
Turk J Math

30 (2006) , 293 – 308.

c© TÜBİTAK
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Abstract

In this paper we present a survey of recent progress on the distribution of B-free

numbers in short intervals and some of its applications.

Key Words: B-free numbers, linear forms.

1. Introduction

The distribution of special subsets of positive integers is a central topic of research
in analytic number theory. In particular, extensive research has been done on the
distribution of prime numbers. For an account on recent developments the reader may
consult the nice survey of Yıldırım [25]. For the purpose of some applications one
is motivated to consider the distribution of certain sequences of numbers defined by
milder divisibility constraints. The notion of a B-free number, introduced by Erdös in
[8], generalizes that of a square-free number. Given a sequence B of positive integers
1 < b1 < b2 < . . . such that

∞∑
k=1

1
bk

<∞, and gcd(bk, bj) = 1 for k 6= j, (1.1)

a number n is called B-free provided that no element bk of B divides n. It is easy to see
that a positive proportion of integers are B-free, as

2000 Mathematics Subject Classification: 11N25, 11N36

293



ALKAN, ZAHARESCU

lim
N→∞

1
N

#{1 ≤ n ≤ N : n is B-free} =
∞∏
k=1

(
1− 1

bk

)
> 0. (1.2)

By taking B to be the sequence of squares of all the prime numbers, the set of B-free
numbers coincides with the set of square-free numbers. Erdös [8] proved that for some
c < 1 and all large enough N , the interval [N,N + N c] contains B-free numbers. He
conjectured that for any ε > 0 there exists NB,ε such that for any N ≥ NB,ε the interval
[N,N + N ε] contains at least one B-free number. Szemerédi [23] proved Erdös’ claim for
all c > 1

2 . This was improved to c > 9
20 by Bantle and Grupp [6], using the work of

Iwaniec and Laborde [13]. A further improvement is due to Wu [24], who proved that

#{N ≤ n ≤ N +N c : n is B-free} �B,c N
c (1.3)

for all c > 17
41 , using the work of Fouvry and Iwaniec [10] on exponential sums with

monomials. Zhai [26] obtained the same result for c > 33
80 . The best result to date

is due to Sargos and Wu [20], who reduced the value of c to c > 40
97

. Assuming
the ABC-Conjecture Granville [11] proved Erdös’ Conjecture in the case of square-free
numbers. Unconditionally, Filaseta and Trifonov [9] proved that for N large enough
and for all c > 1

5 , the interval [N,N +N c] contains a square-free number. In [4] the
problem of findingB-free numbers in short arithmetic progressions was considered. In this
connection the following generalization of Erdös’ Conjecture for arithmetic progressions
was suggested.

Conjecture 1. For any sequence B of positive integers satisfying (1), and any ε > 0,
there exists a number NB,ε such that for any N ≥ NB,ε, and any relatively prime integers
a, b with 1 ≤ a, b ≤ N , there exists an integer n, with 1 ≤ n ≤ N ε, such that an + b is
B-free.

B-free numbers also have interesting applications to the problem of nonvanishing of
Fourier coefficients of modular forms. Ramanujan first realized and studied many of the
fascinating arithmetical properties of what is now known as the Ramanujan tau function
τ (n). This is defined in terms of the Delta function, which is the unique normalized cusp
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form of weight 12 on SL2(Z), by

∆(z) =
∞∑
n=1

τ (n)qn = q

∞∏
n=1

(1− qn)24, (q = e2πiz, Im z > 0). (1.4)

He proved striking congruences satisfied by τ (n) (see his collected works [19]). Later, the
existence of these congruences was explained in the more general context of modular forms
and the theory of Galois representations by Deligne and Serre, and Swinnerton-Dyer. For
a survey of Ramanujan’s original approach to these congruences, with complete proofs
and commentary, see the paper of Berndt and Ono [7]. A long standing conjecture of
Lehmer [15] states that τ (n) 6= 0 for any n ≥ 1. In relation to this conjecture, Serre [23]
initiated the general study of estimating the size of possible gaps in the Fourier expansion
of modular forms via the gap function

if (n) = min{j ≥ 0 : af (n+ j) 6= 0}. (1.5)

Note that if (n) counts the maximum number of consecutive vanishing Fourier coefficients
starting with af (n). To explain the connection between B-free numbers and the nonva-
nishing problem for Fourier coefficients of modular forms, let us recall some basic facts
about newforms. First, newforms are eigenvectors for the Hecke operators (see Chapter
3 of [14]), and they form a basis for the vector space of cusp forms. Next, if f(z) is a
newform then (see [16] and [17]) its Fourier coefficients form a multiplicative arithmetic
function, which is essential for producing nonzero Fourier coefficients. In particular, if we
consider the set B consisting of all primes p for which af(p) = 0, then

af (n) =
∏
p|n

af (p) 6= 0, (1.6)

for any n which is B-free and square-free. Balog and Ono [5] obtained strong nonvanishing
results on the Fourier coefficients of a newform f(z) without complex multiplication
concerning their short interval distribution. They proved that

if (n)�f,ε n
17
41 +ε. (1.7)

In the case of newforms associated to elliptic curves without complex multiplication, the
exponent 17/41 was improved to 69/169 and then to 51/134 in [1] and [2] respectively.
In [1] it is also proved that if (n) �f,φ φ(n) for almost all n where φ is a function

295



ALKAN, ZAHARESCU

monotonically tending to infinity. It follows that the gap function is very small most of
the time. In [2] it was shown that for every ε > 0 there is an M = M(f, ε) such that

#{n ≤ x : if (n) ≤M} ≥ (1− ε)x. (1.8)

It was also shown in [2] that for almost all elliptic curves over Q without complex
multiplication and for any ε > 0,

1
x

∑
n≤x

ifE (n)�E e
8 log x

log log x �ε x
ε (1.9)

where fE(z) =
∑∞

n=1 aE(n)qn is the weight 2 newform associated to E/Q. In [3] some
nonvanishing results for the Fourier coefficients of newforms in arithmetic progressions
have been proved. More precisely, for any σ > 9

20
there exists an effectively computable

η > 0 depending only on σ, such that for any newform

f(z) =
∞∑
n=1

af (n)qn ∈ Sk(Γ0(N), χ) (1.10)

without complex multiplication, any large x, any y ≥ xσ, and any relatively prime integers
b, a satisfying 1 ≤ b < a ≤ xη, one has

#{x− y < n ≤ x : af(n) 6= 0 and n ≡ b (mod a)} �σ,f
y

a
. (1.11)

We remark that, the hypothesis that f(z) has no complex multiplication, is essential for
the above results, since in the case of complex multiplication one encounters naturally
occuring large gaps in the Fourier expansion (see the Serre-Stark basis theorem [22] for
weight 1/2 modular forms, which states that all such forms are linear combinations of
theta series). For other arithmetic aspects of the properties of Fourier coefficients of
modular forms, the reader may consult the recent monograph of Ono [18].

In the next two sections we sketch two different mechanisms of producing B-free num-
bers in certain small sets, which can be short intervals, or short arithmetic progressions,
or values taken by a primitive linear form in two variables. The first approach has been
recently used by the authors [4] in order to prove the existence of B-free numbers in short
arithmetic progressions. This involves the application of a weighted sieve to count B-free
numbers in short intervals. A crucial role in this method is played by the estimates of
Fouvry and Iwaniec [10] on exponential sums with monomials, which are used to control
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the size of remainder terms that appear in the above weighted sieve. The second method
described below, which can be used to find B-free numbers in small unions of short arith-
metic progressions, also employs a weighted sieve. In this case the estimates of Fouvry
and Iwaniec do not appear. Instead, a key ingredient in this approach is an averaging
technique that produces a strong saving in the error terms.

2. Distribution of B-free numbers. The first approach

We choose σ, η > 0 such that

1803
10

η +
9
20

< σ ≤ 9
19
. (2.12)

Let a, b be relatively prime integers with 1 ≤ a ≤ Nη. Our goal is to show that for
N ≥ NB,σ,η , there exists many integer numbers n with N ≤ n ≤ N + Nσ such that
n ≡ b(mod a) and n is B-free. For simplicity, let us put x = N + Nσ and y = Nσ. We
define the sets

P1 = P1(x, δ1, µ) = {xδ1 ≤ p ≤ xδ1+µ : p prime} (2.13)

and

P2 = P2(x, δ2, µ) = {xδ2 ≤ u ≤ xδ2+µ : u prime,} (2.14)

where µ > 0 is as small as we want and δ2 + µ < δ1 < δ1 + µ < σ. For each n ≤ x we
assign the sieving weight

w(n) =
∑
p∈P1

∑
u∈P2

n≡0 (mod pu)

1. (2.15)

Clearly w(n) ≤ C(δ1, δ2) independently of x. Next, we make the following reduction. For
any element b ∈ B which is prime we put b′ = b. For any b ∈ B which is not prime we
let b′ equal the product of the largest two prime factors of b. Here, if the largest prime
factor p of b appears with multiplicity strictly greater than 1, we let b′ = p2. Let A be
the sequence of numbers b′ arranged in increasing order. It is easy to see that the sum of
reciprocals of elements of A is convergent. Moreover, any A-free number is B-free. Hence
it will be enough to find A-free numbers in the required arithmetic progressions. This
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specific structure of A, namely that A consists of a set of primes with sum of inverses
finite, a set of squares of primes and a set of products of two distinct prime numbers with
sum of inverses finite, will become important later. Let us re-denote the elements of A
as b1 < b2 < . . . < bs < . . . . Hence it suffices to show that∑

x−y<n≤x
n≡b(moda)
n is A−free

w(n)�σ
y

a
. (2.16)

We consider the inequality∑
x−y<n≤x
n≡b(moda)
n is A−free

w(n) ≥
∑

x−y<n≤x
n≡b(moda)
n 6≡0(mod bs)
for all s≤m

w(n)−
∑

x−y<n≤x
n≡b(moda)
bm<bs≤ ya
n≡0(mod bs)
for some s>m

w(n)−
∑

x−y<n≤x
n≡b(moda)
y
a<bs≤x

n≡0(mod bs)
for some s>m

w(n), (2.17)

where m is a parameter to be fixed appropriately later. Using the definition of w(n) and
the inclusion-exclusion principle we obtain that the main term, which is the first sum on
the right hand side of (2.17), is

M0 =
∑

x−y<n≤x
n≡b(moda)
n 6≡0(mod bs)
for all s≤m

w(n) =
y

a

∑
p∈P1

1
p

∑
u∈P2

1
u

∏
j≤m

(
1− 1

bj

)
+Ra,b(x, y), (2.18)

where for any subset ω of {1, . . . , m}, dω =
∏
s∈ω bs and

Ra,b(x, y) =
∑
ω

(−1)|ω|
∑
p∈P1

∑
u∈P2

rpudω,a,b(x, y) (2.19)

is a sum of remainder terms with |rpudω,a,b(x, y)| ≤ 1. It is easy to eliminate the dω since∑
p∈P1

∑
u∈P2

rpudω,a,b(x, y) =
∑
p∈P1

∑
u∈P2

rpu,a,b

( x
dω
,
y

dω

)
, (2.20)

and x, y are about the same size with x
dω

, y
dω

, respectively. The modern version of the
linear sieve due to Iwaniec [12] requires nontrivial estimates for sums of remainder terms
with two parameters as in Ra,b(x, y). Using Fourier analysis, Poisson summation formula

298



ALKAN, ZAHARESCU

and a smooth approximating function, it is possible to show that∣∣∣ ∑
p∈P1

∑
u∈P2

rpu,a,b(x, y)
∣∣∣ ≤ 1

a

∫ x

x−y

∣∣∣ ∑
|ν|≤H

∑
p≤M

∑
u≤N

χP1(p)χP2 (u)
pu

e
(bp∗u∗ν

a

)
e
(
− νt

apu

)∣∣∣dt
(2.21)

+O
(
yx−λ

)
,

where M = xδ1+µ, N = xδ2+µ, H = aMNx2λ

y for some small λ > 0, and p∗ and u∗ are the

inverses of p and u modulo a. In order to estimate Ra,b(x, y) it is sufficient to estimate
the integrand in the above formula, which can be treated as an exponential sum with
monomials. Strong upper bounds for such sums were obtained by Fouvry and Iwaniec
[10]. In particular, one may use the following result from [10].

Let α 6= 0, 1 and H,M,N,X ≥ 1. Let χ(ν) be an additive character and φp, ψu be
complex numbers with absolute value ≤ 1. Then∣∣∣∣∣∣

∑
H
2 ≤ν≤H

∑
M
2 ≤p≤M

∑
N
2 ≤u≤N

φpψuχ(ν)e
(
X

νu−1pα

HN−1Mα

)∣∣∣∣∣∣� (HMN)
1
2 (log(2HMNX))4

(2.22)

×
[
X

1
8 (H + N)

1
2 (X

1
8H−

1
6M

1
12N

1
6 + X

1
8H−

1
8N

3
8 +N

1
2 +N

1
4M

1
8 ) +M

1
2 + X−

1
4M

1
2N
]
.

In this way, it is possible to show that for η > 0 small enough, |Ra,b(x, y)| = o
(
y
a

)
. We

now use Mertens estimates∑
p∈P1

1
p

= log
(

1 +
µ

δ1

)
+O

(
1

logx

)
≥ C1, (2.23)

and ∑
u∈P2

1
u
≥ C2, (2.24)
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where C1 and C2 are positive absolute constants depending on µ, δ1 and δ2 only. Com-

bining these with the fact that
∏∞
j=1

(
1− 1

bj

)
> 0, we obtain that

M0 ≥ C
y

a
+ o

(y
a

)
(2.25)

for C > 0 and a ≤ xη. It is easy to see that

E1 =
∑

x−y<n≤x
n≡b(moda)
bm<bs≤ ya
n≡0(modbs)
for some s>m

w(n) ≤ 2C(δ1, δ2)
y

a

∑
s>m

1
bs
. (2.26)

We may now fix the parameter m such that

C − 2C(δ1, δ2)
∑
s>m

1
bs

= C0 > 0. (2.27)

It follows that

M0 − E1 ≥ C0
y

a
+ o

(y
a

)
. (2.28)

For estimating

E2 =
∑

x−y<n≤x
n≡b(moda)
y
a<bs≤x

n≡0(mod bs)
for some s>m

w(n), (2.29)

we use the definition of w(n) and the specific structure of A that was mentioned at the
beginning of this section to see that E2 = o

(
y
a

)
by imposing some conditions on σ, δ1 and

δ2 . Combining all these estimates we obtain

M0 − E1 − E2 ≥ C0
y

a
+ o

(y
a

)
. (2.30)

The compatibility of all conditions imposed on δ1 , δ2, σ, η give us

1803
10

η +
9
20

< σ ≤ 9
19
. (2.31)

By using the method explained above, one obtains the following result from [4].
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Theorem 1 Let η, σ be positive real numbers satisfying 20σ > 9 + 3606η and let B be a
sequence of pairwise relatively prime positive integers with sum of inverses finite. Then
there exists NB,σ,η such that for any N ≥ NB,σ,η and any relatively prime integers a, b
with 1 ≤ a ≤ Nη, there exists N ≤ n ≤ N +Nσ for which n ≡ b ( mod a) and n is B-free.

3. Distribution of B-free numbers. The second approach

Let B be a sequence of positive integers b1 < b2 < . . . with the sum of reciprocals
convergent, and any two of them relatively prime. Let N be a large positive integer,
choose relatively prime positive integers a and b smaller than N , and consider a small
union of arithmetic progressions

M = {ax+ by : 1 ≤ x ≤ Nθ1 , 1 ≤ y ≤ Nθ2} (3.32)

for some 0 < θ1, θ2 < 1. The question we address here is the existence of elements fromM
which are B-free numbers. Without any loss of generality, we may assume in what follows
that θ2 ≤ θ1. We first make the same reduction on the set B as in the first approach.
Thus we obtain a set A, such that any A-free number is B-free. Denote the elements of
A by b1 < b2 < . . . < bs < . . . . We will look at numbers of form n = ax + by, where
x ≤ Nθ1 , y ≤ Nθ2 . Clearly n ≡ by (mod a). We put z = Nθ1a. We fix y temporarily,
such that (y, a) = 1. Let

P = {Nµ < p < Nµ+ε : p prime} \ {prime divisors of a}, (3.33)

where µ = θ1−ε with ε > 0 fixed, but as small as we wish. Now we use the sieving weight

w(n) =
∑
p∈P

n≡0(modp)

1. (3.34)

We have the inequality w(n) ≤ C(µ) for all n ≤ 2N1+θ1 so that

∑
by+ z

2≤n≤by+z
n is A−free
n≡by(moda)

1�
∑

by+ z
2≤n≤by+z

n is A−free
n≡by(moda)

w(n) (3.35)
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≥
∑

by+ z
2≤n≤by+z

n≡by (mod a)
n 6≡0 (mod bj) for all j≤k

w(n)−
∑

by+ z
2≤n≤by+z

n≡by (moda)
n≡0 (mod bj) for some

bk<bj≤ z
2a

w(n) −
∑

by+ z
2≤n≤by+z

n≡by (mod a)
n≡0 (mod bj) for some

z
2a<bj≤by+z

w(n).

For the main term we have by the inclusion-exclusion principle that∑
by+ z

2≤n≤by+z
n≡by (mod a)

n 6≡0 (mod bj) for all j≤k

w(n) =
∑
Ω

(−1)|Ω|
∑
p∈P

∑
by+z

2≤n≤by+z
n≡by (moda)
n≡0 (mod bΩ)
n≡0 (mod p)

1, (3.36)

where bΩ =
∏
j∈Ω bj for each subset Ω of {1, 2, . . . , k}. Since (a, b) = 1 = (a, y) in the

conditions of the right-hand side of (3.36), we have (a, bΩ) = 1 and (a, p) = 1. Clearly
(bΩ, p) = 1 as soon as we fix k and let N tend to infinity. By the Chinese Remainder
Theorem, the congruences n ≡ by (mod a), n ≡ 0 (mod bΩ) and n ≡ 0 (modp) can be
combined to n ≡ c (mod apbΩ). Note that∑

by+ z
2≤n≤by+z

n≡c (mod apbΩ)

1 =
z

2apbΩ
+ rp,bΩ(by, z), (3.37)

where |rp,bΩ(by, z)| ≤ 1 is a remainder term. Combining (3.36) and (3.37), we obtain that
the main term equals

∑
Ω

(−1)|Ω|
∑
p∈P

(
z

2apbΩ
+ rp,bΩ(by, z)

)
(3.38)

=
z

2a

∑
p∈P

1
p

∏
j≤k

(
1− 1

bj

)
+
∑
Ω

(−1)|Ω|
∑
p∈P

rp,bΩ(by, z).

Since a ≤ N , the number ω(a) of distinct prime divisors of a satisfies ω(a) = O
(

logN
log logN

)
.

It follows that ∑
p∈P

1
p
≥ log

(
1 +

ε

2µ+ ε

)
+O

(
1

logN

)
, (3.39)
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so that
∑

p∈P
1
p ≥ C1(µ, ε) as N tends to infinity. Since

∑
s

1
bs
<∞, we have

∏
j≥k

(
1− 1

bj

)
≥
∞∏
j=1

(
1− 1

bj

)
= C > 0. (3.40)

On the other hand for the remainder terms, we have∑
Ω

(−1)|Ω|
∑
p∈P

rp,bΩ(by, z) ≤ 2k|P | = o
(z
a

)
, (3.41)

if k is such that 2k = o(logN), which will be true as soon as we fix k. Hence the main
term is

≥ CC1(µ, ε)
z

2a
+ o

(z
a

)
=

1
2
CC1(µ, ε)Nθ1 + o

(
Nθ1

)
. (3.42)

We now analyze the first error term on the right side of (3.35). We have∑
by+ z

2≤n≤by+z
n≡by (moda)

n≡0 (mod bj) for some
bk<bj≤ z

2a

w(n) ≤ C(µ)
∑

by+ z
2≤n≤by+z

n≡by (mod a)
n≡0 (mod bj) for some

bk<bj≤ z
2a

1. (3.43)

If there is an n with by + z
2
≤ n ≤ by + z such that n ≡ by (mod a) and n ≡ 0 (mod bj)

then (a, bj) = 1 since (a, b) = 1 and (y, a) = 1. So these congruences can be combined to
n ≡ c (mod abj) for some integer c. The number of numbers n with by + z

2 ≤ n ≤ by + z

such that n ≡ c (mod abj) is ≤ z
abj

. Hence the right side of (3.43) is

≤ C(µ)z
a

∑
j>k

1
bj

= C(µ)Nθ1
∑
j>k

1
bj
. (3.44)

We may now fix k large enough in terms of µ and ε only such that the right side of (3.43)
is less than or equal to half of the main term.

We now proceed to estimate the second error term on the right side of (3.35). We
have ∑

by+ z
2≤n≤by+z

n≡by (moda)
n≡0 (mod bj) for some

z
2a<bj≤by+z

w(n) =
∑

z
2a<v1v2≤by+z

∑
p∈P

∑
by+ z

2≤n≤by+z
n≡by (moda)
n≡0 (modv1v2)
n≡0 (mod p)

1 (3.45)
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+
∑

z
2a<r≤by+z

∑
p∈P

∑
by+ z

2≤n≤by+z
n≡by (moda)
n≡0 (mod r)
n≡0 (mod p)

1 = Σ1 + Σ2,

say, where r is a prime in A and v1 ≤ v2 are primes such that v1v2 is in A. Note that there
is at most one n with by+ z

2 ≤ n ≤ by+z such that n ≡ by (mod a) and n ≡ 0 (mod v1v2),
since these congruences can be combined into one congruence n ≡ c′ (mod av1v2) for some
integer c′, and av1v2 >

z
2
. Similarly, there is at most one n with by + z

2
≤ n ≤ by + z

such that n ≡ by (mod a) and n ≡ 0 (mod r). Consequently we have

Vv1,v2 :=
∑
p∈P

∑
by+ z

2≤n≤by+z
n≡by (mod a)
n≡0 (mod v1v2)
n≡0 (mod p)

1 = O(1), (3.46)

and

Rr :=
∑
p∈P

∑
by+ z

2≤n≤by+z
n≡by (mod a)
n≡0 (mod r)
n≡0 (modp)

1 = O(1), (3.47)

where the O-constants are independent of v1, v2 and r. It follows from (3.45), (3.46) and
(3.47) that

Σ1 + Σ2 �
∑

z
2a<v1v2≤by+z
Vv1,v2>0

1 +
∑

z
2a<r≤by+z
Rr>0

1. (3.48)

We may assume that (v1v2, p) = 1 and (r, p) = 1, since the number of elements r or v1v2 of
A having a prime divisor in P is bounded by the number of elements of P (recall that the
elements of A are relatively prime, so two distinct elements of A can not have a common

prime divisor), which is O
(
Nµ+ε

logN

)
= o

(
Nθ1

)
. Hence we may assume in what follows that

(v1v2, p) = 1 and (r, p) = 1. If Vv1,v2 > 0 then the congruences n ≡ 0 (mod v1v2) and

n ≡ 0 (modp) give n ≡ 0 (modv1v2p). Since p ≥ Nµ, we obtain that v1v2 ≤ by+z
Nµ

, so

that v1 ≤
√

by+z
Nµ

. Since the elements of A are relatively prime to each other, there is a
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one to one correspondence between elements of A of form v1v2 and the set of v1’s. It is
then easy to see that

∑
z
2a<v1v2≤by+z
Vv1,v2>0

1 ≤
√
by + z

Nµ
= o

(
Nθ1

)
, (3.49)

provided θ1 > 1/2, 3θ1 > 1 + θ2, and ε is small enough. Next, we estimate the sum∑
by+z

2a <r≤by+z
Rr>0

1

on average over all the admissible arithmetic progressions. To this end we consider all
y ≤ Nθ2 such that (y, a) = 1, and repeat the above argument for each such y. The

number of such y is #{y ≤ Nθ2 : (y, a) = 1}, which is easily seen to be � Nθ2

log logN .

Hence the overall contribution of main terms in each of these arguments is � Nθ1+θ2

log logN .

All the error terms are under control since they have been controlled individually for each
y, except for the error term involving r. In order to control the error term involving r,

we partition the interval
[
Nθ1

2 , 2N1+θ1

]
into dyadic intervals of form [T, 2T ]. We have

∑
y≤Nθ2
(y,a)=1

∑
z
2a<r≤by+z
Rr,y>0

1 ≤
∑

z
2a<r≤2N1+θ

∑
y≤Nθ2
Rr,y>0

1 (3.50)

=
∑
T

∑
T≤r≤2T

∑
y≤Nθ2
Rr,y>0

1.

Note that ∑
y≤Nθ2
Rr,y>0

1 =
∑

y≤Nθ2
n≡by (mod a)
n≡0 (mod r)
n≡0 (mod p)

1 ≤
∑

n≤2N1+θ1

n≡0 (mod rp)

1 ≤ 2N1+θ1

rp
≤ 2N1+θ1

TNµ
. (3.51)

Combining (3.50) and (3.51) we see that the left side of (3.50) is

� 2N1+θ1

TNµ
T logN � N1+θ1−µ logN. (3.52)
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One easily sees that

N1+θ1−µ logN = o

(
Nθ1+θ2

log logN

)
, (3.53)

provided that θ1 + θ2 > 1, and ε is small enough. Taking the above into account, one
obtains the following result.

Theorem 2 Let 0 < θ1 , θ2 < 1 with θ1 + θ2 > 1. Let B be a sequence of positive integers
with the sum of inverses convergent, and any two of them relatively prime. Then there
exists a number NB,θ1,θ2 such that for any N ≥ NB,θ1,θ2 and any coprime positive integers
a, b with max{a, b} ≤ N , the number of pairs positive integers x, y with x ≤ Nθ1 and

y ≤ Nθ2 for which ax+ by is B-free, is � Nθ1+θ2

log logN .
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