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Abstract

Let (Ω,Σ) be a measurable space, with
P

a sigma-algebra of subsets of Ω, and

let E be a nonempty bounded closed convex and separable subset of a Banach space

X, whose characteristic of noncompact convexity is less than 1. We prove that a

multivalued nonexpansive, non-self operator T : Ω × E → KC(X) satisfying an

inwardness condition and itself being a 1-χ-contractive nonexpansive mapping has

a random fixed point. We also prove that a multivalued nonexpansive, non-self

operator T : Ω×E → KC(X) with a uniformly convex X satisfying an inwardness

condition has a random fixed point.

Key Words: Random fixed point, non-self mappings, Nonexpansive random oper-

ator, inwardness condition.

1. Introduction

Random fixed point theory has received much attention in recent years; see, Itoh [8]
and Shahzad and Latif [15]. Research in this direction was initiated by the Prague School
of Probabilists as the originator of random operator theory; see O. Hans [6, 7]. Since
then, a lot of efforts have been devoted to random fixed point theory and applications;
see Ramírez [11, 12], Tan and Yuan [16], Xu [17, 19, 20], Yuan and Yu [21].
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In 2004, Domínguez Benavides and Ramírez [4] proved a fixed point theorem for a
multivalued nonexpansive, non-self mapping and 1-χ-contractive mapping in the frame-
work of Banach spaces whose characteristic of noncompact convexity associated to the
separation measure of noncompactness εα(X) is less than 1.

The purpose of the present paper is to prove some random fixed point theorems for
nonexpansive non-self random operators. First, we will prove the existence of fixed point
for multivalued non-self, nonexpansive random operators in the framework of a Banach
spaces with characteristic of noncompact convexity associated to the Kuratowski measure
of noncompactness εα(X) being less than 1 and satisfying an inwardness condition, and
also being 1-χ-contractive mapping. Moreover, if X is a separable subset of a uniformly
convex Banach space, a similar result is proved. Finally we also prove that a multivalued
nonexpansive non-self random operator T : Ω × E → KC(X) satisfying an inwardness
condition has a random fixed point.

2. Preliminaries and notations

We begin with establishing some preliminaries. By a measurable space we mean a
pair (Ω,Σ), where Ω is a nonempty set and Σ is a sigma-algebra of subsets of Ω. Let X
be a Banach space and E a nonempty subset of X. We shall denote by 2E the family of
nonempty closed subsets of E, by CB(E) the family of nonempty closed bounded subsets
of E, by K(E) the family of nonempty compact subsets of E, and by KC(E) the family of
nonempty compact convex subsets of E. Let H(·, ·) be the Hausdorff distance on CB(X),
i.e.,

H(A,B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

for A,B ∈ CB(X), where d(x, E) = inf{d(x, y)|y ∈ E} is the distance from x to E ⊂ X.
Let E be a nonempty closed subset of a Banach spaceX. Recall now that a multivalued

mapping T : E → 2X is said to be upper semicontinuous on E if {x ∈ E : Tx ⊂ V } is
open in E whenever V ⊂ X is open; T is said to be lower semicontinuous if T 1(V ) :=
{x ∈ E : Tx∩V 6= ∅}is open in E whenever V ⊂ X is open; and T is said to be continuous
if it is both upper and lower semicontinuous (cf. [1] and [2] for details). There is another
but different kind of continuity for a multivalued operator: T : E → CB(X) is said to be
continuous on E (with respect to the Hausdorff metric H) if H(Txn, Tx)→ 0 whenever
xn → x. It is not hard to see (see Deimling [2]) that both definitions of continuity are
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equivalent if Tx is compact for every x ∈ E.
A multivalued operator T : Ω → 2X is called (Σ)-measurable if, for any open subset

B of X,
T−1(B) := {ω ∈ Ω : T (ω) ∩B 6= ∅}

belongs to Σ. A mapping x : Ω → X is said to be a measurable selector of a measurable
multivalued operator T : Ω → 2X if x(·) is measurable and x(ω) ∈ T (ω) for all ω ∈ Ω.
An operator T : Ω × E → 2X is called a random operator if, for each fixed x ∈ E, the
operator T (·, x) : Ω → 2X is measurable. We will denote by F (ω) the fixed point set of
T (ω, ·), i.e.,

F (ω) := {x ∈ E : x ∈ T (ω, x)} .
Note that, if we do not assume the existence of a fixed point for the deterministic

mapping T (ω, ·) : E → 2X , F (ω) may be empty. A measurable operator x : Ω → E is
said to be a random fixed point of a operator T : Ω×E → 2X if x(ω) ∈ T (ω, x(ω)) for all
ω ∈ Ω. Recall that T : Ω × E → 2X is continuous if, for each fixed ω ∈ Ω, the operator
T : (ω, ·)→ 2X is continuous.

If E is a closed convex subset of a Banach space X, then a multivalued mapping
T : E → CB(X) is said to be a contraction if there exists a constant k ∈ [0, 1) such that

H(Tx, Ty) ≤ k‖x− y‖, x, y ∈ E,

and T is said to be nonexpansive if

H(Tx, Ty) ≤ ‖x− y‖, x, y ∈ E,

A random operator T : Ω×E → 2X is said to be nonexpansive if, for each fixed ω ∈ Ω
the map T : (ω, ·)→ E is nonexpansive.

For later reference, we list the following results related to the concept of measurability.

Lemma 2.1 (cf. Wagner [17]) Let (X, d) be a complete separable metric spaces and
F : Ω→ CL(X) a measurable map. Then F has a measurable selector.

Lemma 2.2 (cf. Itoh 1977, [8]) Suppose {Tn} is a sequence of measurable multivalued
operator from Ω to CB(X) and T : Ω → CB(X) is an operator. If, for each ω ∈
Ω, H(Tn(ω), T (ω))→ 0, then T is measurable.

Lemma 2.3 (cf. Tan and Yuan [16]) Let X be a separable metric spaces and Y a metric
spaces. If f : Ω × X → Y is measurable in ω ∈ Ω and continuous in x ∈ X, and if
x : Ω→ X is measurable, then f(·, x(·)) : Ω→ Y is measurable.
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As an easy application of Proposition 3 of Itoh[8] we have the following result.

Lemma 2.4 Let E be s closed separable subset of a Banach space X, T : Ω × E → E a
random continuous operator and F : Ω→ 2E a measurable closed-valued operator. Then
for any s > 0, the operator G : Ω→ 2E given by

G(ω) = {x ∈ F (ω) : ‖x− T (ω, x)‖ < s} , ω ∈ Ω

is measureble and so is the operator cl{G(ω)} (the closure of G(ω)).

Lemma 2.5 (cf. Domínguez Benavidel and Lopez Acedo [5]) Suppose E is a weakly
closed nonempty separable subset of a Banach space X;F : Ω → 2X is a measurable
mapping with weakly compact values, and f : Ω×E → R is a measurable, continuous and
weakly lower semicontinuous function. Then the marginal function r : Ω→ R defined by

r(ω) := inf
x∈F (x)

f(ω, x)

and the marginal map R : Ω→ X defined by

R(ω) := {x ∈ F (x) : f(ω, x) = r(ω)}

are measurable.

Recall that the Kuratowski and Hausdorff measures of noncompactness of a nonempty
bounded subset B of X are defined, respectively, as the numbers

α(B) = inf {r > 0 : B can be covered by finitely many sets of diameter ≤ r} ,

χ(B) = inf {r > 0 : B can be covered by finitely many balls of radius ≤ r} .

The separation measure of noncompacness of a nonempty bounded subset B of X is
defined by

β(B) = sup {ε : there exists a sequence {xn} in B such that sep({xn}) ≥ ε} .

Let X be a Banach space and φ = α, β or χ. The modulus of noncompact convexity
associated to φ is defined as

∆X,φ(ε) = inf {1− d(0, A) : A ⊂ BX is convex, φ(A) ≥ ε} ,
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where BX is the unit ball of X.
The characteristic of noncompact convexity of X associated with the measure of

noncompactness φ is defined by

εφ(X) = sup {ε ≥ 0 : ∆X,φ(ε) = 0} .

The following relationships among the different moduli are easy to obtain:

∆X,α(ε) ≤ ∆X,β(ε) ≤ ∆X,χ(ε), (2.1)

and consequently

εα(X) ≥ εβ(X) ≥ εχ(X). (2.2)

When X is a reflexive Banach space we have some alternative expressions for the moduli
of noncompact convexity associated β and χ:

∆X,β(ε) = inf {1− ‖x‖ : {xn} ⊂ BX , x = w − limxn, sep({xn}) ≥ ε} ,

∆X,χ(ε) = inf {1− ‖x‖ : {xn} ⊂ BX , x = w − limxn, χ({xn}) ≥ ε} .

In order to study the fixed point theory for non-self mappings, we must introduce
some terminology for boundary conditions. The inward set of E at x ∈ E is defined by

IE(x) := {x+ λ(y − x) : λ ≥ 0, y ∈ E}.
Clearly E ⊂ IE(x), and it is not hard to show that whenever IE(x) is a convex set,

so is E. A multivalued mapping T : E → 2X{∅} is said to be inward on E if
Tx ⊂ IE(x) ∀x ∈ E.
Let ĪE(x) := x + {λ(z − x) : z ∈ E, λ ≥ 1}. Note that for a convex E, we have

ĪE(x) = IE(x), and T is said to be weakly inward on E if
Tx ⊂ ĪE(x) ∀x ∈ E.
Let E be a nonempty bounded closed subset of Banach space X and {xn} a bounded

sequence in X: we use r(E, {xn}) and A(E, {xn}) to denote the asymptotic radius and
the asymptotic center of {xn} in E, respectively, i.e.

r(E, {xn}) = inf
{

lim sup
n
‖xn − x‖ : x ∈ E

}
,

A(E, {xn}) =
{
x ∈ E : lim sup

n
‖xn − x‖ = r(E, {xn})

}
.
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If D is a bounded subset of X, the Chebyshev radius of D relative to E is defined by

rE(D) := inf {sup{‖x− y‖ : y ∈ D} : x ∈ E} .

Let S be a set G ⊂ S and D be a directed set, we shall say that a net xα in S

eventually in G if there exist α0 ∈ D such that xα ∈ G for all α ≥ α0.

Definition 2.6 A net {xα} in a set S is called an ultranet if for each subset E ⊂ S,

either {xα} is eventually in G or {xα} is eventually in S \G.

The following facts concerning ultranets can be found in [9]:

(a) Every net in a set has an ultranet.

(b) If f : S1 → S2 is a map and if {xα} is an ultranet in S1, then {f(xα)} is a ultranet
in S2.

(c) If S is compact and {xα} is a ultranet in S, then limα xα exists.

Obviously, the convexity of E implies that A(E, {xα}) is convex. Notice thatA(E, {xα})
is a nonempty weakly compact set if E is weakly compact, or E is a closed convex subset
of a reflexive Banach spaces X.

Let E be a nonempty bounded closed subset of Banach spaces X. Then {xn} ⊂ X is
called regular with respect to E if r(E, {xn}) = r(E, {xni}) for all subsequences {xni} of
{xn}.

Lemma 2.7 (Geobel, Lim ) Let {xn} and E be as above. Then, there always exists a
subsequence of {xn} which is regular with respect to E.

Moreover, we also need the following Lemma.

Theorem 2.8 (cf. T. D. Benavides and P. L. Ramírez; Theorem 4.3; [4].) Let E be a
closed convex subset of a reflexive Banach space X, and let {xβ : β ∈ D} be a bounded
ultranet. Then

rE(A(E, xβ)) ≤ (1−∆X,α(1−))r(E, {xβ}). (2.3)

The following results are now basic in fixed point theorems for multivalued mappings.
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Lemma 2.9 (cf. Deimling 1992, [2]). Let X be a Banach space and ∅ 6= D ⊂ X be
a closed bounded convex. Let F : D → 2X be upper semicontinuous γ−condensing with
closed convex values, where γ(·) = α(·)orχ(·). If Fx∩ID(x) 6= ∅ for all x ∈ E, then F has
a fixed point. (Here, ID(x) is called the inward set at x defined by ID := {x+ λ(y − x) :
λ ≥ 0, y ∈ D})

Proposition 2.10 (cf. Kirk-Massa Theorem [10]) Let E be a nonempty weakly compact
separable subset of a Banach space X, T : E → KC(E) a nonexpansive mapping, and
{xn} a sequence in E such that limn d(xn − Txn) = 0. Then, there exists a subsequence
{zn} of {xn} such that

Tx ∩A 6= ∅, ∀x ∈ A := A(E, {zn})

3. The Main Results

The following states the main result of this paper, and is the random version of
theorem 3.4 of Domínguez Benavides and Lorenzo Ramírez ([4]).

Theorem 3.1 Let E be a nonempty closed bounded, convex and separable subset of a
Banach space X such that εα(X) < 1, and T : Ω × E → KC(X) be a nonexpansive
random operator and 1-χ-contractive mapping, such that for each ω ∈ Ω, T (ω, E) is a
bounded set, which satisfies the inwardness condition. Then T has a random fixed point.

Proof. For each ω ∈ Ω, and for every n ≥ 1, we set

F (ω) = {x ∈ E : x ∈ T (ω, x)},

and

Fn(ω) = {x ∈ E : d(x, T (ω, x)) ≤ 1
n
diamC}.

It follows from Theorem 3.4 of Benavides-Ramírez’s [4] that F (ω) is nonempty. Clearly
F (ω) ⊆ Fn(ω), and Fn(ω) is closed and convex. Furthermore, by Lemma 2.4, each Fn

is measurable. Then, by Lemma 2.1, each Fn admits a measurable selector xn(ω) and
d(xn(ω), T (ω, xn(ω))) ≤ 1

ndiamE → 0 as n→∞.
Let {nα} be an ultranet of the positive integer {n}. Defined a function f : Ω× E →

R+ := [0,∞) by
f(ω, x) = lim sup

α
‖xnα(ω) − x‖, x ∈ E.
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Since {xnα(ω)} is countable, it is easily see that f(ω, ·) is measurable and f(ω, ·) is
continuous and convex, therefore it is a weakly lower semicontinuous function. Hence by
Lemma 2.5, the marginal functions

r(ω) := inf
x∈E

f(ω, x)

and

A(ω) := {x ∈ E : f(ω, x) = r(ω)}

are measurable, and A(ω) is a weakly compact convex subset of E. Note that A(ω) =
A(E, {xnα(ω)}), and r(ω) = r(E, {xnα(ω)}). Moreover, we can apply Lemma 2.8 to
obtain

rE(A(ω)) ≤ λr(E, {xnα(ω)}), (3.1)

where λ = 1 − ∆X,α(1−) < 1, since εα(X) < 1. By Lemma 2.1 we can take x0(ω) as
a measurable selector of A(ω). For each ω ∈ Ω and n ≥ 1, we define the contraction
Tn(ω, ·) : A(ω)→ KC(X) defined by

Tn(ω, x) =
1
n
x0 + (

n− 1
n

)T (ω, x),

for each (ω, x) ∈ Ω× E. We shall prove that the inwardness of T on E implies a weaker
inwardness of T on A, i.e.,

T (ω, x) ∩ IA(ω)(x) 6= ∅, ∀x ∈ A(ω). (3.2)

Indeed, the compactness of T (ω, xnα(ω)) implies that for each nα fixed ω ∈ Ω, we can
take ynα(ω) ∈ T (ω, xnα(ω)) such that

‖xnα(ω) − ynα(ω)‖ = d(xnα(ω), T (ω, xnα(ω))).

Since T (ω, x(ω)) is compact, for each x(ω) ∈ A(ω), we can find znα(ω) ∈ T (ω, x(ω)) such
that

‖ynα(ω) − znα(ω)‖ = d(ynα(ω), T (ω, x(ω)))
≤ H(T (ω, xnα(ω)), T (ω, x(ω)))
≤ ‖xnα(ω) − x(ω)‖.
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Let z(ω) = limα znα(ω) ∈ T (ω, x(ω)). It should remain to prove z(ω) ∈ IA(ω)(x). It
follows that

lim supα ‖xnα(ω) − z(ω)‖ = lim supα ‖ynα(ω) − znα(ω)‖
≤ lim supα ‖xnα(ω) − x(ω)‖
= r(ω).

Since z(ω) ∈ T (ω, x(ω)) ⊆ IE(x), for each fixed ω ∈ Ω there exist λ ≥ 0 and v(ω) ∈ E
such that

z(ω) = x(ω) + λ(v(ω) − x(ω)).

If λ ≤ 1, then by the convexity of E, z(ω) ∈ E and hence z(ω) ∈ A(ω) ⊆ IA(ω)(x) and
we are done. So assume that λ > 1. Then we can write

v(ω) = µz(ω) + (1 − µ)x(ω) with µ =
1
λ
∈ (0, 1).

It follows that

f(ω, v(ω)) = lim supα ‖xnα(ω) − v(ω)‖
≤ µ lim supα ‖xnα(ω) − z(ω)‖ + (1− µ) lim supα ‖xnα(ω) − x(ω)‖
≤ r(ω).

Therefore v(ω) ∈ A(ω) and thus z(ω) = x(ω) + λ(v(ω) − x(ω)) belong to IA(ω)(x).
That is T (ω, x(ω)) ∩ IA(ω)(x) 6= ∅ ∀x(ω) ∈ A(ω).

Now, we have a mapping T (ω, ·) : A(ω) → KC(X) which satisfies the boundary
condition (3.2). Consequently, since Tn(ω, ·) is 1-χ-contractive mapping, it is easily
seen that Tn(ω, ·) is χ-condensing (see [3]). By lemma 2.9, Tn(ω, ·) has a fixed point
xn(ω) ∈ A(ω), i.e.F (ω) ∩A(ω) 6= ∅. Also, we have

dist(xn(ω), T (ω, xn(ω))) ≤ 1
n
diamE → 0 as n→∞.

Thus, F 1
n(ω) := {x ∈ A(ω) : d(x, T (ω, x)) ≤ 1

ndiamE} 6= ∅ for each n ≥ 1 is closed and

measurable. Hence, by Lemma 2.1, we can choose x1
n a measurable selector of F 1

n , and
from definition of it we have x1

n(ω) ∈ A(ω) and d(x1
n(ω), T (ω, x1

n(ω))) → 0 as n → ∞.
Consider the function f2 : Ω ×E → R+ defined by

f2(ω, x) = lim sup
α
‖x1

nα(ω) − x‖, ∀ω ∈ Ω.
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As above, f2 is a measurable function and weakly lower semicontunuous function. Then
the marginal function

r2(ω) := inf
x∈A(ω)

f2(ω, x)

and
A1(ω) := {x ∈ A(ω) : f2(ω, x) = r2(ω)}

are measurable. Since A1(ω) = A(A(ω), {x1
nα(ω)}), it follows that A1(ω) is a weakly

compact and convex. Also r2(ω) = r(A(ω), {x1
n(ω)}). We proceed as before to obtain

that
T (ω, x(ω)) ∩ IA1(x(ω)) 6= ∅ ∀x(ω) ∈ A1 = A(A(ω), {x1

nα
(ω)}),

and by (3.1) we obtain that

rE(A1) ≤ λr(A(ω), {x1
nα(ω)}) ≤ λrE(A(ω)). (3.3)

By induction, for each m ≥ 1, we take a sequence {xmn (ω)}n ⊆ Am−1 such that
limn d(xmn (ω), T (ω, xmn (ω))) = 0 for each fixed ω ∈ Ω. By means of the ultranet {xmnα(ω)}α
we construct the set Am := A(E, {xmnα(ω)}) such that

rE(Am) ≤ λmrE(A(ω)). (3.4)

Choose xm(ω) as a measurable selector of Am. We shall prove that {xm(ω)}m is a Cauchy
sequence. For each m ≥ 1, we have

‖xm−1(ω)− xm(ω)‖ ≤ ‖xm−1(ω) − xmn (ω)‖ + ‖xmn (ω) − xm(ω)‖
≤ diamAm−1(ω) + ‖xmn (ω) − xm(ω)‖.

Since distAm ≤ 2rE(Am), taking upper limit as n→ +∞, we have

‖xm−1(ω) − xm(ω)‖ ≤ diamAm−1 + lim supn ‖xmn (ω) − xm(ω)‖
= diamAm−1 + r(E, {xmn (ω)})
≤ diamAm−1 + rE(Am−1})
≤ 2rE(Am−1) + rE(Am−1)
= 3λm−1rE(A(ω)).

Since λ < 1, hence {xm(ω)}m≥1 is a Cauchy sequence we conclude that there exists
x(ω) ∈ E such that xm(ω) converges to x(ω). Finally, we will show that x(ω) is a random
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fixed point of T. Indeed, for each m ≥ 1, we have

d(xm(ω), T (ω, xm(ω)) ≤ ‖xm(ω) − xmn (ω)‖ + d(xmn (ω), T (ω, xmn (ω)))
+ H(T (ω, xmn (ω)), T (ω, xm(ω)))
≤ 2‖xm(ω) − xmn (ω)‖ + d(xmn (ω), T (ω, xmn (ω))).

Taking the upper limit as n→ +∞,

d(xm(ω), T (ω, xm(ω)) ≤ 2 lim supn ‖xm(ω) − xmn (ω)‖
≤ 2λm+1rE(A(ω)).

Now taking the limit m → +∞ on both sides we get d(xm(ω), T (ω, xm(ω))) = 0, and
the continuity of T (ω, ·) implies that d(x(ω), T (ω, x(ω))) = 0, that is, x(ω) ∈ T (ω, x(ω)).
This completes the proof. 2

Corollary 3.2 (Domínguez Benavides and Lorenzo Ramírez [4, Theorem 3.4]) Let X be
a Banach space such that εα(X) < 1, and E be a nonempty closed bounded convex subset
of X. If T : E → KC(X) is a nonexpansive and 1−χ-contractive nonexpansive mapping,
such that T (E) is a bounded set, and which satisfies Tx ⊂ IE(x) ∀x ∈ E,
then T has a fixed point.

Proof. Define a random operator S : Ω×E → KC(X) by S(ω, x) = T (x) for all ω ∈ Ω
and for all x ∈ E. Thus S(ω, ·) is a nonexpansive random operator and 1−χ-contractive
mapping such that S(ω, E) is bounded for all ω ∈ Ω. Hence, by Theorem 3.1, S(Ci) has a
random fixed point x(ω) ∈ S(ω, x) = T (x) for all ω ∈ Ω. Thus is completes of the proof. 2

Next we prove the random version of the following celebrated deterministic result due
to Xu ([20, Theorem 3.4]). The proof below is inspired by same ideas in the proof of [20].

Theorem 3.3 Let E be a nonempty closed, bounded and convex separable subset of a
uniformly convex Banach space X and T : Ω×E → KC(X) be a multivalued nonexpansive
random operator such that for each ω ∈ Ω, T (ω, E) is a bounded set, which satisfies the
inwardness condition, i.e., for each ω ∈ Ω, T (ω, x) ⊂ ĪE(x), ∀x ∈ E. Then T has a
random fixed point.
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Proof. Fix x0 ∈ E for each n ≥ 1, define the mapping Tn : E → KC(X) by

Tn(ω, x) =
1
n
x0 + (1− 1

n
)T (ω, x), ω ∈ Ω, x ∈ E.

Then Tn is a multivalued random contraction satisfying the same boundary condition
as T does, i.e. we have, Tn(ω, x) ⊂ ĪE(x) for all x ∈ E. Hence, by [20, Theorem 1.4],
Tn(ω, ·) has a random fixed point denoted xn(ω). Also it is easily seen that we have
dist(xn(ω), T (ω, xn(ω))) ≤ 1

ndiamE → 0 as n → ∞. Let {nα} be a universal subnet of
the positive integers {n}. Define a function f : Ω× E → R+ by

f(ω, x) = lim sup
n
‖xnα(ω) − x‖, ∀ω ∈ Ω.

Since {xnα} is countable, it is easily seen that for each x ∈ E, f(·, x) : Ω → R+ is
measurable and each ω ∈ Ω, f(ω, ·) : E → R+ is continuous and convex (and hence
weakly lower semicontinuous (w-l.s.c.)). Since the space X is uniformly convex and E is
weakly compact and convex for each ω ∈ Ω, there exists exactly a point x(ω) ∈ E such
that

f(ω, x(ω)) = inf
x∈E

f(ω, x) =: r(ω).

Note that x(ω) is an asymptotic center of the net {xnα(ω)} with respect to E. Lim [12],
and Kirk and Massa [10] actually proved that for each ω ∈ Ω, x(ω) is a fixed point of
the map T (ω, ·). By using the same argument as in the proof of Xu ([20, p.1091]), we
obtain x(ω) is measurable. Therefore x(ω) is a random fixed point of T . The proof of
the theorem, is complete. 2

Corollary 3.4 (Xu cf. [20]) Assume X is a uniformly convex Banach space, E is a
closed bounded convex subset of X, and T : E → KC(X) is a nonexpansive mapping
satisfying the inwardness condition,i.e., Tx ⊂ ĪE(x), x ∈ E. Then T has a fixed point.

Corollary 3.5 (Xu cf. [18]) Let (Ω,Σ) be a measurable spaces with Σ a sigma-algebra
of subsets of Ω. Let E be a nonempty, bounded, closed, convex and separable subset of
a uniformly convex Banach space X, and let T : Ω × E → KC(E) be a multivalued
nonexpansive random operator. Then T has a random fixed point.

Proof. It follows from Theorem 3.3, since every self multivalued mappings satisfies
the inwardness condition. 2
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