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Diagonal Lift in the Tangent Bundle of Order Two

*

and its Applications

F. Hathout, H. M. Dida

Abstract

In this paper we define a diagonal lift g of Riemannian metric g of manifold
M, to the tangent bundle of order two denoted by T?M,, of M,, we associate to Pg
its Levi-civita connection of T? M and we investigate applications of the diagonal

lifts in the killing vectors and geodesics.
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1. Introduction

Let M, be an n-dimensional differentiable manifold endowed with a linear connection
V. The tangent bundle of order two, T2M,, of M, is the 3n-dimensional manifold of
2-jets at 0 € R of differentiable curves f : R —M,,; T?M,, has a natural bundle structure

over M,
7o T2M,, — M,
denoting the canonical projection.

The tangent bundle TM,, is nothing by the manifold of 1-jets j'f at 0 € R of the
curves f: R —M,.
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If we denote w5 : T2M, — TM, be a canonical projection w9, then T?M has a
bundle structure over T'M,,, with projection 71s.

For any coordinate neighborhood (U, z%) in M , (7=1(U), %, 3%) denotes the induced
coordinate neighborhood in T'M,,, that is, if j'f € TU then

. . o dft
(2 — (2 0 (2 - < 0
"= f10), y'=—-(0)
and ((72r)_1(U), 2%y, 2%) denotes the induced coordinate neighborhood in T2 M,,, that is
, if j2f € T?U then
; d2fi
(0)7 = dt2 (0)

i df

CL'i:fi(o)v dt

where ¢ = fi(t) are the local expression of the curve f in U.
Let f: R —M, be a curve in M, then the tangent vector f(0) to f at f(0) will be
called the velocity of f at f(0) and the covariant derivative (Vf-(o)f)(O) of f at f(0) with

respect to f (0) will be called the covariant acceleration of f at f(0).
If (U, 2%) is a coordinate neighborhood in M,, and x* = fi(¢) are the local expressions

of fin U, we have

i o
dt Ozt

. d? fi df? dft 0
(vf(o)f)(o) = (dtJ; %%F; k)awi’

f0) =

F; being the components of V in U.

2. \-lift from M, to T?M,,

For any = € M,,, we define the map
Sy :T2M — T, M & T, M

321 = (F0).(V, D).
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Then, S, is bijective and permits one to define a vector space structure on T2 M,, such
that S, is a vector space isomorphism. Therefore T2M,, becomes a vector bundle over
M,, with fibre R?" and projection ms.

Indeed, if (U, x?) is a coordinate neighborhood in M,,, then U can be considered as a

vector bundle chart by defining the diffeomrphism
T°U — UxR™

ar

j2f - (f(O), dt (0),(V f)i(o))v

£(0)
or in the induced coordinates
where w® = 2% 4+ yjykI‘; k-
Morever, let TM,, & T M,, be the Whitney sum of T'M,, with itself, then the map
S :T?M, — TM, ®TM,

defined on each fibre Tan as S, becomes a vector bundle isomorphism.

Thus, we have the following theorem.

Theorem 1 The linear connection V on M, determines a vector bundle structure on
o : T2M,, — M,, and a vector bundle isomorphism S : T?M,, — TM,, & TM,,.

For any vector fields X on M,,, we shall denote by X" (resp X'T) the vertical lift
(resp the horizontal lift) with respect to V of X to T'M,,([3]).
If we have in TU

9 )i 9 ipk 9

0., 0
Ozt _Bxi+y 9y’ )

H _ -2
X% =( Oxt oy’

XV =
consequently {X "X V} is a 2n-frame which will be called the adapted frame to V in
TU.

Now, for any vector field X on M,, we shall consider three vectors fields X°, X! and
X' on T?M,, defined by

X = s;'(x"4+xM
X = S 1XxV +0) (1)
X" o= SN0+ XY).
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If we put in 72U, then

X0=(;2)0; X'=(2)5 X2 =(2)M @
and
hk k k hk ¢ 0T, k ph k k
y' Iy =17 5 A7 =215, +99(W+Fihrtr—rtlrir =I5 i),
we thus obtain
o _ k0 k8
X0 = go —ligr —Aigr
X' = -ty (3)
2 _ 9
X* = 5,

and therefore, { X", X1, X2} is a 3n-frame which will be called the adapted frame to V
in T2U([7], [8])-

From (1), (2) and theorem 1 we easily obtain
X0 = s M (xH xH X' =s571(XV,0), X?=5.0,x"). (4)
Now hawe the following definition.

Definition 2 If X is a vector field on U, X* (A =1,2,3) is called the \-lift of X to
TU.

A-lift were studied in [8] and applied to the tangent bundle of higher order T' "U; and
in the case of » = 1, we have X! = X" and X? = X¥.

Proposition 3 For any A =0, 1,2 we have
(fX) = f(X*Y)
for all f € C(M).

For any 1-form w in M, there exists a unique 1-form w? (A =0,1,2) in T?M,,, which

for any vectors field X on M, we have

w)‘(Xi) = 51-2_)‘ w(X)om (5)
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Definition 4 The 1-form w> in T?M,, is called the \—lift of w.
If we put

Af =20 YT, T ) + AY

and by taking account of (5), we have

de) = AFdry + 207 dy, + dz;
del = TFday + dy; (6)
dz? = dx;

Let now M, be a Riemannian manifold with nondegenerate metric g whose compo-
nents is a coordinate neighborhood U are g;; and denote by Fﬁ‘j the christoffel symbols

formed with g;;.

3. Lift g of Riemannian g to T2M,,

For any tensor field g of type (0,2) in M, there exist a unique tensor field Pg €
TY(T?M,,) whitch for any vectors fields X, Y on M,, and any i, j= 0, 1,2, we have ([9])

Pg(X',Y7) = 6% g(X,Y) o, (7)
and locally in T?M,, we have
Pg = gijdad @ dal + gijda} @ daj + gijda} © da?. (8)

Thus from (7) and (8), g has components of the form

Gij 0 0
(Dgﬁa) = 0 gy O (9)
0 0 g

with respect to the adapted frame {X°, X!, X2} in T?M,,,
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and components

Gij + gm i TS, + g AL AT, g+ 21, AT, grj A
Pg= gkifi + 291 AT 9ij +291m(Tf +T7.) 25, T (10)
griA, 29k}, Gij

with respect to the coordinates (z, 4%, 2%).
From (9) it follows that if g is a Riemannian metric in M, then Pg is a Riemannian

metric in T2M,,.

Definition 5 The metric Pg is called the diagonal lift of the tensor field g to T?M,,
(see [9]).
In the case of TM,, we find diagonal lift stadied by S.Sasaki ([13]).

4. Levi-Civita Connetion of Pg

Let V be a linear levi-Civita connection on M,,, and taking account that V is torsion

free we shall need the following identities:

2
(X7 = [X,¥]" =) (R(X,Y)u)

k=1
[(X°.Y7] = (VxY) (11)
(XY = 0 Vij=12

(for proof, see [7], [8], [12]).
And by koszule formula, the levi-Civita connection PV of (T?M,,,P g) is given as

following
2
1/ PVxoY? = (VxY)° = 1> (R(X,Y)u)*
k=1
2/ PVxoYV' = (VxY)'+3(R(u,Y)X)°
3/ PVxeY? = (VxY)*+ 3(R(u,Y)X)" (12)
4/ PVxY? = PVxY?=L(R(u, X)Y)°
5/ PVxiY! = PV Y2=P VeV =P ViY2=0
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for any vectors fields X, Y € C*°(M,,) and for all (p,u) € T M,
Thus, according to (8), (9) and (12), the components “T'§ with respect to the adapted

frame are given by

Dph _ ph . Dph _ Dph 1, kph . Dph _ Dph 1, kph
Fij _Fij ; Fij_ Fjj—ﬁy Rkij ) Fij_ Pi§_2y Rkji

bre = Prh o= Prh_ = PTL_ =0

t ij 7] ij
Dph k 1k ph kl1ph . Dph _ Dph _ 1.k ph ps

Fij =Y Fijrk -y §Rijkv Fij = F?j = —3Y Iy kij

Dph  _ ph 1, kph ps . Dph _ Dph

I =Tl =3y TU Ry, 3 Ty = PT2 =0 (13)
Dph 1,k 1h ps . h _ Dph _

' = —3Y Iy kji s ' = "I2- =0

¥ ) )

Dph k 4h h. kps 1 kph . Dph _ 1. kph Ah

Uiy = =I5 A+ Doy R — sy Ry 5 71 = —sy Ry A
Drh  _ _1ps ah . Dph _ 1. kps gh s ph . Dph _ Dph
FTJ = _ERkij As ; FZ} —_Ey Rk:ji As —21_‘” Fs ; Pi_} = FT} =0
Dph  _ 1. kps 4h ,Th . Dph _ Dph  _

M= =GR, AL+TG 5 Pt = Prio <o,

5. Killing Vector Fields

A vector fields X is said to be infinitesimal isometry or a Killing vector field of

a riemannian manifold with metric g, if

£x 9=Xg(Y,2) —g([X,Y], 2) = g(Y,[X, Z]) = 0 (14)

for all X, Y € C°°(M,). In the terms of components g;; of g, X is an infinitesimal

isometry if and only if

Xhahgij + ghjaiXh + gih(?th =0

where X" are components of X.(see [3])
We see by virtue of (8) that X is a Killing vector field in T72M,, with metric Pg if
and only if

£5( DQZXg(i/,Z)— Dg([Xvif]vZ)_ Dg(i/> [XvZ]):O (15)
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for all Z,Y € C=(T?M,,).
Then by (11) we have

(Ex0 Po)(Y',Z2") = Xg(Y. Z) — g(VxY, Z) —g(Y,VxZ) =0
(EXU Dg)(yovz j) = (R(Xv Y)u j7Z j) = g(R(X,Y)u, Z) (16)
(EXU Dg)(y j? ZO) = g(R(X, Z)u j7y j) = g(R(X,Y)u, Z)
(EXU Dg)(Yl,Z2) = (EXU Dg)(Y27Z1) =0
(Lx1 Pg)(Y',Z2") =0
(Ex1 P)(Y°,2") = g(Vv X, Z)
(£X1 Dg)(Yl,ZO) = g(}/, VZX) (17)
(x1 Pg)(Y°,Z22) = (£x1 Pg) (Y%, 2°) =0
(£X1 Dg)(Yl,Z2) = (£X1 Dg)(Y27Z1) =0
(Lx2 Pg)(Y',Z") =0
(Lx2 Pg)(Y°, Z") = (£x2 Pg)(Y',2°) =0
(Ex2 Pg)(Y°,2%) = g(Vv X, Z) (18)
(Lx2 Pg)(Y?,2°) = g(Y, V2 X)
(Lx2 Pg)(Y', Z%) = (£x2 Pg)(Y?,Z2") =0
for all X € C®(M,,), j=1,2 and i = 0,1,2.
Since we have
Xg(Y,2Z) —g([X,Y], Z) —g(Y,[X,Z]) = Xg(Y,Z)—-g(VxY,Z) - (19)

9V, Vx2) +9(Vy X, Z) + g(Y,VzX),

we conclude by means of (16), (17) and (18) that if £x0 Pg and £x1 Pg or £x2, that Pg
vanishes implies that £x g = 0.

We next have

R(X,Y)u=0< X"Rf,. =0
VzX =VX(Z)=0

and £x ¢g = 0 imply that £y: Pg =0 for i = 0,1, 2. Thus, we have.
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Theorem 6 The vector field X in M, is a killing vector field if its 0-lift and \-lift (A = 1
or 2) are killing vectors fields in T?M,,. Conversely,

If X is a killing vector field, parallel and R(X,Y)u = 0 vanishes for all Y € C*(M,)
(i.e. XhRfu-j =0), then X\-lift (\ = 0,1,2) of X is a killing vector field in T?M,,.

6. Geodesics in T?M,, with metric Pg

Let C be a curve in M,, expressed locally by x! = x%(t) and y'(¢) be a vector field
along C. Then, in the tangent bundle of order two T?M,, over the Riemannian manifold

M,, with metric Pg, we define a curve C by

ot =a'(t), ' =y (t), =" =z (t).

We consider now differentiel equations of the geodesics of the tangent bundle of order
two T2M,, with the metric Pg. If ¢ is the arc length of the curve x4 = z4(¢) in T2M,,,

equations of geodesic in T?M,, have the usual form

&%zt Pzt 4 da® daP
TR TR LR TR (21)

with respect to the induced coordinates (wi,xi,x;) = (2,9, 2%) in T?M,,.

We find it more convenient to refer equations (22) to the adapted frame {dw?, dw}, dz?}.

Using (6), we write

9i = dLL'i

0 = oy; = I‘fdwk + dy;

0i = 5z = AFdzy + 2TF dyy, + dz;

and put

9_1' o dLL'i

dt  dt

o oy oi 0z

dt — dt’  dt dt
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along a curve x4 = z4(t), i.e., 2° = 2'(t), 2 =y (t), zi 24(t) in T2 M,,.

If we write, therefore, down the form equivalent to (22), namely,

4 o, A0 d0
dt dt By at dt

with respect to the adapted frame and take account of (13), then the curve 24 = z4(t)
in T2 M,, with the metric Pg is a geodesic in T2M,, if and only if

82z’ hpi 0y’ da* hpi 827 da* _
zr Y Ry S Y Rk S =0

5%yt h 1 da? dz® h ps i 0yl da® h ps i 827 dab
e — LG S — Y R T G — v R L =0

Ry AT =0
with
2 i ) a J,B
- L FE VLAt (23)
52yt B d(&gi ;. 6y* daP
i~ ata) P ar

If a curve satisfying (22) lies on the a fiber given by x' = const, y* = const in T M,
then (22) reduce to

d?zt
=0 24
dt2 ( )
so that
2t =a't 4+ b, (25)

a’ and b* being constant. Thus, we have the following theorem.

Theorem 7 If the geodesic x* = xi(t), y* = y'(t) and z = 2i(t) lies in fiber of T?M,,
with the metric Pg, the geodesic is expressed by linear equations x* = ¢, y* = d* and

2t = a't + b with induced coordinates (z°, 1y, 2*), where a*,b%,c* and d* are constant.
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If a curve satisfying (22) lies on the a fiber given by x* = const, then (22) reduce to

52yk7 _ d2yi _ 0 (
gz = ar )
642"

— o - =
dt? kTR g dt

so that from (26,i) y* = a’t + b%, a’ and b’ geing constant.

From (23) we have

R 2a"a’ly; + T
and (26,ii) become
6% hopi 027 0y r Il d’z hori gopl 1k 9%k
=7 Wl = 2a"a'ly; + dt; =2l I, (2T5a'a +d_tja )
d2z. ) dz: .
= = —arjrja =L —arlrirlalat;
then (26,ii) is given by
d2z. ) dz: .
d:; - 2F§?kfﬁlak£ — AT", T T alab.

Thus, we have the following theorem.

(26)

(27)

Theorem 8 If the geodesic x* = xi(t), y* = y'(t) and z = 2i(t) lies in fiber of T?M,,

with the metric P g, the geodesic is expressed by linear equations x* = ¢, y* = a’t+b* and

2t solution of differential system (27) with induced coordinates (z, %, 2*), where at, b, c*

and d* are constant.
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