On Graded Weakly Prime Ideals

Shahabaddin Ebrahimi Atani

Abstract

Let G be an arbitrary group with identity e, and let R be a G-graded commutative ring. Weakly prime ideals in a commutative ring with non-zero identity have been introduced and studied in [1]. Here we study the graded weakly prime ideals of a G-graded commutative ring. A number of results concerning graded weakly prime ideals are given. For example, we give some characterizations of graded weakly prime ideals and their homogeneous components.

Key Words: Graded rings, Graded weakly prime ideals.

1. Introduction

Weakly prime ideals in a commutative ring with non-zero identity have been introduced and studied by D. D. Anderson and E. Smith in [1]. Also, weakly primary ideals in a commutative ring with non-zero identity have been introduced and studied in [2]. Here we study the graded weakly prime ideals of a G-graded commutative ring. The purpose of this paper is to explore some basic facts of these class of ideals. Various properties of graded weakly prime ideals are considered. First, we show that if P is a graded weakly prime ideal, then for each $g \in G$, either P_{g} is a prime subgroup of R_{g} or $P_{g}^{2}=0$. Also, we show that if P and Q are graded weakly prime ideals such that P_{g} and Q_{h} are not prime for all $g, h \in G$ respectively, then $\operatorname{Grad}(P)=\operatorname{Grad}(Q)=\operatorname{Grad}(0)$ and $P+Q$ is a graded weakly prime ideal of $G(R)$. Next, we give some characterizations of graded weakly prime ideals and their homogeneous components (see sec. 2).

Before we state some results let us introduce some notation and terminology. Let G be an arbitrary group with identity e. By a G-graded commutative ring we mean a
commutative ring R with non-zero identity together with a direct sum decomposition (as an additive group) $R=\oplus_{g \in G} R_{g}$ with the property that $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$; here $R_{g} R_{h}$ denotes the additive subgroup of R consisting of all finite sums of elements $r_{g} s_{h}$ with $r_{g} \in R_{g}$ and $s_{h} \in R_{h}$. We denote this by $G(R)$, and we consider $\operatorname{supp} G(R)=\{g \in G:$ $\left.R_{g} \neq 0\right\}$. The summands R_{g} are called homogeneous components and elements of these summands are called homogeneous elements. If $a \in R$, then a can be written uniquely as $\sum_{g \in G} a_{g}$ where a_{g} is the component of a in R_{g}. Also, we write $h(R)=\cup_{g \in G} R_{g}$. Moreover, if $R=\oplus_{g \in G} R_{g}$ is a graded ring, then R_{e} is a subring of $R, 1_{R} \in R_{e}$ and R_{g} is an R_{e}-module for all $g \in G$.

Let I be an ideal of R. For $g \in G$, let $I_{g}=I \cap R_{g}$. Then I is a graded ideal of $G(R)$ if $I=\oplus_{g \in G} I_{g}$. In this case, I_{g} is called the g-component of I for $g \in G$. Moreover, R / I becomes a G-graded ring with g-component $(R / I)_{g}=\left(R_{g}+I\right) / I \cong R_{g} / I_{g}$ for $g \in G$. Clearly, 0 is a graded ideal of $G(R)$. If I and J are graded ideals of $G(R)$, the ideal $\{a \in R: a J \subseteq I\}$, denoted by $\left(I:_{R} J\right)$, is a graded ideal (see [4]). An ideal I of $G(R)$ is said to be graded prime ideal if $I \neq R$; and whenever $a b \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. The graded radical of I, denoted by $\operatorname{Grad}(I)$, is the set of all $x \in R$ such that for each $g \in G$ there exists $n_{g}>0$ with $x_{g}^{n_{g}} \in I$. Note that, if r is a homogeneous element of $G(R)$, then $r \in \operatorname{Grad}(I)$ if and only if $r^{n} \in I$ for some positive integer n.

2. Graded Weakly Prime Ideals

Our starting point is the following definitions.

Definition 2.1 Let P be a graded ideal of $G(R)$ and $g \in G$.
(i) We say that P_{g} is a prime subgroup of R_{g} if $P_{g} \neq R_{g}$; and whenever $a, b \in R_{g}$ with $a b \in P_{g}$, then either $a \in P_{g}$ or $b \in P_{g}$.
(ii) We say that P is a graded weakly prime ideal of $G(R)$ if $P \neq R$; and whenever $a, b \in h(R)$ with $0 \neq a b \in P$, then either $a \in P$ or $b \in P$.

Clearly, a graded prime ideal of $G(R)$ is a graded weakly prime. However, since 0 is always a graded weakly prime ideal (by definition), a graded weakly prime ideal need not be graded prime.

Proposition 2.2 Let $P=\oplus_{g \in G} P_{g}$ be a graded weakly prime ideal of $G(R)$. Then for each $g \in G$, either P_{g} is a prime subgroup of R_{g} or $P_{g}^{2}=0$.
Proof. It is enough to show that if $P_{g}^{2} \neq 0$ for some $g \in G$, then P_{g} is a prime subgroup of R_{g}. Let $p q \in P_{g} \subseteq P$ where $p, q \in R_{g}$. If $p q \neq 0$, then P weakly prime gives either $p \in P_{g}$ or $q \in P_{g}$. So suppose that $p q=0$. If $p P_{g} \neq 0$, then there is an element c of P_{g} such that $p c \neq 0$, so $0 \neq p c=p(c+q) \in P$; hence either $p \in P$ or $(c+q) \in P$. As $c \in P$ we have either $p \in P_{g}$ or $q \in P_{g}$. So we can assume that $p P_{g}=0$. Similarly, we can assume that $q P_{g}=0$. Since $P_{g}^{2} \neq 0$, there exist $c, d \in P_{g}$ such that $c d \neq 0$. Then $(p+c)(q+d)=c d \in P$, so either $p+c \in P$ or $q+d \in P$, and hence either $p \in P_{g}$ or $q \in P_{g}$. Thus P_{g} is prime.

Proposition 2.3 Let P be a graded weakly prime ideal of $G(R)$ and $g \in G$. Then for $a \in R_{g}-P_{g}$, either $\left(P_{g}:_{R_{e}} a\right)=P_{e}$ or $\left(P_{g}:_{R_{e}} a\right)=\left(0:_{R_{e}} a\right)$.
Proof. It is well known that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them; so for $a \in R_{g}-P_{g}$, it is enough to show that $\left(P_{g}:_{R_{e}} a\right)=P_{e} \cup\left(0:_{R_{e}} a\right)=H$.

If $b \in P_{e}$, then $a b \in R_{g} \cap P=P_{g}$, so $b \in\left(P_{g}:_{R_{e}} a\right)$. Clearly, $\left(0:_{R_{e}} a\right) \subseteq\left(P_{g}:_{R_{e}} a\right)$; hence $H \subseteq\left(P_{g}:_{R_{e}} a\right)$. For the other containment, assume that $c \in\left(P_{g}:_{R_{e}} a\right)$. If $0 \neq a c \in P_{g} \subseteq P$, then P graded weakly prime gives $c \in P$; hence $c \in P_{e} \subseteq H$. If $a c=0$, then $c \in\left(0:_{R_{e}} a\right) \subseteq H$, as needed.

Theorem 2.4 Let $P=\oplus_{g \in G} P_{g}$ be a graded weakly prime ideal of $G(R)$ such that P_{g} is not a prime subgroup of R_{g} for every $g \in G$. Then $\operatorname{Grad}(P)=\operatorname{Grad}(0)$.
Proof. Since $\operatorname{Grad}(0) \subseteq \operatorname{Grad}(P)$ is trivial, we will prove the reverse inclusion. Let $p \in P$. By Proposition 2.2, $P_{g}^{2}=0 \in(0)$ for every $g \in G$, so $p \in \operatorname{Grad}(0)$; hence $P \subseteq \operatorname{Grad}(0)$. It follows that $\operatorname{Grad}(P) \subseteq \operatorname{Grad}(0)$ by [4, Proposition 1.2], as required.

Proposition 2.5 Let $I \subseteq P$ be graded ideals of $G(R)$ with $P \neq R$. Then the following hold:
(i) If P is graded weakly prime, then P / I is graded weakly prime.
(ii) If I and P / I are graded weakly prime, then P is graded weakly prime.

Proof. (i) Let $0 \neq(a+I)(b+I)=a b+I \in P / I$ where $a, b \in h(R)$, so $a b \in P$. If $a b=0 \in I$, then $(a+I)(b+I)=0$, a contradiction. If $a b \neq 0, P$ graded weakly prime gives either $a \in P$ or $b \in P$; hence either $a+I \in P / I$ or $b+I \in P / I$, as required.
(ii) Let $0 \neq a b \in P$ where $a, b \in h(R)$, so $(a+I)(b+I) \in P / I$. If $a b \in I$, then I graded weakly prime gives either $a \in I \subseteq P$ or $b \in I \subseteq P$. So we may assume that $a b \notin I$. Then either $a+I \in P / I$ or $b+I \in P / I$ since P / I is graded weakly prime. It follows that either $a \in P$ or $b \in P$, as needed.

Theorem 2.6 Let P and Q be graded weakly prime ideals of $G(R)$ such that P_{g} and Q_{h} are not prime subgroups of R_{g} and R_{h} respectively for all $g, h \in G$. Then $P+Q$ is a graded weakly prime ideal of $G(R)$.
Proof. By Theorem 2.4, we have $\operatorname{Grad}(P)+\operatorname{Grad}(Q)=\operatorname{Grad}(0) \neq R$, so $P+Q$ is a proper ideal of R. Since $(P+Q) / Q \cong Q /(P \cap Q)$, we get $(P+Q) / Q$ is graded weakly prime by Propositin 2.5 (i). Now the assertion follows from Proposition 2.5 (ii).

Let M be an R-module. A proper submodule N of M is prime if for any $r \in R$ and $m \in M$ such that $r m \in N$, either $r M \subseteq N$ or $m \in N$. It is easy to show that if N is a prime submodule of M then the annihilator of the module M / N is a prime ideal of R. A proper submodule N of a module M over a commutative ring R is said to be weakly prime submodule if whenever $0 \neq r m \in N$, for some $r \in R, m \in M$, then $m \in N$ or $r M \subseteq N$. The following lemma is well-known, but we write it here for the sake of references.

Lemma 2.7 Let R be a commutative ring, M an R-module, and N a proper submodule of M. Then the following assertions are equivalent.
(i) N is a prime submodule of M.
(ii) $I B \subseteq N$, with I an ideal of R, and B a submodule of M, implies that $I \subseteq(N: M)$ or $B \subseteq N$.

Lemma 2.8 Let $P=\oplus_{g \in G} P_{g}$ be a graded weakly prime ideal of $G(R)$. Then P_{g} is a weakly prime submodule of the R_{e}-module R_{g} for every $g \in G$.
Proof. Suppose that P is a graded weakly prime ideal of $G(R)$. For $g \in G$, assume that $0 \neq a b \in P_{g} \subseteq P$ where $a \in R_{g}$ and $b \in R_{e}$, so P graded weakly prime gives either

ATANI

$a \in P$ or $b \in P$. If $a \in P$, then $a \in P_{g}$. If $b \in P$, then $b \in\left(P_{g}:_{R_{e}} R_{g}\right)$. So P_{g} is weakly prime.

Proposition 2.9 Let $P=\oplus_{g \in G} P_{g}$ be a graded weakly prime ideal of $G(R)$. Then for each $g \in G$, either P_{g} is a prime submodule of the R_{e}-module R_{g} or $\left(P_{g}:_{R_{e}} R_{g}\right) P_{g}=0$.

Proof. By Lemma 2.8, P_{g} is a weakly prime submodule of R_{g} for every $g \in G$. It is enough to show that if $\left(P_{g}:_{R_{e}} R_{g}\right) P_{g} \neq 0$ for some $g \in G$, then P_{g} is prime. Let $p q \in P_{g}$, where $p \in R_{g}$ and $q \in R_{e}$. If $p q \neq 0$, then either $p \in P_{g}$ or $q \in\left(P_{g}:_{R_{e}} R_{g}\right)$ since P_{g} is weakly prime. So suppose that $p q=0$. If $q P_{g} \neq 0$, then there is an element p^{\prime} of P_{g} such that $q p^{\prime} \neq 0$, so $0 \neq q p^{\prime}=q\left(p^{\prime}+p\right) \in P_{g}$, and hence P_{g} weakly prime gives either $q \in\left(P_{g}:_{R_{e}} R_{g}\right)$ or $\left(p^{\prime}+p\right) \in P_{g}$. As $p^{\prime} \in P_{g}$ we have either $q \in\left(P_{g}:_{R_{e}} R_{g}\right)$ or $p \in P_{g}$. So we can assume that $p P_{g}=0$. Suppose that $p\left(P_{g}:_{R_{e}} R_{g}\right) \neq 0$, say $p c \neq 0$ where $c \in\left(P_{g}:_{R_{e}} R_{g}\right)$. Then $0 \neq p c=p(c+q) \in P_{g}$ and P_{g} weakly prime gives either $p \in P_{g}$ or $q \in\left(P_{g}:_{R_{e}} R_{g}\right)$ since $c \in\left(P_{g}:_{R_{e}} R_{g}\right)$. So we can assume that $p\left(P_{g}:_{R_{e}} R_{g}\right)=0$.

Since $\left(P_{g}:_{R_{e}} R_{g}\right) P_{g} \neq 0$, there exist $c \in\left(P_{g}:_{R_{e}} R_{g}\right)$ and $d \in P_{g}$ such that $c d \neq 0$. Then $(q+c)(p+d)=c d \in P_{g}$, so either $q+c \in\left(P_{g}:_{R_{e}} R_{g}\right)$ or $p+d \in P_{g}$, and hence either $q \in\left(P_{g}:_{R_{e}} R_{g}\right)$ or $p \in P_{g}$. Thus P_{g} is prime.

We next give three other characterizations of homogeneous components of graded ideals.

Theorem 2.10 Let P be a proper graded ideal of $G(R)$ and $g \in G$. Then the following assertions are equivalent.
(i) If whenever $0 \neq I B \subseteq P_{g}$ with I an ideal of R_{e} and B a submodule of R_{g} implies that $I \subseteq\left(P_{g}:_{R_{e}} R_{g}\right)$ or $B \subseteq P_{g}$.
(ii) P_{g} is a weakly prime submodule of R_{g}.
(iii) For $a \in R_{g}-P_{g},\left(P_{g}:_{R_{e}} a\right)=\left(P_{g}:_{R_{e}} R_{g}\right) \cup\left(0:_{R_{e}} a\right)$.
(iv) For $a \in R_{g}-P_{g},\left(P_{g}:_{R_{e}} a\right)=\left(P_{g}:_{R_{e}} R_{g}\right)$ or $\left(P_{g}:_{R_{e}} a\right)=\left(0:_{R_{e}} a\right)$.

Proof. $\quad(i) \Longrightarrow(i i)$ Let $0 \neq a b \in P_{g}$ where $a \in R_{g}$ and $b \in R_{e}$. Take $I=R_{e} b$ and $B=R_{e} a$. Then $0 \neq I B \subseteq P_{g}$, so either $I \subseteq\left(P_{g}:_{R_{e}} R_{g}\right)$ or $B \subseteq P_{g}$; hence either $a \in P_{g}$ or $b \in\left(P_{g}:_{R_{e}} R_{g}\right)$. Thus P_{g} is weakly prime.
$(i i) \Rightarrow(i)$ Suppose first that P_{g} is a weakly prime submodule of R_{g}. If P_{g} is prime, then the result follows by Lemma 2.7. So we can assume that P_{g} is weakly prime that

ATANI

is not prime. Let $0 \neq I B \subseteq P_{g}$ with $x \in B-P_{g}$. We show that $I \subseteq\left(P_{g}:_{R_{e}} R_{g}\right)$. Let $r \in I$. If $r x \neq 0$, then P_{g} weakly prime gives $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$. So assume that $r x=0$. If $r B \neq 0$, then $r d \neq 0$ for some $0 \neq d \in B \subseteq R_{g}$. If $d \in P_{g}$, then $r(d+x) \in P_{g}$ gives either $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$ or $d+x \in P_{g}$, so $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$ since $d \in P_{g}$. If $d \notin P_{g}$, then $r d \in P_{g}$ gives $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$. So we can assume that $r B=0$. Suppose that $I x \neq 0$, say $a x \neq 0$ where $a \in I$. Then P_{g} weakly prime gives $a \in\left(P_{g}:_{R_{e}} R_{g}\right)$. It follows from the equality $(r+a) x=a x$ that $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$, so $I \subseteq\left(P_{g}:_{R_{e}} R_{g}\right)$. Therefore we can assume that $I x=0$.

Since $I B \neq 0$, there exist $s \in I$ and $b \in B$ such that $s b \neq 0$. As $0 \neq s(b+x)=s b \in P_{g}$ we divided the proof into the following cases:

Case $1 s \notin\left(P_{g}:_{R_{e}} R_{g}\right)$ and $b+x \notin P_{g}$.
Since $s(b+x)=s b \in P_{g}, P_{g}$ weakly prime gives either $b+x \in P_{g}$ or $s \in\left(P_{g}:_{R_{e}} R_{g}\right)$, a contradiction.

Case $2 s \notin\left(P_{g}:_{R_{e}} R_{g}\right)$ and $b+x \in P_{g}$.
As $0 \neq s b \in P_{g}$ we have $b \in P_{g}$, so $x \in P_{g}$, a contradiction.
Case $3 s \in\left(P_{g}:_{R_{e}} R_{g}\right)$ and $b+x \in P_{g}$.
Since $b+x \in P_{g}$, we obtain $b \notin P_{g}$ (otherwise $x \in P_{g}$). As $0 \neq b(r+s) \in P_{g}$, we get $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$. Thus $I \subseteq\left(P_{g}:_{R_{e}} R_{g}\right)$.

Case $4 s \in\left(P_{g}:_{R_{e}} R_{g}\right)$ and $b+x \notin P_{g}$.
Since $0 \neq(r+s)(b+x)=s b \in P_{g}$ it follows that $r+s \in\left(P_{g}:_{R_{e}} R_{g}\right)$, so $r \in\left(P_{g}:_{R_{e}} R_{g}\right)$. Hence $I \subseteq\left(P_{g}:_{R_{e}} R_{g}\right)$.
(ii) \Rightarrow (iii) Clearly, if $a \in R_{g}-P_{g}$, then $H=\left(P_{g}:_{R_{e}} R_{g}\right) \cup\left(0:_{R_{e}} a\right) \subseteq\left(P_{g}:_{R_{e}} a\right)$. Let $b \in\left(P_{g}:_{R_{e}} a\right)$ where $a \in R_{g}-P_{g}$. Then $a b \in P_{g}$. If $a b \neq 0$, then $b \in\left(P_{g}:_{R_{e}} R_{g}\right)$ since P_{g} is weakly prime, so $b \in H$. If $a b=0$, then $b \in\left(0:_{R_{e}} a\right)$, so $b \in H$, and hence we have equality.
$(i i i) \Rightarrow(i v)$ Is obvious.
(iv) \Rightarrow (ii) Suppose that $0 \neq a b \in P_{g}$ with $b \in R_{e}$ and $a \in R_{g}-P_{g}$. Then $b \in\left(P_{g}:_{R_{e}} a\right)$ and $b \notin\left(0:_{R_{e}} a\right)$. It follows from (iv) that $b \in\left(P_{g}:_{R_{e}} a\right)=\left(P_{g}:_{R_{e}} R_{g}\right)$, as required.

Lemma 2.11 Let P be a graded ideal of $G(R)$. Then the following assertions are equivalent.
(i) P is a graded prime ideal of $G(R)$.

ATANI

(ii) For each $g, h \in G$, the inclusion $A B \subseteq P$ with submodules A of R_{g} and B of R_{h} implies that $A \subseteq P$ or $B \subseteq P$.

Proof. $\quad(i) \Longrightarrow(i i)$ Suppose that P is a graded prime ideal of $G(R)$. For $g, h \in G$, assume that A is an R_{e}-submodule of R_{g} and B is an R_{e}-submodule of R_{h} such that $A B \subseteq P$ with $x \in A-P$. We want to prove that $B \subseteq P$. Let $a \in B$. Then $a x \in P$, so $a \in P$ since P is graded prime.
$(i i) \Longrightarrow(i)$ Suppose that $c d \in P$ where $c, d \in h(R)$. There are elements $r, s \in G$ such that $c \in R_{r}$ and $d \in R_{s}$. Then $R_{e} c$ and $R_{e} d$ are submodules of R_{r} and R_{s} respectively with $(c)(d) \subseteq P$, so either $(c) \subseteq P$ or $(d) \subseteq P$ by (ii); hence either $c \in P$ or $d \in P$. So P is graded prime.

We next give an other characterization of graded weakly prime ideals.

Theorem 2.12 Let $P=\oplus_{g \in G} P_{g}$ be a graded ideal of $G(R)$ with $P \neq R$. Then the following assertions are equivalent.
(i) P is a graded weakly prime ideal of $G(R)$.
(ii) For each $g, h \in G$, the inclusion $0 \neq A B \subseteq P$ with submodules A of R_{g} and B of R_{h} implies that $A \subseteq P$ or $B \subseteq P$.

Proof. $\quad(i) \Rightarrow(i i)$ Suppose that P is a graded weakly prime ideal of $G(R)$. For $g, h \in G$, assume that $0 \neq A B \subseteq P$ where A is a submodule of R_{g} and B is a submodule of R_{h} with $x \in B-P$. We show that $A \subseteq P$. If P is graded prime, then the result follows by Lemma 2.11. So we can assume that P is graded weakly prime that is not graded prime. Let $y \in A$. If $x y \neq 0$, then P graded weakly prime gives $y \in P$. So assume that $x y=0$. First suppose that $y B \neq 0$, say $y d \neq 0$ where $0 \neq d \in B \subseteq R_{h}$. If $d \in P$, then $0 \neq y(x+d) \in P$ gives either $y \in P$ or $x+d \in P$. Hence $y \in P$ since $x \notin P$. If $d \notin P$, then $y \in P$ since $0 \neq d y \in P$ and P is graded weakly prime. So we can assume that $y B=0$. Suppose that $x A \neq 0$, say $x b \neq 0$ where $b \in A \subseteq R_{g}$. Then P graded weakly prime gives $b \in P$. Since $0 \neq x(y+b) \in P$, we obtain $y+b \in P$; hence $y \in P$. So we can assume that $x A=0$.

Since $A B \neq 0$, there exist $c \in A$ and $d \in B$ with $0 \neq c d \in P$, so either $c \in P$ or $d \in P$. As $0 \neq(x+d)(y+c)=c d \in P$, we divided the proof the following cases:

Case $1 c \in P$ and $y+c \notin P$.
Since $0 \neq(x+d)(y+c)=c d \in P$ it follows that $x+d \in P$. As $0 \neq d(y+c) \in P$, we obtain $d \in P$; hence $x \in P$, a contradiction.

Case $2 c \notin P$ and $y+c \in P$.
As $0 \neq c d \in P$ and $c(x+d) \in P$, we get $d \in P$ and $x+d \in P$; hence $x \in P$, a contradiction.

Case $3 c \notin P$ and $y+c \notin P$.
By assumption, $d \in P$ and $x+d \in P$, so $x \in P$, a contradiction.
Case $4 c \in P$ and $y+c \in P$.
Clearly, $y \in P$. Thus $A \subseteq P$.
(ii) $\Longrightarrow(i)$ Let $0 \neq a b \in P$ where $a \in R_{g}$ and $b \in R_{h}$ for some $h, g \in G$. Take $A=R_{e} a \subseteq R_{g}$ and $B=R_{e} b \subseteq R_{h}$. Then $0 \neq A B \subseteq P$, so either $A \subseteq P$ or $B \subseteq P$; hence either $a \in P$ or $b \in P$. Thus P is graded weakly prime.

Acknowledgement

I would like to thank the referee for a number of suggestions which have improved the paper.

References

[1] Anderson, D. D. and Smith, E.: Weakly prime ideals, Houston J. of Mathematics, 29, 831-840, (2003).
[2] Ebrahimi Atani, S. and Farzalipour, F.: On weakly primary ideals, Georgian Mathematical Journal, 12, 423-429, (2005).
[3] Nastasescu, C. and Van Oystaeyen, F.: Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
[4] Refai M. and Al-Zoubi, K.: On Graded Primary Ideals, Turkish Journal of Mathematics, 28, 217-229, (2004).

