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Abstract

This paper studies a linear regulatory quadratic control problem for degenerate

Hamilton-Jacobi-Bellman (HJB) equation. We establish the existence of a unique

viscosity and a classical solution of the degenerate HJB equation associated with

this problem by the technique of viscosity solutions, and, hence, derive an optimal

control from the optimality conditions in the HJB equation.
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1. Introduction

We are concerned with the quadratic control problem to minimize the expected cost
with discount factor β > 0:

J(c) = E

[∫ ∞
0

e−βt{h(xt) + |ct|2}dt

]
(1)

over c ∈ A and subject to the degenerate stochastic differential equation

dxt = [Axt + ct]dt + σxtdwt, x0 = x ∈ R, t ≥ 0. (2)

2000 AMS Mathematics Subject Classification: 60H10, 49N10, 49J15, 49L25, 58E25.
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Here, A consists of non-zero constants, σ 6= 0, and a continuous function h on R. xt is the
state variable of the system at time t, ct is the control variable of the system at time t, wt

is a one-dimensinal standard Brownian motion on a complete probability space (Ω,F , P )
endowed with the natural filtration Ft generated by σ(ws, s ≤ t), x0 = x is the initial
value of the state variable, and A denotes the class of all Ft−progressively measurable
processes c = (ct) with J(c) <∞.

This kind of stochastic control problem has been studied by many authors [3, 6] for
non-degenerate diffusions to (1) and (2). We also assume that h satisfies the properties
that

h is convex; (3)

there exists C > 0 such that h(x) ≤ C(1 + |x|n), xεR, (4)

for some constant C > 0, n ≥ 2. We refer to [11] for the quadratic case of degenerate
diffusions related to Ricatti equations in case of h(x) = Cx2 and n = 2 with infinite
horizon.

The purpose of this paper is to show the existence of a smooth solution u of the
associated Hamilton-Jacobi-Bellman (in short, HJB) equation of the form:

−βu +
1
2
σ2x2u′′ + Axu′ + min

r∈R
(r2 + ru′) + h(x) = 0 in R, (5)

and to give a synthesis of optimal control. Our method consists in finding the viscosity
solution u of (5) [5, 6], by the limit of the solution v = vL, L > 0, to the HJB equation

−βvL +
1
2
σ2x2v′′L + Axv′L + min

|r|≤L
(r2 + rv′L) + h(x) = 0 in R, (6)

as L → ∞, and then in considering the smoothness of u by its convexity. To show the
existence of the viscosity solution vL, we assume that h has the following property: there
exists Cρ > 0, for any ρ > 0, such that

|h(x)− h(y)| ≤ Cρ|x− y|n + ρ(1 + |x|n + |y|n), ∀x, y ∈ R, (7)

for a fixed integer n ≥ 2.
This condition acts as the uniform continuity of h with order n, and plays an important

role for the existence of viscosity solutions [7, 9]. We notice that (7) is fulfilled for
h(x) = |x|n̄, n̄ ∈ [2, n] closed interval.
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In Section 2 we show that u(x) := limL→∞ vL(x) is a viscosity solution of (5), as
L→∞. Section 3 is devoted to the study of smoothness of u. In Section 4 we present an
optimal control to the optimization problem (1) and (2). Finally in Section 5, the major
conclusions of this study is presented.

2. Viscosity solutions

In this subsection we show that vL(x) is a viscosity solution of the Bellman equation
(5) for any fixed L > 0, and then converges to a viscosity solution u(x) of the Bellman
equation (5). In order to introduce solutions in the viscosity sense, given a continuous
and degenerate elliptic map H : R×R ×R×R → R, we recall by [5] the definition of
viscosity solutions of

H(x, w, w′, w′′) = 0 in R. (8)

Definition 2.1 A function w ∈ C(R) is called a viscosity subsolution (resp., super-
solution) of (8) if, whenever for ϕ ∈ C2(R), w − ϕ attains its local maximum (resp.,
minimum) at x ∈ R, then

H(x, w(x), ϕ′(x), ϕ′′(x)) ≤ 0, (9)

H(x, w(x), ϕ′(x), ϕ′′(x)) ≥ 0, (10)

respectively. We also call w ∈ C(R) a viscosity solution of (8) if it is both a viscosity
sub- and supersolution of (8).
According to Crandall, Ishii and Lions [5] and Fleming and Soner [6] this definition is
equivalent to the following: for any x ∈ R,

H(x, w(x), p, q) ≤ 0 for (p, q) ∈ J2,+w(x)

H(x, w(x), p, q) ≥ 0 for (p, q) ∈ J2,−w(x),

where J2,+ and J2,− are the second-order superjets and subjets defined by

J2,+w(x) = {(p, q) ∈ R2 : lim sup
y→x

w(y) − w(x)− p(y − x)− 1
2q|y− x|2

|y− x|2 ≤ 0},

J2,−w(x) = {(p, q) ∈ R2 : lim inf
y→x

w(y) − w(x)− p(y − x)− 1
2q|y − x|2

|y − x|2 ≥ 0}.
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Let us define the value function vL(x) := infc∈AL J(c), where AL = {c = (ct) ∈ A :
|ct| ≤ L for all t ≥ 0}.

We assume that there exists β0 ∈ (0, β) satisfying

−β0 + σ2n(2n− 1) + 2n|A| < 0, (11)

and we set fk(x) = γ + |x|k for any 2 ≤ k ≤ 2n and a constant γ ≥ 1 chosen later.

Lemma 2.2 Assume (11). Then there exist γ ≥ 1 and η > 0, depending on L, k, such
that

−β0fk +
1
2
σ2x2f ′′k + Axf ′k + max

|r|≤L
(r2 + rf ′k) + ηfk ≤ 0. (12)

Furthermore,

E[
∫ τ

0

e−β0sηfk(xs)ds + e−β0τfk(xτ )] ≤ fk(x) for 2 ≤ k ≤ 2n, (13)

E[sup
t

e−β0tfk(xt)] <∞ for 2 ≤ k ≤ n, (14)

where τ is any stopping time and xt is the response to (ct) ∈ AL.

Proof. By (11), we choose η ∈ (0, β0) such that

−β0 +
1
2
σ2k(k − 1) + k|A|+ η < 0, (15)

and then γ ≥ 1 such that

(−β0 +
1
2
σ2k(k − 1) + k|A|+ η)|x|k + Lk|x|k−1 + (L2 + ηγ − β0γ) ≤ 0.

Then (12) follows immediately. By (12) and Itô formula we deduce (13). Moreover, by
moment inequalities for martingales we get

E[sup
t

e−β0tfk(xt)] ≤ fk(x) + E[sup
t
|
∫ t

0

e−β0sf ′k(xs)σxsdws|]

≤ fk(x) + KE[(
∫ ∞

0

e−2β0sσ2|xs|2kds)1/2],

for some constant K > 0. Therefore, (14) follows from this relation together with (13).

2
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Theorem 2.3 We assume (3), (4), (7) and (11). Then,

vL fulfills (3), (4), (7), (16)

and the dynamic programming principle holds, i.e.,

vL(x) = inf
c∈AL

E

[∫ τ

0

e−βt{h(xt) + |ct|2}dt + e−βτvL(xτ )
]

(17)

for any stopping time τ .

Proof. We suppress L of vL for simplicity. The convexity of v follows by the same line
as [5, Chap. 4, Lemma 10.6]. Let x0

t be the unique solution of

dx0
t = Ax0

tdt + σx0
tdwt, x0

0 = x. (18)

Then, by (13) and (4) it follows

v(x) ≤ E[
∫ ∞

0

e−βth(x0
t )dt] ≤ CE[

∫ ∞
0

e−β0tfn(x0
t )dt] ≤ Cfn(x)/η. (19)

For the solution yt of (2) with y0 = y, it is clear that xt − yt fulfills (18) with initial
condition x− y. We note by (15) with k = n and Itô formula that

E[e−β0t|x0
t |n] ≤ |x|n.

Thus by (7) and (13)

|v(x) − v(y)| ≤ sup
c∈AL

E[
∫ ∞

0

e−βt|h(xt)− h(yt)|dt]

≤ sup
c∈AL

E[
∫ ∞

0

e−βt
{

Cρ|xt − yt|n + ρ(1 + |xt|n + |yt|n)
}

dt] (20)

≤ sup
c∈AL

∫ ∞
0

e−βt
{

Cρ|x− y|neβ0t + ρ(hn(x) + hn(y))eβ0 t

}
dt

≤ 1
β − β0

[Cρ|x− y|n + 2ργ(1 + |x|n + |y|n)].

Therefore we get (16).
To prove (17), we denote by vr(x) the right hand side of (17). By the formal Markov

property

E[
∫ ∞
τ

e−βt{h(xt) + |ct|2}dt|Fτ ] = E[
∫ ∞

0

e−β(t+τ){h(xτ+t) + |cτ+t|2}dt|Fτ ]

= e−βτJc̃(xτ ),
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with c̃ equal to c shifted by τ . Thus,

Jc(x) = E

[∫ τ

0

+
∫ ∞
τ

e−βt{h(xt) + |ct|2}dt

]
= E

[∫ τ

0

e−βt{h(xt) + |ct|2}dt

]
+E

[ ∫ ∞
τ

e−βt{h(xt) + |ct|2}dt/Fτ
]

≥ E

[∫ τ

0

e−βt{h(xt) + |ct|2}dt + e−βτ vL(xτ)
]
.

It is known in [6, 10] that this formal argument can be verified, and we deduce vL(x) ≥
vr(x).

To prove the reverse inequality, let ρ > 0 be arbitrary. We set

Vc(x) := E[
∫ ∞

0

e−βt{h(xt) + |ct|2}dt]. (21)

By the same calculation as (20), there exists Cρ > 0 such that

|Vc(x)− Vc(y)| ≤ Cρ|x− y|n + ρ(1 + |x|n + |y|n).

Take 0 < δ < 1 with Cρδ
n < ρ. Then, we have for |x− y| < δ,

|v(x) − v(y)| ≤ sup
c∈AL

|Vc(x)− Vc(y)|

≤ ρ(2 + |x|n + |y|n)
≤ ρ[2 + |x|n + 2n(1 + |x|n)]
= ρ[(2 + 2n) + (1 + 2n)|x|n]
≤ Ξρ(x) := ρ(2n + 2)(1 + |x|n).

Let {Si} be a sequence of disjoint subsets of R such that

diam(Si) < δ and ∪i Si = R.

For any i, we take x(i) ∈ Si and c(i) ∈ AL such that

Vc(i)(x
(i)) ≤ inf

c∈AL
Vc(x(i)) + ρ.

Define cτ ∈ AL by

cτt = ct1{t<τ} + c
(i)
t−τ1{xτ∈Si}1{t≥τ}, for xτ ∈ Si.
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Hence,

Vc(i)(xτ ) = Vc(i)(xτ) − Vc(i)(x
(i)) + Vc(i)(x

(i))

≤ Ξρ(xτ ) + Vc(i)(x
(i))

≤ Ξρ(xτ ) + inf
c∈AL

Vc(x(i)) + ρ

= Ξρ(xτ ) + v(x(i)) + ρ

≤ 2Ξρ(xτ) + v(xτ ) + ρ.

Now, by the definition of vr(x), we can find c ∈ AL such that

vr(x) + ρ ≥ E

[∫ τ

0

e−βt{h(xt) + |ct|2}dt] + e−βτ v(xτ )
]
.

Thus, using the formal Markov property [6], we have

vr(x) + ρ≥
∑
i

E

[∫ τ

0

e−βt{h(xt) + |ct|2}dt + e−βτ (Vc(i)(xτ )− 2Ξρ(xτ )− ρ) : xτ ∈ Si

]

=E

[∫ τ

0

e−βt{h(xτt ) + |cτt |2}dt +
∫ ∞
τ

e−βt{h(xτt ) + |cτt |2}dt|Fτ
]

− 2E[e−βτΞρ(xτ )]− ρ

≥ v(x) − 2Ξρ(x) − ρ,

where xτt is the response to cτt with xτ0 = xτ . Letting ρ → 0, we deduce vr(x) ≥ v(x),
which completes the proof. 2

Theorem 2.4 We assume (3), (4), (7) and (11). Then vL is a viscosity solution of
(5). Furthermore, vL converges locally uniformly to a viscosity solution u ∈ C(R) of (6)
satisfying (4), (7) as L→∞.

Proof. We note that (13) gives E[
∫ h

0
|xt|2dt] ≤ eβ0hhf2(x) for h > 0, and

E

[
sup

0≤s≤h
|xs − x|2

]
≤ 32

(
E[(
∫ h

0

|Axt|dt)2 + (
∫ h

0

|ct|dt)2 + ( sup
0≤s≤h

|
∫ s

0

σxtdwt|)2]
)

≤ 32

(
|A|2hE[(

∫ h

0

|xt|2dt)] + h2L2 + CE[
∫ h

0

|xt|2dt]
)
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with some constant C > 0. Hence, we have

lim
h→0

sup
c∈AL

E[ sup
0≤s≤h

|xs − x|2] = 0.

Thus we can apply a standard result of viscosity solutions ([5], Theorem 3.1, p. 220)
to obtain the viscosity property of vL, taking into account the uniform continuity of
h on each compact interval. Since vL(x) is non-increasing, we can define u(x) by
u(x) = limL→∞ vL(x). By Theorem 2.3, it is clear that u fulfills (4), (7). Thus by Dini’s
theorem, we can observe the locally uniform convergence and the viscosity property of u

[5]. The proof is complete. 2

2.1. Uniqueness of HJB

In this subsection we give a proof of uniqueness result for the quadratic control problem
that v is an unique viscosity solution of (6).

Theorem 2.5 We assume (3), (4), (7) and (11). Let vi (i = 1, 2) be two viscosity
solutions of (6) satisfying (16). Then we have v1 = v2.

Proof. We first note that (11) and there exists n < k < n + 1 such that

−βψk +
1
2
σ2x2ψ′′k + Axψ′k + min

r∈R
(|r|2 + rψ′k) ≤ 0, (22)

where ψk(x) = (1 + |x|k). Indeed, by (11) we choose ϑ ∈ (0, β) such that

−β +
1
2
k(k − 1)σ2 + k|A|+ ϑ < 0. (23)

By (23), we have

(−β +
1
2
k(k − 1)σ2 + k|A|+ ϑ)|x|k − k2

4
(|x|k−1)2 − β − ϑ|x|k < 0.

Then (22) is immediate.
Suppose that v1(x0)− v2(x0) > 0 for some x0 ∈ R. Then we find η > 0 such that

sup
x∈R

[v1(x) − v2(x)− 2ηψk(x)] > 0. (24)
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Since

v1(x)− v2(x)− 2ηψk(x) ≤ K̄(1 + |x|n) − 2η(1 + |x|k) −→ −∞ as x→∞,

there exists x̄ ∈ R such that

sup
x∈R

[v1(x)− v2(x)− 2ηψk(x)] = v1(x̄) − v2(x̄)− 2ηψk(x̄) > 0.

Define
Φ(x, y) = v1(x)− v2(y) − m

2
|x− y|2 − η(ψk(x) + ψk(y)),

for any m > 0. It is clear that

Φ(x, y) ≤ C(1 + |x|n + |y|n)− η(2 + |x|k + |y|k)
→ −∞ as x, y→∞,

where C > max{K̄, ρ}. Hence we find (xm, ym) ∈ R2 such that

Φ(xm, ym) = sup
x,y

Φ(x, y)

= v1(xm)− v2(ym) − m

2
|xm − ym|2 − η(ψk(xm) + ψk(ym)) (25)

≥ v1(x̄)− v2(x̄)− 2ηψk(x̄) > 0,

from which

m

2
|xm − ym|2 < v1(xm)− v2(ym) − η(ψk(xm) + ψk(ym))

≤ C(2 + |xm|n + |ym|n)− η(2 + |xm|k + |ym|k)
→ −∞ as |xm|, |ym| → ∞,

where C > max{K̄, ρ}. Thus we deduce that the sequences {xm}, {ym} are bounded and
then {m|xm − ym|2} is bounded by some constant C > 0, and

|xm − ym| ≤ (C/m)
1
2 → 0 as m→∞. (26)

Now, we claim that

m|xm − ym|2 → 0 as m→∞ (27)

xm, ym → x̃ as m→∞. (28)
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Indeed, by the definition of (xm, ym),

Φ(xm, ym) ≥ v1(xm)− v2(xm)− 2ηψk(xm).

Hence, by (25) and (7)

m

2
|xm − ym|2 ≤ v2(xm)− v2(ym) + η(ψk(xm) − ψk(ym))

= v2(xm)− v2(ym) + η(|xm|k − |ym|k)
≤ v2(xm)− v2(ym) + η(n + 1)Ck−1|xm − ym|
≤ Cρ|xm − ym|n + ρ(1 + |xm|n + |ym|n) + η(n + 1)Ck−1|xm − ym|.

Letting m→ ∞ and then ρ→ 0, we obtain (27). Moreover, by (26) we have, (28) taking
a subsequence if necessary. (26) implies x̃ = ỹ. Passing to the limit in (25), we get

v1(x̃)− v2(x̃)− 2η(1 + |x̃|k) > 0. (29)

2

We apply Ishii’s lemma below to

V1(x) = v1(x)− ηψk(x),

V2(y) = v2(y) + ηψk(y).

Lemma 2.6 (Ishii) Let V1,−V2 be upper semi-continuous in an open domain, and set

Φ(x, y) = V1(x)− V2(y) − m

2
|x− y|2.

Let (x̂, ŷ) be the local maximizer of Φ(x, y). Then there exist symmetric matrices X1, X2

such that

(m(x̂ − ŷ), X1) ∈ J̄2,+V1(x̂),

(m(x̂ − ŷ), X2) ∈ J̄2,−V2(ŷ),

and (
X1 0
0 −X2

)
≤ 3m

(
I −I

−I I

)
, I = identity,
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where

J̄2,±V1(x) = {(p, X1) : ∃xr → x, ∃(pr, Xr) ∈ J2,±V1(xr),

(V1(xr), pr, Xr)→ (V1(x), p, X1)}.
Proof. For the proof, see ([5], Theorem 3.2), ([6], Lemma 6.1, p. 238) and ([8], Lemma
1, p. 149).

We remark that if V1, V2 ∈ C2, then

Φx(x̂, ŷ) = Φy(x̂, ŷ) = 0,

from which

V ′1(x̂) = m(x̂− ŷ), V ′2(ŷ) = −m(x̂ − ŷ).

Since

Φxx = V ′′1 (x)−m, Φxy = m, Φyy = −V ′′2 (y) −m,

the maximum principle gives

0 ≥ D2Φ(x̂, ŷ) =

(
V ′′1 (x̂) 0

0 −V ′′2 (ŷ)

)
−m

(
1 −1
−1 1

)
.

We obtain X1, X2 ∈ R1 such that

(m(xm − ym), X1) ∈ J̄2,+V1(xm),

(m(xm − ym), X2) ∈ J̄2,−V2(ym),

−3m

(
I 0
0 I

)
≤
(

X1 0
0 −X2

)
≤ 3m

(
I −I

−I I

)
, I = identity,

where

J̄2,±Vi(x) = {(p, X) : ∃xr → x, ∃(pr, Xr) ∈ J2,±Vi(xr),

(Vi(xr), pr, Xr)→ (Vi(x), p, X)}, i = 1, 2.

Recall that

J2,+v1(x) = {(p + ηk|x|k−1sgn(x), X + ηk(k − 1)|x|k−2) : (p, X) ∈ J2,+V1(x)},
J2,−v2(y) = {(p− ηk|y|k−1sgn(y), X − ηk(k − 1)|y|k−2) : (p, X) ∈ J2,−V2(y)}.
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Hence

(p1, X̄1) :=
(

m(xm − ym) + ηk|xm|k−1sgn(xm), X1 + ηk(k − 1)|xm|k−2

)
∈ J̄2,+v1(xm),

(p2, X̄2) :=
(

m(xm − ym) − ηk|xm|k−1sgn(ym), X2 − ηk(k − 1)|ym|k−2

)
∈ J̄2,−v2(ym),

x2
mX1 ≤ y2

mX2.

By virtue of (9), (10) and (6) gives

−βv1(x) +
1
2
σ2x2X̄1 + Axp1 −

|p1|2
4

+ h(x)|x=xm ≥ 0,

−βv2(y) +
1
2
σ2y2X̄2 + Ayp2 −

|p2|2
4

+ h(y)|y=ym ≤ 0.

Putting these inequalities together, we get

β[v1(xm) − v2(ym)]≤ 1
2
σ2(xm2X̄1 − ym

2X̄2) + A(xmp1 − ymp2)

− 1
4

(
(|p1|)2 − (|p2|)2

)
+ h(xm)− h(ym)

≤ 1
2
σ2ηk(k − 1)[|xm|k + |ym|k]+Am(xm − ym)2+Aηk[|xm|k+|ym|k]

− 1
4

[
(|m(xm − ym) + ηk|xm|k−1sgn(xm)|)2

− (|m(xm − ym) − ηk|ym|k−1sgn(ym)|)2

]
+ h(xm)− h(ym).

Letting m→∞, we have

β[v1(x̃)− v2(x̃)]≤ 2η

[
1
2
σ2x̃2k(k − 1)|x̃|k−2 + Ax̃k|x̃|k−1 − k2

4
(|x̃|k−1)2

]
≤ 2ηβ(1 + |x̃|k),

which follows from (22). This is contrary with (29), completing the proof of Theorem
2.5. 2
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3. Classical solutions

We study here the smoothness of the viscosity solution u of (5).

Proposition 3.1 We assume (3), (4), (7) and (11); further, we assume that the solution
is convex. Then, vL(x) and u(x) are convex.

Proof. For any ε > 0, there exist c, ĉ ∈ AL such that

E[
∫ ∞

0

e−βt{h(xt) + |ct|2}dt] < vL(x) + ε,

E[
∫ ∞

0

e−βt{h(x̂t) + |ĉt|2}dt] < vL(x̂) + ε,

where

dxt = [Axt + ct]dt + σxtdwt, x0 = x ∈ R,

dx̂t = [Ax̂t + ĉt]dt + σx̂tdwt, x̂0 = x̂ ∈ R.

We set

c̃t = ξct + (1− ξ)ĉt,

x̃t = ξxt + (1− ξ)x̂t,

x̃0 = ξx + (1 − ξ)x̂ ≡ x̃,

for 0 < ξ < 1. Clearly,

dx̃t = [Ax̃t + c̃t]dt + σx̃tdwt.

Hence, by convexity

vL(x̃) ≤ E[
∫ ∞

0

e−βt{h(x̃t) + |c̃t|2}dt]

≤ ξE[
∫ ∞

0

e−βt{h(xt) + |ct|2}dt] + (1− ξ)E[
∫ ∞

0

e−βt{h(x̂t) + |ĉt|2}dt]

≤ ξ(vL(x) + ε) + (1− ξ)(vL(x̂) + ε).

Letting ε −→ 0, we get

vL(x̃) = vL(ξx + (1− ξ)x̂) ≤ ξvL(x) + (1− ξ)vL(x̂),
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which completes the convexity of vL(x). From the definition of vL(x), for each positive
integer L, we have 0 ≤ vL+1(x) ≤ vL(x), x ∈ R. Since vL(x) is non-increasing, we can
define u(x) by u(x) = lim

L→∞
vL(x). Hence, we see that u(x) is also convex. 2

Theorem 3.2 We assume (3), (4), (7) and (11). Then we have

u ∈ C2(R \ {0}). (30)

Proof. Step 1: By the convexity of u we recall a classical result of Alexandrov [6] to
see that Lebesgue measure of R \ D ∪ {0} is 0, where

D =
{

x ∈ R : u is twice differentiable at x
}

. By the definition of twice-differentiability,

we have (u′(x), u′′(x)) ∈ J+2u(x) ∩ J−2u(x) for all x ∈ D, and hence

−βu +
1
2
σ2x2u′′ + Axu′ − (u′)2

4
+ h(x) = 0, ∀x ∈ D.

Let d+u(x) and d−u(x) denote the right- and left-hand derivatives respectively. Define
r±(x) by

−βu(x) +
1
2
σ2x2r±(x) + Axd±u(x)− (d±u(x))2

4
+ h(x) = 0 ∀x ∈ (R \ {0}). (31)

Since d+u = d−u = u′ on D, we have r+ = r− = u′′ a.e. By definition, d+u(x) is right
continuous, and so is r+(x). Hence it is easy to see that

u(y) − u(x) =
∫ y

x

d+u(s)ds

d+u(s) − d+u(x) =
∫ s

x

r+(t)dt, s > x.

Thus we get

R(u; y) : =
{

u(y) − u(x)− d+u(x)(y − x)− 1
2
r+(x)|y− x|2

}
/|y− x|2

=
∫ y

x

(
d+u(s) − d+u(x)− r+(x)(s− x)

)
ds/|y− x|2 (32)

=
∫ y

x

{∫ s

x

(
r+(t) − r+(x)

)
dt

}
ds/|y − x|2 −→ 0 as y ↓ x.
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Step 2: We claim that u(x) is differentiable at x ∈ R \ D ∪ {0} = 0. It is well known in

[2] and [4] that δu(x) =
[
d+u(x), d−u(x)

]
∀ x ∈ (R\{0}), where δu(x) is the generalized

gradient of u at x. Suppose d+u(x) > d−u(x). We set

p̂ = ξd+u(x) + (1− ξ)d−u(x)

r̂ = ξr+(x) + (1− ξ)r−(x), 0 < ξ < 1.

If lim infy→x R(u; y) < 0, then we can find a sequence ym −→ x such that
limm→∞ R(u; ym) < 0. By (32), we may consider that ym ≤ ym+1 < x for every m,
taking a subsequence if necessary. Hence

lim
m→∞

u(ym)− u(x)− d+u(x)(ym − x)
|ym − x| ≤ 0.

This leads to d+u(x) ≤ d−u(x), which is a contradiction. Thus we have (d+u(x), r+(x)) ∈
J2,−u(x) and similarly, (d−u(x), r−(x)) ∈ J2,−u(x). By the convexity of J2,−u(x), we
get (p̂, r̂) ∈ J2,−u(x). Now we note that

(p̂)2 < ξ(d+u(x))2 + (1− ξ)(d−u(x))2,

and hence by (31)

−βu(x) +
1
2
σ2x2r̂ + Axp̂− (p̂)2

4
+ h(x) > 0.

On the other hand, by the definition of viscosity solution

−βu(x) +
1
2
σ2x2q + Axp− p2

4
+ h(x) ≤ 0 ∀(p, q) ∈ J2,−u(x),

which is a contradiction. Therefore we deduce that δu(x) is a singleton, and so u is
differentiable at x [2].
Step 3: We claim that u′ is continuous on (R\{0}). Let xm −→ x and pm = u′(xm) −→
p. Then we have by convexity u(y) ≥ u(x) + p(y − x), for all y. Hence we see that
p ∈ D−u(x), where

D−u(x) = {p ∈ R : lim inf
y→x

{u(y)− u(x)− p(y − x)}/|y− x| ≥ 0}.
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Since δu(x) = D−u(x) and δu(x) is a singleton, we deduce p = u′(x) ([2], Proposition
4.7, p. 66). Step 4: We set w = u′. Since

−βw(xm) +
1
2
σ2xm

2w′(xm) + Axmw(xm) − (w(xm))2

4
+ h(xm) = 0 xm ∈ D,

the sequence {w′(xm)} converges uniquely as xm −→ x ∈ R \D∪ {0}, and w is Lipschitz
near x by monotonicity. Hence, we have a well-known result [4] in nonsmooth analysis
that δw(x) coincides with the convex hull of the set

D∗w(x) =
{

q ∈ R : q = lim
m→∞

w′(xm), xm → x

}
.

Then

−βu(x) +
1
2
σ2x2q + Axw(x)− (w′(x))2

4
+ h(x) = 0 ∀q ∈ δw(x).

Hence we observe that δw(x) is a singleton, and then w(x) is differentiable at x. The
continuity of w′(x) follows immediately. Thus we conclude that w ∈ C1(R \ {0}) and
(R \ D ∪ {0}) is empty. The proof is complete. 2

Theorem 3.3 We assume (3), (4), (7) and (11). Further, we assume that

h(x)/x2 → ĥ ∈ R+ as x→ 0. (33)

Then we have

u ∈ C1(R) ∩ C2(R \ {0}). (34)

In addition, if ĥ = 0, then

u ∈ C2(R). (35)

Proof. We first observe that vL is a viscosity solution of the boundary value problem:

V ′′ + G(x, V, V ′) = 0 in (a, b) (36)

V (a) = vL(a), V (b) = vL(b),
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for any interval [a, b] ⊂ R \ {0} where

G(x, V, V ′) = 2{−αV + AxV ′ + min
|r|≤L

(|r|2 + rV ′) + h(x)}/σ2x2 = 0.

Standard elliptic regularity theory Fleming and Soner ([6], Theorem 4.1) and the unique-
ness of viscosity solutions by Crandall, Ishii and Lions [5] yield that vL is smooth in (a, b).
Thus

| min
|r|≤L

(|r|2 + rvL
′)| ≤ |min

r∈R
(|r|2 + rvL

′)| = (|vL′|/2)2

≤ {(|vL′|/2)2 + 1}.

By Theorem 3.2, we have u ∈ C2(R \ {0}).
To prove (34), it suffices to show that u has the following property:

u′(x) = o(1) as x→ 0. (37)

By (33), there exists λ > 0, for any ε > 0 such that h(x) ≤ (ĥ + ε)x2 for |x| < λ, and
hence, by (4)

h(x) ≤ (ĥ + ε)x2 + C(1/λn + 1)|x|n, ∀x ∈ R. (38)

Note that u(x) ≤ E[
∫∞

0
e−βth(x0

t )dt]. Then by (13) we have

u′(x) = 0(x2) as x→ 0. (39)

Now, by convexity

u(y) ≥ u(x) + u′(x)(y − x), x 6= 0.

Substituting y = 2x, and y = 0 we get u(2x) ≥ u(x)+u′(x)x and u(x)−u′(x)x ≤ u(0) = 0
by (39). Hence

u(2x)
x2

≥ u′(x)
x
≥ u(x)

x2
, (40)

which implies (37).

Finally, suppose ĥ = 0. Then, by virtue of (38), we have u(x) = o(x2) as x → 0.

Moreover, by (40), u′(x) = o(x) as x → 0. Dividing (5) by x2 and passing to the limit,
we get u′′(0) = 0, which implies (35). 2
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4. An application to quadratic control theory

We now study the quadratic control problem (1) over the class Aad of admissible
controls, subject to (2), where
Aad = {c = (ct) ∈ A : limT→∞E[e−βT |xT |n] = 0 for the response xt to ct}. We consider
the stochastic differential equation

dx∗t = [Ax∗t − u′(x∗t )/2]dt + σx∗tdwt, x∗0 = x. (41)

Theorem 4.1 We assume (3), (4), (7), (11) and (33). Then the optimal control c∗t is
given by

c∗t = −u′(x∗t )/2. (42)

Proof. Since u′ is continuous, (41) admits a weak solution x∗t up to explosion time
σ = inf{t : |x∗t | =∞} [?]. Taking into account xu′(x) ≥ 0, we can show (x∗t )2 ≤ (x0

t )2 by
the comparison theorem. Hence σ =∞. By the monotonicity of u′(x), the uniqueness of
(41) holds. Thus we conclude that (41) has a unique strong solution (x∗t ).

It follows from (14) that

E[e−βT (1 + |x∗T |n)] ≤ e−(β−β0)TE[e−β0T fn(x0
T )] −→ 0 as T →∞,

where x0
t is a unique solution of (18). So (c∗t ) ∈ Aad. Since u satisfies (4), we see by (40)

and (13) that

E[
∫ T

0

e−2βt(x∗tu
′(x∗t ))

2dt] ≤ E[
∫ T

0

e−2βtu(2x∗t )
2dt]

≤ CE[
∫ T

0

e−2βt(1 + |x∗t |2n)dt]

≤ CE[
∫ T

0

e−2βtf2n(x0
t )dt] <∞,

and hence
∫ t

0 e−βsσx∗su
′(x∗s)dws is a martingale. Then we apply Ito’s formula for convex

functions [7, p. 219] to obtain

E[e−βT u(x∗T )] = u(x) + E

[ ∫ T

0

e−βt
(
− βu + Axu′ + c∗tu

′ +
1
2
σ2x2u′′

)
|x=x∗t dt

]

= u(x)− E[
∫ T

0

e−βt{h(x∗t ) + |c∗t |2}dt].

326



BATEN

Passing to the limit, we have J(c∗) = u(x). By the same calculation as above, we can see
that

E[e−βT∧τnu(xT∧τn)] ≥ u(x)− E[
∫ T∧τn

0

e−βt{h(xt) + |ct|2}dt],

where {τn} is a sequence of localizing stopping times for the local martingale. Letting
τn −→ ∞ and then T −→ ∞, we obtain u(x) ≤ J(c) for all c ∈ Aad. The proof is
complete. 2

5. Conclusion

We have studied the Linear quadratic regulatory control problem for degenerate
diffusions. In this paper we have proved the existence of a viscosity and smooth solutions
u of (5) by its convexity argument following that the value function vL(x) is a viscosity
solution of (5), and have showed also this value function converges to a viscosity solution
u, for large L > 0.
We can further study in general a stochastic control problem for linear degenerate systems
to minimize the discounted expected cost:

J(c) = E

[∫ ∞
0

e−βt{h(xt) + |ct|n}dt

]

over c ∈ A and subject to the degenerate stochastic differential equation (2) and a
continuous function f on R such that (4) and (7); and, in addition,

k0|x|n − k1 ≤ h(x)

for some constants k0, k1 > 0 and for a fixed integer n ≥ 2.
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