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Abstract

In this paper, various results of reduced and semicommutative rings are extended

to reduced and semicommutative modules. In particular, we show: (1) For a

principally quasi-Baer module, MR is semicommutative if and only if MR is reduced.

(2) If MR is a p.p.-module then MR is nonsingular.

Key words and phrases: Reduced Rings (Modules), Baer, quasi-Baer and Rings

(Modules).

1. Introduction

Throughout this paper all rings R are associative with unity and all modules M are
unital right R-modules. For a nonempty subset X of a ring R, we write rR(X) = {r ∈
R | Xr = 0} and lR(X) = {r ∈ R | rX = 0}, which are called the right annihilator of
X in R and the left annihilator of X in R, respectively. Recall that a ring R is reduced
if R has no nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all
idempotents are central).

In [7] Kaplansky introduced Baer rings as rings in which the right (left) annihilator
of every nonempty subset is generated by an idempotent. Acording to Clark [6], a ring
R is said to be quasi-Baer if the right annihilator of each right ideal of R is generated
(as a right ideal) by an idempotent. These definitions are left-right symmetric. Recently,
Birkenmeier et al. [4] called a ring R a right (resp. left) principally quasi-Baer (or simply,
right (resp. left) p.q.-Baer) ring if the right (resp. left) annihilator of a principally right
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(resp. left) ideal of R is generated by an idempotent. R is called a p.q.-Baer ring if it is
both right and left p.q.-Baer.

Another generalization of Baer rings is a p.p.-ring. A ring R is called a right (resp.
left) p.p.-ring if the right (resp. left) annihilator of an element of R is generated by an
idempotent. R is called a p.p.-ring if it is both a right and left p.p.-ring.

A ring R is called semicommutative if for every a ∈ R, rR(a) is an ideal of R.
(equivalently, for any a, b ∈ R, ab = 0 implies aRb = 0). Recall from [1] that R is
said to satisfy the IFP (insertion of factors property) if R is semicommutative. An
idempotent e ∈ R is called left (resp. right) semicentral if xe = exe (resp. ex = exe), for
all x ∈ R ([see, [2]).

According to Lee-Zhou [10], a module MR is said to be reduced if, for any m ∈ M
and any a ∈ R, ma = 0 implies mR ∩Ma = 0. It is clear that R is a reduced ring if and
only if RR is a reduced module.

Lemma [10, Lemma 1.2] The following are equivalent for a module MR:

(1) MR is α-reduced.
(2) The following three conditions hold: For any m ∈ M and a ∈ R

(a) ma = 0 implies mRa = mRα(a) = 0.

(b) maα(a) = 0 implies ma = 0.

(c) ma2 = 0 implies ma = 0.

In [10] Lee-Zhou introduced Baer, quasi-Baer and the p.p.-module as follows:
(1) MR is called Baer if, for any subset X of M , rR(X) = eR where e2 = e ∈ R.

(2) MR is called quasi-Baer if, for any submodule N of M , rR(N) = eR where
e2 = e ∈ R.

(3) MR is called p.p. if, for any m ∈ M , rR(m) = eR where e2 = e ∈ R.

In [8] the module MR is called principally quasi-Baer (p.q.-Baer for short) if, for any
m ∈ M , rR(mR) = eR where e2 = e ∈ R.

It is clear that R is a right p.q.-Baer ring iff RR is a p.q.-Baer module. If R is a p.q.-
Baer ring, then for any right ideal I of R, IR is a p.q.-Baer module. Every submodule of
a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer,
and every Baer module is quasi-Baer. If R is commutative then MR is p.p.-module iff
MR is p.q.-Baer module.

286
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2. Reduced Rings and Modules

We start with the following definition which is defined in [5].

Deinition 2.1 A module MR is called semicommutative if rR(m) is an ideal of R for all
m ∈ M . (i.e. for any m ∈M and a ∈ R, ma = 0 implies mRa = 0.)

It is clear that R is semicommutative if and only if RR is a semicommutative module.
Every reduced module is a semicommutative module by [10, Lemma 1.2].

Proposition 2.2 Let φ : R −→ S be a ring homomorphism and let M be a right S-
module. Regard M as a right R-module via φ. Then we have:

(1) If MS is a reduced module then MR is a reduced module.
(2) If φ is onto, then the converse of the statements in (1) hold.
(3) If S is a reduced ring, then S is a reduced as a right R-module.

Proof. Straightforward.

Lemma 2.3 If MR is a semicommutative module, then for any e2 = e ∈ R, mea = mae

for all m ∈M and all a ∈ R.

Proof. For e2 = e ∈ R, e(1−e) = (1−e)e = 0. Then for all m ∈M , me(1−e) = 0 and
m(1−e)e = 0. SinceMR is semicommutative, we havemeR(1−e) = 0 and m(1−e)Re = 0.
Thus for all a ∈ R, mea(1−e) = 0 and m(1−e)ae = 0. So, mea = meae and mae = meae.
Hence, mea = mae for all a ∈ R. 2

Proposition 2.4 Let MR be a p.q.-Baer module, then MR is semicommutative if and
only if MR is reduced.

Proof. Assume MR is reduced. Then MR is a semicommutative module by [10, Lemma
1.2].

Conversely, assume MR is semicommutative. Let ma = 0 for m ∈ M and a ∈ R.
Since MR is p.q.-Baer, a ∈ rR(m) = rR(mR) = eR where e2 = e ∈ R. Let x ∈ mR∩Ma.
Write x = mr = m

′
a for some r ∈ R and m

′ ∈ M . Since a ∈ rR(m), a = ea. Then
x = m

′
a = m

′
ea = m

′
ae by Lemma 2.3. So x = mre = mer = 0 since er ∈ rR(m).

Therefore mR ∩Ma = 0. Consequently MR is a reduced module. 2
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Corollary 2.5 [3, Proposition 1.14.(iv)] If R is a right p.q.-Baer ring, then R satisfies
the IFP if and only if R is reduced.

Corollary 2.6 [3, Corollary 1.15] The following are equivalent.
(1) R is a p.q.-Baer ring which satisfies the IFP.
(2) R is a reduced p.q.-Baer ring.

Proposition 2.7 If MR is a semicommutative module, then
(1) MR is a Baer module if and only if MR is a quasi-Baer module.
(2) MR is a p.p.-module if and only if MR is a p.q.-Baer module.

Proof. (1) ”⇒ ” It is clear.
“⇐”: Assume MR is a quasi-Baer module. Let X be any subset of MR. Then

rR(X) =
⋂
x∈X rR(x). Since MR is semicommutative,

⋂
x∈X rR(x) =

⋂
x∈X rR(xR).

But MR is quasi-Baer module then rR(X) =
⋂
x∈X rR(xR) = rR(

∑
x∈X xR) = eR,

where e2 = e ∈ R. Consequently rR(X) = eR, where e2 = e ∈ R and hence MR is a Baer
module.

(2) Since MR is semicommutative, rR(m) = rR(mR) for all m ∈ M . Hence proof is
clear. 2

Corollary 2.8 If R is a semicommutative ring, then
(1) R is a Baer ring if and only if R is a quasi-Baer ring.
(2) R is a p.p.-ring if and only if R is a p.q.-Baer ring.

Proposition 2.9 The following conditions are equivalent:
(1) MR is a p.q.-Baer module.
(2) The right annihilator of every finitely generated submodule is generated (as a right

ideal) by an idempotent.

Proof. ”(2)⇒(1)” Clear.

”(1)⇒(2)” Assume that MR is p.q.-Baer and N =
∑k

i=1 niR is a finitely generated

submodule of MR. Then rR(N) =
⋂k
i=1 eiR where rR(niR) = eiR and e2

i = ei. Let

e = e1e2 . . . ek. Then e is a left semicentral idempotent and
⋂k
i=1 eiR = eR since each ei

is a left semicentral idempotent. Therefore, rR(N) = eR. 2
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Corollary 2.10 [3, Proposition 1.7.]The following conditions are equivalent for a ring R:
(1) R is a right p.q.-Baer ring.
(2) The right annihilator of every finitely generated ideal of R is generated (as a right

ideal) by an idempotent.

Lemma 2.11 Let MR be a p.p.-module. Then MR is a reduced module if and only if MR

is a semicommutative module.

Proof. “⇒”: It is clear by [10, Lemma 1.2]
“⇐”: It follows from Proposition 2.7 and Proposition 2.4 2

Corollary 2.12 Let R be a right p.p.-ring. Then R is a reduced ring if and only if R is
a semicommutative ring.

Proposition 2.13 Let R be an abelian ring. If MR is a p.p.-module then MR is a reduced
module.

Proof. Let ma = 0 for some m ∈ M and a ∈ R. Then a ∈ rR(m). Since
MR is a p.p.-module, rR(m) = eR where e2 = e ∈ R. Thus a = ea and me = 0.
Let x ∈ mR ∩ Ma. Write x = mr = m

′
a for some r ∈ R and m

′ ∈ M . Then
x = m

′
ea = m

′
ae = mre = mer = 0 since er ∈ rR(m). Consequently MR is a re-

duced module. 2

Corollary 2.14 Let R be an abelian ring. If R is a right p.p.-ring then R is a reduced
ring.
Proposition 2.15 Let R be an abelian ring and MR be a p.p.-module. Then MR is a
p.q.-Baer module.

Proof. Let m ∈ M . Since MR is a p.p.-module, there exists e2 = e ∈ R such that
rR(m) = eR. It is clear that rR(mR) ⊆ rR(m). Let x ∈ rR(m). Then x = ex and
me = 0. For all r ∈ R, mrx = mrex = merx = 0 since R is abelian. Hence, x ∈ rR(mR).
Consequently rR(mR) = rR(m) = eR. Therefore MR is a p.q.-Baer module. 2

Corollary 2.16 Abelian right p.p.-rings are right p.q.-Baer.
Let M be a module. A submodule K of M is essential in M , in case for every

submodule L ≤M , K ∩ L = 0 implies L = 0.
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Let M be a right module over a ring R. An element m ∈ M is said to be a singular
element of M if the right ideal rR(m) is essential in RR. The set of all singular elements
of M is denoted by Z(M). Z(M) is a submodule, called the singular submodule of M . We
say that MR is a singular (resp. nonsingular) module if Z(M) = M (resp. Z(M) = 0).
In particulary, we say that R is a right nonsingular ring if Z(RR) = 0.

Proposition 2.17 Every p.p.-module is nonsingular.

Proof. Let MR be a p.p.-module and m ∈ Z(M). Then rR(m) is essential in RR

and there exists e2 = e ∈ R such that rR(m) = eR. So eR is essential in RR. But
eR ∩ (1 − e)R = 0 for right ideal (1 − e)R of R. so (1 − e)R = 0 and hence e = 1. Thus
rR(m) = R and so m = 0. Therefore MR is a nonsingular module. 2

Corollary 2.18 [9, (7.50)] A right p.p.-ring is right nonsingular.
The following Lemma given by Lam [9, (7.8) Lemma].

Lemma Let R be reduced ring. Then R is right nonsingular.
Based on this Lemma, one may suspect that, this result true for module case. But

the following example eliminates the possibility.
Example 2.19 The module (Z2)Z is reduced but not right nonsingular.
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