < § < a, we have by Holder’s inequality,

[L(2)| = / lz—ylN "1 f (W)l dy
{z: Ba(2,3r); I[f(y)|<|z—yl°}

n [ [z =ylX" [f (W)l dy
{z: Bx(z,37); |f(y)|>|z_y|;6}

IN

J o=yl dy
By (z,37)

. J =l (12 =) ] [l 5D

{z: Bx(z,37); |f(y)|>|z_y|;6}

IN

B (z,3r)

170 i
210 a—n -6\ P
My« ‘5+< S [Iz—yIA w(lz—ylxé) p] dy)

( J [|f<y>|so<|f<y>|>%}pdy)

Bx(z,3r)

0

20x] ar 2\~ % v
— MrEta-s g (f(p(t_T‘s) t‘ldt> ( 2 (|f(y)|)dy>

Therefore, from (4.5) we have

=

@ <M ag o) | [ e, sy

B (x,4r)
On the other hand, from Lemma 3.1
a—n a—n a—n—1
S e = T @l dy < M [ eyl A )] dy
R” —Bx(x,27) R"—Bx(x,2r)
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Hence for « — 1 < § < a, we have as above

L(2) ~L(z)| < Mr [ Ja—ylX" T f(y)]dy
R”—Bx(z,2r)

o / o= 3 )] dy
{z: R"—Bx(x,2r); |f(y)|<r"5}

+  Mr [ o — |37 ()] dy
{z: R"—Bx(z,2r); |f(y)|>r—%}

Mro [ z— |5 dy + Mro*(r=°) %
R —Bx(z,2r)

IN

x f 2=yl 1@l e W))F] dy

{z: R"—Bax(z,2r); | f(y)|>r—%}
PIRN

M@= Ay ()]

x (R J Iw—yl({’_"—l)p,dy> ( J %(If(y)l)dy)

" —Bx(x,2r) R"—Bx(x,2r)

IN

1

P

'd‘l,_‘ =

=

PIRY| PIRY|

Mr=n(@=0=1+1 L prpl—=3 [(p(?“_‘s)]_% (f <I>p(|f(y)|)dy>

IN

By (4.3), we see that

1

T »’ .
1 -1 N
G A R T e
72 "
Further, by an application of Lemma 4.1 with [4,0(7“_1)] -t
Ms*™ < [(p(s_l)]_l whenever 0 < s < 1. (4.9)

Thus we establish the inequality

PIRY|

[L(z) = Ix(2)] < Mrow

< fog()] 7 (2, () )

PIRY

(a=6—-1)+1 +M7‘1_T(p*(7‘

~—

=
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Now it follows that

P
2|7

Tonf(@) = Laxf(2)] < MTT“_‘5+M<P*(T)< J q’p(lf(y)l)dy)

By (xz,4r)
r)

< log()] ¥ (o, (s )

PIRY

+Mr =

(a_6_1)+1+MT1_TSD*

Sl= o~

which together with (4.9) proves the required result. O
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