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Abstract

In this paper, we establish several general theorems for the boundedness of

the anisotropic sublinear operators on a weighted Lebesgue space. Conditions of

these theorems are satisfied by many important operators in analysis. We also give

some applications the boundedness of the parabolic singular integral operators, and

the maximal operators associated with them from one weighted Lebesgue space to

another one. Using this results, we prove weighted embedding theorems for the

anisotropic Sobolev spaces W l1,... ,ln
ω0,ω1 ,... ,ωn (Rn).

Key Words: Weighted Lebesgue space, sublinear operators, anisotropic singular

integral, two-weighted inequality.

1. Introduction

Let Rn be the n-dimensional Euclidean space of points x = (x1, . . . , xn) with norm

|x| =
(∑n

i=1 x
2
i

)1/2, Rn0 = Rn \ {0} and Z be the set of integer numbers. Consider
a real n × n matrix A with eigenvalues λj, Reλj > 0, and let Q = trA be its trace.
The matrix A determines a one-parameter group At = exp(A ln t), t > 0 of nonsingular
transformations of Rn. Denote by diag {a1, . . . , an} the matrix with numbers a1, . . . , an

on the main diagonal and zero off-diagonal elements. Associated with the group At is the
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At-homogeneous metric ρ : Rn0 → R+, ρ(Atx) = tρ(x), which is smooth in Rn0 .
For x ∈ Rn and r > 0 the ρ - ball (ρ - sphere) about x with radius r is defined to be

the set

B(x, r) = {y : ρ(x − y) < r} (S(x, r) = {y : ρ(x− y) = r}).

Almost everywhere positive and locally integrable function ω : Rn → R will be called
a weight. We shall denote by Lp,ω(Rn) the set of all measurable functions f on Rn such
that the norm

‖f‖Lp,ω(Rn) ≡ ‖f‖p,ω =
(∫

Rn
|f(x)|pω(x)dx

)1/p

, 1 ≤ p <∞

is finite.
We say that the weighted pair (ω, ω1) satisfies the Muckenhoupt’s condition Ap =

Ap(Rn, ρ) (briefly, (ω, ω1) ∈ Ap), 1 < p <∞, if there is a constant C = C(ω, p) such that
for any ρ - ball B ⊂ B(

|B|−1

∫
B

ω(x)dx
)(
|B|−1

∫
B

ω1−p′
1 (x)dx

)
≤ C, 1

p
+

1
p′

= 1. (1)

Here, B = B(ρ) is the collection of all ρ-balls B(x, r), x ∈ Rn, r > 0.
For p = 1, we say (ω, ω1) ∈ A1, if(

|B|−1

∫
B

ω(x)dx
)(

sup
B
ω−1

1

)
≤ C

for any ρ - ball B ⊂ B.
We write also ω ∈ Ap, if ω = ω1. It is easy to verify that, ρ(x)α ∈ Ap if and only if

−Q < α < Q(p− 1) for 1 < p <∞ and ρ(x)α ∈ A1 if and only if −Q < α ≤ 0.
A condition (1) was first introduced by Muckenhoupt [16] for weighted estimates of

Hardy maximal functions.

Definition 1 Function K defined on Rn0 , is said to be an anisotropic Calderon-Zygmund
(ACZ) kernel in the space Rn if

i) K ∈ C∞(Rn \ {0}) ;

ii) K(Atx) = t−QK(x), t > 0, x ∈ Rn0 ;
iii)

∫
S(0,1)K(x)dσ(x) = 0, where dσ is the element of area of the ρ-sphere S(0, 1).
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In this paper, we shall prove the boundedness of some anisotropic sublinear operators
on a weighted Lp spaces. We point out that condition (2) (see below) in the isotropic
case was first introduced by Soria and Weiss in [19]. Condition (2) is satisfied by many
interesting operators in harmonic analysis, such as the anisotropic Calderon–Zygmund
operators, anisotropic Hardy–Littlewood maximal operators, anisotropic R. Fefferman’s
singular integals, anisotropic Ricci–Stein’s oscillatory singular integrals, the anisotropic
Bochner–Riesz means and so on (see, for example [19]).

We also give some applications the boundedness of the parabolic singular integral
operators and the maximal operators associated with them from one weighted Lebesgue
space to another. Using these results, we prove two-weighted inequalities for linear means
of Fourier integrals defined by a single function with support in a specially organized
set. Weighted embedding theorems are obtained for the anisotropic Sobolev spaces
W l1,... ,ln
ω0,ω1,... ,ωn(Rn).

The structure of the paper is as follows. In Section 1 we present some definitions.
In Section 2 we prove the boundedness of some anisotropic sublinear operators on a
weighted Lp spaces. In Section 3 we give some applications. The main result of the paper
is Theorem 1, established in Section 2.

For the sake of simplicity, the letter C always denotes a positive constant which may
change from one step to the next.

2. Main theorems and their proofs

First, we shall establish the boundedness of a large class of sublinear operators in
weighted Lp spaces.

In [18], in particular is proved the following theorem.

Theorem 1 Let p ∈ (1,∞) and let T be a sublinear operator bounded from Lp(Rn) to
Lp(Rn) such that, for any f ∈ L1(Rn) with compact support and x /∈ suppf

|Tf(x)| ≤ c0
∫
Rn

|f(y)|
ρ(x − y)Q dy, (2)

where c0 is independent of f and x.
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Let also ω be a positive function for which there exists a constant b̃ > 0 such that

sup
2k−2≤ρ(x)<2k+1

ω(x) ≤ b̃ inf
2k−2≤ρ(x)<2k+1

ω(x), k ∈ Z

and ω ∈ Ap, then T is bounded in Lp,ω(Rn).

Theorem 2 Let p ∈ (1,∞), T be a sublinear operator bounded from Lp(Rn) to Lp(Rn)
and satisfying (2).

Moreover, let ω(x), ω1(x) be weight functions on Rn and the following three conditions
are satisfied:

(a) there exists b > 0 such that

sup
ρ(x)/4<ρ(y)≤4ρ(x)

ω1(y) ≤ b ω(x) for a.e. x ∈ Rn,

(b) A ≡ sup
r>0

(∫
ρ(x)>2r

ω1(x)ρ(x)−Qpdx

)(∫
ρ(x)<r

ω1−p′(x)dx

)p−1

<∞,

(c) B ≡ sup
r>0

(∫
ρ(x)<r

ω1(x)dx

)(∫
ρ(x)>2r

ω1−p′(x)ρ(x)−Qp
′
dx

)p−1

<∞.

Then there exists a constant C, independent of f, such that for all f ∈ Lp,ω(Rn)∫
Rn
|Tf(x)|pω1(x)dx ≤ C

∫
Rn
|f(x)|pω(x)dx. (3)

Moreover, condition (a) can be replaced by condition
(a′) and there exists b > 0 such that

ω1(x)

(
sup

ρ(x)/4≤ρ(y)≤4ρ(x)

1
ω(y)

)
≤ b for a.e. x ∈ Rn.

Proof. For k ∈ Z we define Ek = {x ∈ Rn : 2k < ρ(x) ≤ 2k+1}, Ek,1 = {x ∈ Rn :
ρ(x) ≤ 2k−1}, Ek,2 = {x ∈ Rn : 2k−1 < ρ(x) ≤ 2k+2}, Ek,3 = {x ∈ Rn : ρ(x) > 2k+2}.
Then Ek,2 = Ek−1 ∪ Ek ∪ Ek+1 and the multiplicity of the covering {Ek,2}k∈Z is equal
to 3.

Given f ∈ Lp,ω(Rn), we write

|Tf(x)| =
∑
k∈Z
|Tf(x)|χEk (x) ≤

∑
k∈Z
|Tfk,1(x)|χEk(x)
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+
∑
k∈Z
|Tfk,2(x)|χEk (x) +

∑
k∈Z
|Tfk,3(x)|χEk (x)

≡ T1f(x) + T2f(x) + T3f(x), (4)

where χEk is the characteristic function of the set Ek, fk,i = fχEk,i , i = 1, 2, 3.
First we shall estimate ‖T1f‖Lp,ω1

. Note that for x ∈ Ek, y ∈ Ek,1 we have ρ(y) ≤
2k−1 ≤ ρ(x)/2. Moreover, Ek ∩ suppfk,1 = ∅ and ρ(x − y) ≥ ρ(x)/2. Hence by (2)

T1f(x) ≤ c0
∑
k∈Z

(∫
Rn

|fk,1(y)|
ρ(x − y)Q dy

)
χEk

≤ c0
∫
ρ(y)≤ρ(x)/2

ρ(x− y)−Q|f(y)|dy

≤ 2Qc0ρ(x)−Q
∫
ρ(y)≤ρ(x)/2

|f(y)|dy

for any x ∈ Ek. Hence we have∫
Rn
|T1f(x)|pω1(x)dx ≤

(
2Qc0

)p ∫
Rn

(∫
ρ(y)≤ρ(x)/2

|f(y)|dy
)p

ρ(x)−Qpω1(x)dx.

Since A <∞, the Hardy inequality∫
Rn
ω1(x)ρ(x)−Qp

(∫
ρ(y)≤ρ(x)/2

|f(y)|dy
)p

dx ≤ C
∫
Rn
|f(x)|pω(x)dx

holds and C ≤ c′A, where c′ depends only on n, a and p. In fact, the condition A < ∞
is necessary and sufficient for the validity of this inequality (see [2] and [12]). Hence, we
obtain ∫

Rn
|T1f(x)|pω1(x)dx ≤ c1

∫
Rn
|f(x)|pω(x)dx, (5)

where c1 is independent of f .
Next we estimate ‖T3f‖Lp,ω1

. As it is easy to verify, for x ∈ Ek, y ∈ Ek,3 we have

ρ(y) > 2ρ(x) and ρ(x − y) ≥ ρ(y)/2. Since Ek ∩ suppfk,3 = ∅, for x ∈ Ek by (2), we
obtain

T3f(x) ≤ c0
∫
ρ(y)>2ρ(x)

|f(y)|
ρ(x− y)Q dy ≤ 2Qc0

∫
ρ(y)>2ρ(x)

|f(y)|ρ(y)−Qdy.
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Hence we have

∫
Rn
|T3f(x)|pω1(x)dx ≤

(
2Qc0

)p ∫
Rn

(∫
ρ(y)>2ρ(x)

|f(y)|ρ(y)−Qdy
)p

ω1(x)dx.

Since B <∞, the Hardy inequality

∫
Rn
ω1(x)

(∫
ρ(y)>2ρ(x)

|f(y)|ρ(y)−Qdy
)p

dx ≤ C
∫
Rn
|f(x)|pω(x)dx

holds and C ≤ c′B, where c′ depends only on n and p. In fact the condition B < ∞ is
necessary and sufficient for the validity of this inequality (see [2] and [12]). Hence, we
obtain ∫

Rn
|T3f(x)|pω1(x)dx ≤ c2

∫
Rn
|f(x)|pω(x)dx, (6)

where c2 is independent of f .

Finally, we estimate ‖T2f‖Lp,ω1
. By the Lp(Rn) boundedness of T and condition (a)

we have ∫
Rn
|T2f(x)|pω1(x)dx =

∫
Rn

(∑
k∈Z
|Tfk,2(x)|χEk (x)

)p
ω1(x)dx

=
∫
Rn

(∑
k∈Z
|Tfk,2(x)|p χEk(x)

)
ω1(x)dx =

∑
k∈Z

∫
Ek

|Tfk,2(x)|p ω1(x)dx

≤
∑
k∈Z

sup
x∈Ek

ω1(x)
∫
Rn
|Tfk,2(x)|p dx ≤ ‖T‖p

∑
k∈Z

sup
x∈Ek

ω1(x)
∫
Rn
|fk,2(x)|p dx

= ‖T‖p
∑
k∈Z

sup
y∈Ek

ω1(y)
∫
Ek,2

|f(x)|pdx,

where ‖T‖ ≡ ‖T‖Lp(Rn)→Lp(Rn). Since, for x ∈ Ek,2 2k−1 < ρ(x) ≤ 2k+2, we have by
condition (a)

sup
y∈Ek

ω1(y) = sup
2k−1<ρ(y)≤2k+2

ω1(y) ≤ sup
ρ(x)/4<ρ(y)≤4ρ(x)

ω1(y) ≤ b ω(x)
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for almost all x ∈ Ek,2. Therefore∫
Rn
|T2f(x)|pω1(x)dx

≤ ‖T‖pb
∑
k∈Z

∫
Ek,2

|f(x)|pω(x)dx ≤ c3
∫
Rn
|f(x)|pω(x)dx, (7)

where c3 = 3‖T‖pb, since the multiplicity of covering {Ek,2}k∈Z is equal to 3.
Inequalities (4), (5), (6) and (7) imply (3) which completes the proof. 2

Similarly we prove the following weak variant of Theorem 2.

Theorem 3 Let p ∈ [1,∞) and let T be a sublinear operator bounded from Lp(Rn) to
WLp(Rn), i.e., ∫

{x∈Rn : |Tf(x)|>λ}
dx ≤ C

λp

∫
Rn
|f(x)|pdx

and satisfying (2). Moreover, let ω(x), ω1(x) be weight functions on Rn and conditions
(a), (b), (c) be satisfied.

Then there exists a constant C1, independent of f, such that for all f ∈ Lp,ω(Rn)∫
{x∈Rn : |Tf(x)|>λ}

ω1(x)dx ≤ C1

λp

∫
Rn
|f(x)|pω(x)dx. (8)

Let K be an ACZ kernel and T be the corresponding integral operator

Tf(x) = p.v.

∫
Rn
K(x− y)f(y)dy ≡ lim

r→0

∫
Rn\B(x,r)

K(x− y)f(y)dy.

Then T satisfies the condition (2). See [19] for details. Thus, we have the following
corollary.

Corollary 1 Let p ∈ (1,∞) (p ∈ [1,∞)), K be an ACZ kernel and T be the corresponding
integral operator. Moreover, let ω(x), ω1(x) be weight functions on Rn and conditions
(a), (b), (c) be satisfied. Then inequality (3) ((8)) holds.
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Remark 1 A sufficient condition for the Calderon–Zygmund operator T : Lp,ω(Rn) →
Lp,ω1 (Rn) was found by N. Fuji [11], however the condition he introduced is not easy to
check for given weights. Recently, Guliyev [9] and Edmunds and Kokilashvili [13] found
new sufficient conditions easily verifiable for Calderon–Zygmund operator T : Lp,ω(Rn)→
Lp,ω1 (Rn), whenever ω(·) and ω1(·) are radial monotone weights. In the paper by Y.
Rakotondratsimba [23], Corollary 1 was proved for Calderon–Zygmund operator T . Note
that, for singular integral operators, defined on homogeneous groups analog, Corollary 1
was proved in [15] and [8] (see also [10], [1], [3] and [9]).

Theorem 4 Let p ∈ (1,∞), T be a sublinear operator bounded from Lp(Rn) to Lp(Rn)
and satisfying (2).

1) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing function on
(0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (b). Then there
exists a constant C, independent of f, such that for all f ∈ Lp,ω(ρ(x))(Rn)∫

Rn
|Tf(x)|pω1(ρ(x))dx ≤ C

∫
Rn
|f(x)|pω(ρ(x))dx. (9)

2) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing function on
(0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies the conditions (a), (c). Then
inequality (9) is valid.

Proof. 1) Suppose that f ∈ Lp,ω(Rn), ω(t) be a weight function on (0,∞) and ω1 is
a positive increasing function on (0,∞) and (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a),
(b).

Without the loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(0+) +
∫ t

0

ψ(λ)dλ,

where ω1(0+) = limt→0 ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a sequence of
increasing absolutely continuous functions $n such that $n(t) ≤ ω1(t) and lim

n→∞
$n(t) =

ω1(t) for any t ∈ (0,∞) (see [7] and [9] for details).

We have ∫
Rn
|Tf(x)|pω1(ρ(x))dx = ω1(0+)

∫
Rn
|Tf(x)|pdx+
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+
∫
Rn
|Tf(x)|p

(∫ ρ(x)

0

ψ(λ)dλ

)
dx = J1 + J2.

If ω1(0+) = 0, then J1 = 0. If ω1(0+) 6= 0, then by the boundedness of T in Lp(Rn),
thanks to (a), we have

J1 ≤ ‖T‖pω1(0+)
∫
Rn
|f(x)|pdx ≤

≤ ‖T‖p
∫
Rn
|f(x)|pω1(ρ(x))dx ≤ b ‖T‖p

∫
Rn
|f(x)|pω(ρ(x))dx.

After changing the order of integration in J2 we have

J2 =
∫ ∞

0

ψ(λ)

(∫
ρ(x)>λ

|Tf(x)|pdx
)
dλ ≤

≤ 2p−1

∫ ∞
0

ψ(λ)

(∫
ρ(x)>λ

|T (fχ{ρ(x)>λ/2})(x)|pdx +

+
∫
ρ(x)>λ

|T (fχ{ρ(x)≤λ/2})(x)|pdx
)
dλ = 2p−1 (J21 + J22) .

Using the boundedness of T in Lp(Rn) and condition (a) we have

J21 ≤ ‖T‖p
∫ ∞

0

ψ(t)

(∫
ρ(y)>λ/2

|f(y)|pdy
)
dt

= ‖T‖p
∫
Rn
|f(y)|p

(∫ 2ρ(y)

0

ψ(λ)dλ

)
dy

≤ ‖T‖p
∫
Rn
|f(y)|pω1(2ρ(y))dy

≤ b ‖T‖p
∫
Rn
|f(y)|pω(ρ(y))dy.

Let us estimate J22. For ρ(x) > λ and ρ(y) ≤ λ/2 we have ρ(x)/2 ≤ ρ(x − y) ≤
3ρ(x)/2, and so

J22 ≤ c4
∫ ∞

0

ψ(λ)

(∫
ρ(x)>λ

(∫
ρ(y)≤2λ

|f(y)|
ρ(x − y)Q dy

)p
dx

)
dλ
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≤ c5
∫ ∞

0

ψ(λ)

(∫
ρ(x)>λ

(∫
ρ(y)≤2λ

|f(y)|dy
)p

ρ(x)−Qpdx

)
dλ

= c6

∫ ∞
0

ψ(λ)λ−Qp+Q
(∫

ρ(y)≤λ/2
|f(y)|dy

)p
dλ.

The Hardy inequality

∫ ∞
0

ψ(λ)λ−Qp+Q
(∫

ρ(y)≤λ/2
|f(y)|dy

)p
dλ

≤ C
∫
Rn
|f(y)|pω(ρ(y))dy

for p ∈ (1,∞) is characterized by the condition C ≤ c′A′ (see [2], [12], see also [5], [14]),
where

A′ ≡ sup
τ>0

(∫ ∞
2τ

ψ(t)t−Qp+Qdτ
)(∫

ρ(x)<τ

ω1−p′(x)dx

)p−1

<∞.

Note that ∫ ∞
2t

ψ(τ )τ−Qp+Qdτ

= Q(p− 1)
∫ ∞

2t

ψ(τ )dτ
∫ ∞
τ

λQ−1−Qpdλ

= Q(p− 1)
∫ ∞

2t

λQ−1−Qpdλ

∫ λ

2t

ψ(τ )dτ

≤ Q(p− 1)
∫ ∞

2t

λQ−1−Qpω1(λ)dλ

= c7

∫
ρ(x)>2t

ω1(ρ(x))ρ(x)−Qpdx.

Condition (b) of the theorem guarantees that A′ ≤ c7A < ∞. Hence, applying the
Hardy inequality, we obtain

J22 ≤ c8
∫
Rn
|f(x)|pω(ρ(x))dx.
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By the combining estimates of J1 and J2, we get (9) for ω1(t) = ω1(0+) +
∫ t

0
ψ(τ )dτ.

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies
(9). The first part of the Theorem 4 is proved.

2) Without loss of generality we can suppose that ω1 may be represented by

ω1(t) = ω1(+∞) +
∫ ∞
t

ψ(τ )dτ,

where ω1(+∞) = lim
t→∞

ω1(t) and ω1(t) ≥ 0 on (0,∞). In fact there exists a sequence of de-

creasing absolutely continuous fuctions $n such that $n(t) ≤ ω1(t) and limn→∞$n(t) =
ω1(t) for any t ∈ (0,∞)(see [7] and [9] for details).

We have ∫
Rn
|Tf(x)|pω1(ρ(x))dx = ω1(+∞)

∫
Rn
|Tf(x)|pdx+

+
∫
Rn
|Tf(x)|p

(∫ ∞
ρ(x)

ψ(τ )dτ

)
dx = I1 + I2.

If ω1(+∞) = 0, then I1 = 0. If ω1(+∞) 6= 0, by the boundedness of T in Lp(Rn) and
condition (a) we have

J1 ≤ ‖T‖ω1(+∞)
∫
Rn
|f(x)|pdx ≤

≤ ‖T‖
∫
Rn
|f(x)|pω1(ρ(x))dx

≤ b ‖T‖
∫
Rn
|f(x)|pω(ρ(x))dx.

After changing the order of integration in J2, we have

J2 =
∫ ∞

0

ψ(λ)

(∫
ρ(x)<λ

|Tf(x)|pdx
)
dλ

≤ 2p−1

∫ ∞
0

ψ(λ)

(∫
ρ(x)<λ

|T (fχ{ρ(x)<2λ})(x)|pdx

+
∫
ρ(x)<λ

|T (fχ{ρ(x)≥2λ})(x)|pdx
)
dλ = J21 + J22.
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Using the boundedness of T in Lp(Rn) and condition (a′), we obtain

J21 ≤ ‖T‖
∫ ∞

0

ψ(t)

(∫
ρ(y)<2λ

|f(y)|pdy
)
dt

= ‖T‖
∫
Rn
|f(y)|p

(∫ ∞
ρ(y)/2

ψ(λ)dλ

)
dy

≤ ‖T‖
∫
Rn
|f(y)|pω1(ρ(y)/2)dy

≤ b ‖T‖
∫
Rn
|f(y)|pω(ρ(y))dy.

Let us estimate J22. For ρ(x) < λ and ρ(y) ≥ 2λ we have ρ(y)/2 ≤ ρ(x−y) ≤ 3ρ(y)/2,
and so

J22 ≤ c8
∫ ∞

0

ψ(λ)

(∫
ρ(x)<λ

(∫
ρ(y)≥2λ

|f(y)|
ρ(x− y)Q dy

)p
dx

)
dλ ≤

≤ 2Qc8
∫ ∞

0

ψ(λ)

(∫
ρ(x)<λ

(∫
ρ(y)≥2λ

ρ(y)−Q|f(y)|dy
)p

dx

)
dλ =

= c9

∫ ∞
0

ψ(λ)λQ
(∫

ρ(y)≥2λ

ρ(y)−Q|f(y)|dy
)p

dλ.

The Hardy inequality

∫ ∞
0

ψ(λ)λQ
(∫

ρ(y)≥2λ

ρ(y)−Q|f(y)|dy
)p

dλ ≤ C
∫
Rn
|f(y)|pω(ρ(y))dy

for p ∈ (1,∞) is characterized by the condition C ≤ cB′ ([2], [12], see also [5], [14]), where

B′ ≡ sup
τ>0

(∫ τ

0

ψ(t)tQdτ
)(∫

ρ(x)>2τ

ω1−p′(x)ρ(x)−Qp
′
dx

)p−1

<∞.

Note that ∫ τ

0

ψ(t)tQdt = Q

∫ τ

0

ψ(t)dt
∫ t

0

λQ−1dλ =
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= Q

∫ τ

0

λQ−1dλ

∫ t

λ

ψ(τ )dτ ≤ Q
∫ τ

0

λQ−1ω1(λ)dλ =

= c9

∫
ρ(x)<τ

ω1(ρ(x))dx.

Condition (c) of the theorem guarantees that B′ ≤ c9B <∞. Hence, applying the Hardy
inequality, we obtain

J22 ≤ c10

∫
Rn
|f(x)|pω(ρ(x))dx.

Combining the estimates of J1 and J2, we get (9) for ω1(t) = ω1(+∞) +
∫∞
t
ψ(τ )dτ . By

Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this implies
(9). The theorem is proved. 2

Corollary 2 Let p ∈ (1,∞), K be ACZ kernel and T be the corresponding operator.
1) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing function

on (0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (b). Then
inequality (9) is valid.

2) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing function
on (0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (c). Then
inequality (9) is valid.

Similarly we prove the following weak variant Theorem 4.

Theorem 5 Let p ∈ [1,∞), T be a sublinear operator bounded from Lp(Rn) to WLp(Rn)
and satisfying (2).

1) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing function on
(0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (b). Then there
exists a constant c, independent of f, such that for all f ∈ Lp,ω(ρ(x))(Rn)∫

{x∈Rn : |Tf(x)|>λ}
ω1(ρ(x))dx ≤ c

λp

∫
Rn
|f(x)|pω(ρ(x))dx. (10)

2) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing function
on (0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (c). Then
inequality (10) is valid.
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Corollary 3 Let p ∈ [1,∞), K be ACZ kernel and T be the corresponding operator.

1) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive increasing function
on (0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (b). Then
inequality (10) is valid.

2) Let ω(t) be a weight function on (0,∞), ω1(t) be a positive decreasing function
on (0,∞) and the weighted pair (ω(ρ(x)), ω1(ρ(x))) satisfies conditions (a), (c). Then
inequality (10) is valid.

Example 1 Let

ω(t) =

{
tQ(p−1) lnp 1

t
, for t ∈

(
0, 1

2

)(
2β−p+1 lnp 2

)
tβ, for t ∈

[
1
2 ,∞

)
,

ω1(t) =

{
tQ(p−1), for t ∈

(
0, 1

2

)
,

2α−p+1tα, for t ∈
[

1
2
,∞
)
,

where 0 < α ≤ β < Q(p− 1). Then the pair (ω(ρ(x)), ω1(ρ(x))) satisfies the condition of
Theorem 4.

Example 2 Let

ω(t) =

{
1
tQ

lnν 1
t , for t < d(

d−Q−α lnν 1
d

)
tα, for t ≥ d

ω1(t) =

{
1
tQ

lnβ 1
t , for t < d,(

d−Q−λ lnβ 1
d

)
tλ, for t ≥ d,

where β < ν ≤ 0, −Q < λ < α < 0, d = e
β
Q . Then the pair (ω(ρ(x)), ω1(ρ(x))) satisfies

the condition of Theorem 4.

3. Some applications

In this section, we will give some applications of Theorem 1 in section 2.
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3.1. The Euclidean space

In [17] the weak and strong estimates in weighted Lp spaces are obtained for linear means
of Fourier integrals defined by a single function with support in a specially organized set.

For a function f integrable on the n-dimensional Euclidean space Rn, written f in
L1(Rn), its Fourier transform is well defined

f̂(x) =
∫
Rn
f(y)e−ixydy,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, xy = x1y1 + . . .+ xnyn. Let∫
D

f̂(x)exydx

be the partial Fourier integral defined by a set D. The behavior of partial Fourier integrals
with respect to a specifically organized family of such sets characterizes approximation
properties of f . It is natural to define such a family as a sequence of dilations of a fixed
set D. This has been extensively studied when D is the cube (cubic case)

D = {x ∈ Rn : |xj| ≤ 1, j = 1, . . . , n}

or the ball (spherical case)

D = {x ∈ Rn : |x| ≤ 1}.

Their R-dilations are

RD = {x ∈ Rn : |xj| ≤ R, j = 1, . . . , n}

and

RD = {x ∈ Rn : |x| ≤ R},

respectively. The other example of a family of sets is the family of rectangles

{x ∈ Rn : |xj| ≤ Rj, Rj > 0, j = 1, . . . , n}

that cannot be expressed as a family of dilations of a fixed set. Numerous results on
these (as well as references) may be found, e.g., in [24], Chapter 17 or [22], where similar
problems are studied for multiple Fourier series as well.
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Paper [17] considered linear means of multiple Fourier integrals rather than partial
sums, and efined them by the family of dilations of a set D from some special class. The
latter is closer to the spherical case rather than to the other ones. The estimates are
obtained for the weighted Lp spaces.

Let λ be a function whose support is the closure of D and that is Ck-smooth inside
D, of the form

λ(x) = ρ(x)αϕ(x),

where ϕ ∈ Ck(Rn) and does not vanish on ∂D and ρ is a regularized distance to the
boundary (see [20], Chapter 6, Theorem 2), that is ρ ∈ C∞ outside ∂D and

C1dist(x, ∂D) ≤ ρ(x) ≤ C2dist(x, ∂D)

for some positive constants C1 and C2. In addition, assume that ρ(x) = 0 when x /∈ D.
Define the linear means of the Fourier integral

ΦR(f ; x) = ΦR(f ; x; λ) = (2π)−n
∫
Rn
f(x − y)Rnλ̂(−Ry)dy.

Set

Φ∗(f ; x) = sup
R>0
|ΦR(f ; x)|

In [17] was proved the following result.

Theorem 6 Let (ω, ω1) ∈ Ap, p ≥ 1; then

‖Φ∗(f)‖Lp,ω1
≤ C‖f‖Lp,ω , p > 1. (11)

If we have in addition λ(0) = 1, then for every f ∈ Lp,ω ∩ Lp,ω1 the estimate (11) is
equivalent to

lim
R→∞

‖ΦR(f) − f‖Lp,ω = 0. (12)

Lemma 1 [17] The following inequality

Φ∗(f ; x) ≤ Cf∗(x),

holds, where f∗ is the Hardy-Littlewood maximal functions.
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From Lemma 1 and the Theorem 2 we get the following theorem.

Theorem 7 Let ω(x), ω1(x) be weight functions on Rn and conditions (a), (b), (c) be
satisfied for Q = n, p ≥ 1; then the estimate (11) is valid.

If we have in addition λ(0) = 1, then for every f ∈ Lp,ω ∩ Lp,ω1 the estimate (11) is
equivalent to (12).

3.2. The parabolic Euclidean space

Let us now endow Rn+1 with the following parabolic metric. For

x ≡ (x′, t) = (x1, . . . , xn, t), y ≡ (y′, s) = (y1, . . . , yn, s) ∈ Rn+1,

we define

d(x, y) = ρ(x − y), where ρ(x) =

√
|x′|2 +

√
|x′|4 + 4t2

2
. (13)

Obviously, Rn+1 with its usual additive structure and the following parabolic dilation

x = (x′, t) −→ δrx = (rx′, r2t)

becomes a homogeneous group. The above metric ρ is admissible with this homogeneous
group structure of Rn+1. This homogeneous group has a special meaning for the study
on the solvability of parabolic equations. We will study the variable Calderon–Zygmund
singular integrals on it. First, we present the following definition.

Definition 2 A function K is said to be a parabolic Calderon–Zygmund kernel (for short,
PCZ kernel) on Rn+1 endowed with the above parabolic metric ρ, if

i) K ∈ C∞(Rn+1 \ {0});
ii) K(rx′, r2t) = r−n−2K(x′, t), for any r > 0, x ∈ Rn+1 \ {0} ;
iii)

∫
Sn
K(x)dσ(x) = 0, where dσ is the element of area of the ellipsoid

Sn = {x ∈ Rn+1 : ρ(x) = 1}.

Let K be a PCZ kernel. We denote by Kf the corresponding principle value singular
integral operator:

Kf(x) = p.v.
∫
Rn+1

K(x − y) f(y) dy.

From our results for Kf we get the following corollary.
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Corollary 4 Let p ∈ (1,∞), K be an PCZ kernel and Kf be the corresponding integral
operator. Moreover, let ω(x), ω1(x) be weight functions on Rn+1 and conditions (a), (b),
(c) be satisfied for Q = n+ 2. Then∫

Rn+1
|Kf(x)|pω1(x)dx ≤ c

∫
Rn+1

|f(x)|pω(x)dx.

3.3. The anisotropic Euclidean space

Corollary 5 Let p ∈ (1,∞), K be a function defined on Rn0 the following properties:
there exists C > 0 such that |K(x)| ≤ Cρ(x)−Q, x ∈ Rn0 and for all x, y ∈ Rn satisfying
ρ(x) > 2ρ(y)

|K(x− y) −K(x)| ≤ Cφ
(
ρ(y)
ρ(x)

)
ρ(x)−Q,

where φ : [0, 1]→ [0,∞) is a non-decreasing function such that, φ(0) = 0, φ(2s) ≤ Cφ(s)

for any s > 0 and
∫ 1

0 φ(t)dtt <∞.
Moreover, let ω(x), ω1(x) be weight functions on Rn and conditions (a), (b), (c) be

satisfied. Then the operator T : f → p.v. K∗ f is bounded from Lp,ω(Rn) to Lp,ω1(Rn).

Remark 2 Note that, the operator T : f → p.v. K ∗ f is satisfies the condition (2). It
is known, that this operator is bounded on Lp,ω(Rn) for 1 < p < ∞, if ω ∈ Ap (see [18]
and [21]).

Therefore, the Corollary 5 implies from Theorem 2.

Let l = (l1, . . . , ln), ν = (ν1, . . . , νn) ∈ Nn0 and a = (a1, . . . , an), ai > 0, i = 1, . . . , n,
|a| =

∑n
i=1 ai. The weighted anisotropic Sobolev space W l1,... ,ln

p,ω0,ω1,... ,ωn(Rn), is defined as

the collection of all functions f ∈ Lloc1 (Rn), having the generalized derivatives Dli
i f with

the finite norm

‖f‖
W
l1 ,... ,ln
p,ω0 ,ω1,... ,ωn(Rn)

= ‖f‖Lp,ω0 (Rn) +
n∑
i=1

∥∥∥Dli
i f
∥∥∥
Lp,ωi (Rn)

,

where 1 ≤ p <∞.
We recall the Il’in-Besov integral representation of a function f in R(l) via its gener-

alized derivatives (see [4]):

f(x) = fha (x) +
n∑
i=1

∫ h

0

v−|a|dv

∫
Rn
Dli
i f(x + y)Φi(yh−a)dy, x ∈ Rn,
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where ai = 1/li, i = 1, . . . , n, fha (x) = h−|a|
∫
Rn

Φ0(yh−a)f(x + y)dy is the average of

f and
∫
Rn

Φ0(x)dx = 1. Here Φi ∈ C∞0 (Rn) are concentrated in an arbitrary previously

specified cube in the first coordinate angle and are such that∫
Rn

Φi(x)dx = 0, i = 1, . . . , n.

By virtue of this integral representation we prove the following imbedding theorems.

Theorem 8 Let a = 1/l, 1 < p ≤ q < ∞, æ = (ν + 1/p− 1/q, 1/l) ≤ 1, and æ =
(ν, 1/l) = 1, where ν = (ν1, . . . , νn), and νi are nonnegative integer number. Suppose
that the weight pairs (ω, ωj) j = 0, 1, . . . , n, the conditions (a), (b), (c) are satisfied for
Q = |a|.

Then the continuous imbedding

DνW l1,... ,ln
p,ω0,... ,ωn(Rn) ⊂� Lq,ω(Rn)

is valid.
Further, the inequality

‖Dνf‖Lq,ω(Rn) ≤ C ‖f‖W l1 ,... ,ln
p,ω0 ,... ,ωn(Rn)

,

holds, with a constant C is independent of f.

Proof. Applying the differentiation operation Dν to equality

fελ(x) = fhλ(x) +
n∑
i=1

λi

∫ h

ε

ϑ|λ|dϑ

∫
Rn
Li
(
ϑ−λy

)
Dli
i f(x+ y)dy

and the Remark 2, we get∥∥∥∥∥
∫ h

ε

ϑ|λ|−(ν,λ)dϑ

∫
Rn
L

(k)
i

(
ϑ−λy

)
Dli
i f(x+ y)dy

∥∥∥∥∥
Lp,ω(Rn)

≤ C‖Dli
i f‖Lp,ωi (Rn).

Besides,

‖Dνfhλ‖Lp,ω(Rn) ≤ C‖f‖Lp,ω0(Rn).
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Thus, combining the estimates, we obtain

‖Dνfελ‖Lp,ω(Rn) ≤ C‖f‖W l1 ,... ,ln
p,ω0 ,ω1,... ,ωn(Rn)

.

To conclude the proof of the theorem two facts are established: first, it is proved that
Dνfελ converges to some element of Lp,ω(Rn) for ε → 0, second, it is proved that this
limit element is the generalized derivativeDνf of the function f to which the fελ converge
for ε→ 0.

For the proved of converges Dνfελ to some element of Lp,ω(Rn) for ε→ 0, it is proved
that the sequence {Dνfελ} is fundamental at norm Lp,ω(Rn).

We have

‖Dνfελ −Dνfηλ‖Lp,ω(Rn) ≤ C
n∑
i=1

∫ η

ε

v−ædv‖Mi‖L1,ω(Rn)‖Dli
i f‖Lp,ω(Rn) ≤

≤ Cη1−æ‖Dli
i f‖Lp,ωi (Rn),

where 0 < ε < η.

Then by theorem Lebesgue we conclude that the sequence
{
Dνfλε

}
is a Cauchy

sequence.
Hence in view of the fact that the space Lp,ω(Rn) is complete, then Dνfελ converges

to some element g of Lp,ω(Rn) for ε → 0. By the definition of generalized derivative in
the sense of Sobolev at each a fixed ε for arbitrary function ψ ∈ C∞0 (Rn) the equality∫

Rn
Dνψ(x)fελ(x)dx = (−1)|ν|

∫
Rn
ψ(x)Dνfελ(x)dx

holds.
Taking into account that f ∈ Lloc1 (Rn) and mean fελ → f in Lloc1 (Rn), and passing

to the limit for ε→ 0, we give∫
Rn
Dνψ(x)f(x)dx = (−1)|ν|

∫
Rn
ψ(x)g(x)dx,

and from that imply the limit element g of the sequence {Dνfελ} is generalized derivative
Dνf function f.

Theorem 8 is proved. 2
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