Diagonal Lift in the Tangent Bundle of Order Two and its Applications*

F. Hathout, H. M. Dida

Abstract

In this paper we define a diagonal lift ${ }^{D} \mathrm{~g}$ of Riemannian metric g of manifold M_{n} to the tangent bundle of order two denoted by $\mathrm{T}^{2} \mathrm{M}_{n}$ of M_{n}, we associate to ${ }^{D} \mathrm{~g}$ its Levi-civita connection of $\mathrm{T}^{2} \mathrm{M}$ and we investigate applications of the diagonal lifts in the killing vectors and geodesics.

Key Words: Tangent bundle of order two, Riemannian metric, Diagonal lift, Levicivita connection, Killing vector field, Geodesic.

1. Introduction

Let M_{n} be an n-dimensional differentiable manifold endowed with a linear connection ∇. The tangent bundle of order two, $T^{2} M_{n}$ of M_{n} is the 3 n-dimensional manifold of 2-jets at $0 \in \mathbb{R}$ of differentiable curves $f: \mathbb{R} \rightarrow M_{n} ; T^{2} M_{n}$ has a natural bundle structure over M_{n},

$$
\pi_{2}: T^{2} M_{n} \rightarrow M_{n}
$$

denoting the canonical projection.
The tangent bundle $T M_{n}$ is nothing by the manifold of 1-jets $j^{1} f$ at $0 \in \mathbb{R}$ of the curves $f: \mathbb{R} \rightarrow M_{n}$.

[^0]
HATHOUT, DIDA

If we denote $\pi_{12}: T^{2} M_{n} \rightarrow T M_{n}$ be a canonical projection π_{12}, then $T^{2} M$ has a bundle structure over $T M_{n}$, with projection π_{12}.

For any coordinate neighborhood $\left(U, x^{i}\right)$ in $M,\left(\pi^{-1}(U), x^{i}, y^{i}\right)$ denotes the induced coordinate neighborhood in $T M_{n}$, that is, if $j^{1} f \in T U$ then

$$
x^{i}=f^{i}(0), \quad y^{i}=\frac{d f^{i}}{d t}(0)
$$

and $\left((\underset{\pi}{\pi})^{-1}(U), x^{i}, y^{i}, z^{i}\right)$ denotes the induced coordinate neighborhood in $T^{2} M_{n}$, that is , if $j^{2} f \in T^{2} U$ then

$$
x^{i}=f^{i}(0), \quad y^{i}=\frac{d f^{i}}{d t}(0), \quad z^{i}=\frac{d^{2} f^{i}}{d t^{2}}(0)
$$

where $x^{i}=f^{i}(t)$ are the local expression of the curve f in U.
Let $f: \mathbb{R} \rightarrow M_{n}$ be a curve in M_{n}, then the tangent vector $\dot{f}(0)$ to f at $f(0)$ will be called the velocity of f at $f(0)$ and the covariant derivative $\left(\nabla_{\dot{f}(0)} \dot{f}\right)(0)$ of \dot{f} at $f(0)$ with respect to $\dot{f}(0)$ will be called the covariant acceleration of f at $f(0)$.

If $\left(U, x^{i}\right)$ is a coordinate neighborhood in M_{n} and $x^{i}=f^{i}(t)$ are the local expressions of f in U, we have

$$
\begin{aligned}
\dot{f}(0) & =\frac{d f^{i}}{d t} \frac{\partial}{\partial x^{i}} \\
\left(\nabla_{\dot{f}(0)} \dot{f}\right)(0) & =\left(\frac{d^{2} f^{i}}{d t^{2}}+\frac{d f^{j}}{d t} \frac{d f^{k}}{d t} \Gamma_{j k}^{i}\right) \frac{\partial}{\partial x^{i}}
\end{aligned}
$$

$\Gamma_{j k}^{i}$ being the components of ∇ in U.
2. λ-lift from M_{n} to $T^{2} M_{n}$

For any $x \in M_{n}$, we define the map

$$
\begin{aligned}
& S_{x}: T_{x}^{2} M \rightarrow T_{x} M \oplus T_{x} M \\
& \quad j^{2} f \rightarrow\left(\dot{f}(0),\left(\nabla_{\dot{f(0)}} \dot{f}\right)(0)\right) .
\end{aligned}
$$

Then, S_{x} is bijective and permits one to define a vector space structure on $T_{x}^{2} M_{n}$ such that S_{x} is a vector space isomorphism. Therefore $T^{2} M_{n}$ becomes a vector bundle over M_{n} with fibre $\mathbb{R}^{2 n}$ and projection π_{2}.

Indeed, if $\left(U, x^{i}\right)$ is a coordinate neighborhood in M_{n}, then U can be considered as a vector bundle chart by defining the diffeomrphism

$$
\begin{aligned}
T^{2} U & \rightarrow U \times \mathbb{R}^{2 n} \\
j^{2} f & \rightarrow\left(f(0), \frac{d f^{i}}{d t}(0),\left(\nabla_{\dot{f(0)}} f\right)^{i}(0)\right)
\end{aligned}
$$

or in the induced coordinates

$$
\left(x^{i}, y^{i}, z^{i}\right) \rightarrow\left(x^{i}, y^{i}, w^{i}\right)
$$

where $w^{i}=z^{i}+y^{j} y^{k} \Gamma_{j k}^{i}$.
Morever, let $T M_{n} \oplus T M_{n}$ be the Whitney sum of $T M_{n}$ with itself, then the map

$$
S: T^{2} M_{n} \rightarrow T M_{n} \oplus T M_{n}
$$

defined on each fibre $T_{x}^{2} M_{n}$ as S_{x}, becomes a vector bundle isomorphism.
Thus, we have the following theorem.
Theorem 1 The linear connection ∇ on M_{n} determines a vector bundle structure on $\pi_{2}: T^{2} M_{n} \rightarrow M_{n}$ and a vector bundle isomorphism $S: T^{2} M_{n} \rightarrow T M_{n} \oplus T M_{n}$.

For any vector fields X on M_{n}, we shall denote by X^{V} (resp X^{H}) the vertical lift (resp the horizontal lift) with respect to ∇ of X to $T M_{n}([3])$.

If we have in $T U$

$$
X^{H}=\left(\frac{\partial}{\partial x^{i}}\right)^{H}=\frac{\partial}{\partial x^{i}}+y^{i} \Gamma_{i j}^{k} \frac{\partial}{\partial y^{i}}, \quad X^{V}=\left(\frac{\partial}{\partial x^{i}}\right)^{V}=\frac{\partial}{\partial y^{i}},
$$

consequently $\left\{X^{H}, X^{V}\right\}$ is a 2 n -frame which will be called the adapted frame to ∇ in $T U$.

Now, for any vector field X on M_{n} we shall consider three vectors fields X^{0}, X^{I} and $X^{I I}$ on $T^{2} M_{n}$ defined by

$$
\begin{align*}
X^{0} & =S_{*}^{-1}\left(X^{H}+X^{H}\right) \\
X^{I} & =S_{*}^{-1}\left(X^{V}+0\right) \tag{1}\\
X^{I I} & =S_{*}^{-1}\left(0+X^{V}\right)
\end{align*}
$$

HATHOUT, DIDA

If we put in $T^{2} U$, then

$$
\begin{equation*}
X^{0}=\left(\frac{\partial}{\partial x_{i}}\right)^{0} ; \quad X^{1}=\left(\frac{\partial}{\partial x_{i}}\right)^{I} ; \quad X^{2}=\left(\frac{\partial}{\partial x_{i}}\right)^{I I} \tag{2}
\end{equation*}
$$

and

$$
y^{h} \Gamma_{i h}^{k}=\Gamma_{i}^{k} ; A_{i}^{k}=z^{h} \Gamma_{i h}^{k}+y^{t} y^{r}\left(\frac{\partial \Gamma_{t r}^{k}}{\partial x^{i}}+\Gamma_{i h}^{k} \Gamma_{t r}^{h}-\Gamma_{t l}^{k} \Gamma_{i r}^{l}-\Gamma_{l t}^{k} \Gamma_{i r}^{l}\right),
$$

we thus obtain

$$
\begin{align*}
X^{0} & =\frac{\partial}{\partial x^{i}}-\Gamma_{i}^{k} \frac{\partial}{\partial y^{k}}-A_{i}^{k} \frac{\partial}{\partial z^{k}} \\
X^{1} & =\frac{\partial}{\partial y^{i}}-2 \Gamma_{i}^{k} \frac{\partial}{\partial z^{k}} \tag{3}\\
X^{2} & =\frac{\partial}{\partial z^{2}}
\end{align*}
$$

and therefore, $\left\{X^{0}, X^{1}, X^{2}\right\}$ is a $3 n$-frame which will be called the adapted frame to ∇ in $T^{2} U([7],[8])$.

From (1), (2) and theorem 1 we easily obtain

$$
\begin{equation*}
X^{0}=S_{*}^{-1}\left(X^{H}, X^{H}\right), X^{1}=S_{*}^{-1}\left(X^{V}, 0\right), X^{2}=S_{*}^{-1}\left(0, X^{V}\right) \tag{4}
\end{equation*}
$$

Now hawe the following definition.
Definition 2 If X is a vector field on $U, X^{\lambda}(\lambda=1,2,3)$ is called the λ-lift of X to $T^{2} U$.
λ-lift were studied in [8] and applied to the tangent bundle of higher order $T^{r} U$; and in the case of $r=1$, we have $X^{1}=X^{V}$ and $X^{0}=X^{H}$.

Proposition 3 For any $\lambda=0,1,2$ we have

$$
(f X)^{\lambda}=f\left(X^{\lambda}\right)
$$

for all $f \in C^{\infty}(M)$.

For any 1-form w in M_{n}, there exists a unique 1-form $w^{\lambda}(\lambda=0,1,2)$ in $T^{2} M_{n}$, which for any vectors field X on M_{n} we have

$$
\begin{equation*}
w^{\lambda}\left(X^{i}\right)=\delta_{i}^{2-\lambda} w(X) \circ \frac{2}{\pi} \tag{5}
\end{equation*}
$$

HATHOUT, DIDA

Definition 4 The 1 -form w^{λ} in $T^{2} M_{n}$ is called the λ-lift of w.
If we put

$$
\bar{A}_{i}^{k}=2\left(y^{h} y^{m} \Gamma_{i h}^{k} \Gamma_{i m}^{k}\right)+A_{i}^{k}
$$

and by taking account of (5), we have

$$
\begin{align*}
d x_{i}^{0} & =\bar{A}_{i}^{k} d x_{k}+2 \Gamma_{i}^{k} d y_{k}+d z_{i} \\
d x_{i}^{1} & =\Gamma_{i}^{k} d x_{k}+d y_{i} \tag{6}\\
d x_{i}^{2} & =d x_{i}
\end{align*}
$$

Let now M_{n} be a Riemannian manifold with nondegenerate metric g whose components is a coordinate neighborhood U are $g_{i j}$ and denote by $\Gamma_{i j}^{h}$ the christoffel symbols formed with $g_{i j}$.

3. Lift ${ }^{D} \mathbf{g}$ of Riemannian g to $T^{2} M_{n}$

For any tensor field g of type $(0,2)$ in M_{n}, there exist a unique tensor field ${ }^{D} g \in$ $\mathfrak{T}_{2}^{0}\left(T^{2} M_{n}\right)$ whitch for any vectors fields X, Y on M_{n} and any $i, j=0,1,2$, we have ([9])

$$
\begin{equation*}
{ }^{D} g\left(X^{i}, Y^{j}\right)=\delta_{j}^{i} g(X, Y) \circ \stackrel{2}{\pi} \tag{7}
\end{equation*}
$$

and locally in $T^{2} M_{n}$ we have

$$
\begin{equation*}
{ }^{D} g=g_{i j} d x_{i}^{0} \otimes d x_{j}^{0}+g_{i j} d x_{i}^{1} \otimes d x_{j}^{1}+g_{i j} d x_{i}^{2} \otimes d x_{j}^{2} . \tag{8}
\end{equation*}
$$

Thus from (7) and (8), ${ }^{D} \mathrm{~g}$ has components of the form

$$
\left({ }^{D} g_{\beta \alpha}\right)=\left(\begin{array}{ccc}
g_{i j} & 0 & 0 \tag{9}\\
0 & g_{i j} & 0 \\
0 & 0 & g_{i j}
\end{array}\right)
$$

with respect to the adapted frame $\left\{X^{0}, X^{1}, X^{2}\right\}$ in $T^{2} M_{n}$,

HATHOUT, DIDA

and components

$$
{ }^{D} g=\left(\begin{array}{lll}
g_{i j}+g_{l m} \Gamma_{l}^{i} \Gamma_{m}^{j}+g_{l m} \bar{A}_{l}^{i} \bar{A}_{m}^{j} & g_{k j} \Gamma_{k}^{i}+2 g_{l m} \bar{A}_{l}^{i} \Gamma_{m}^{j} & g_{k j} \bar{A}_{k}^{i} \tag{10}\\
g_{k i} \Gamma_{k}^{j}+2 g_{l m} \bar{A}_{l}^{j} \Gamma_{m}^{i} & g_{i j}+2 g_{l m}\left(\Gamma_{l}^{i}+\Gamma_{m}^{j}\right) & 2 g_{k j} \Gamma_{k}^{i} \\
g_{k i} \bar{A}_{k}^{j} & 2 g_{k i} \Gamma_{k}^{j} & g_{i j}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{i}, y^{i}, z^{i}\right)$.
From (9) it follows that if g is a Riemannian metric in M_{n}, then ${ }^{D} g$ is a Riemannian metric in $T^{2} M_{n}$.

Definition 5 The metric ${ }^{D} g$ is called the diagonal lift of the tensor field g to $T^{2} M_{n}$ (see [9]).

In the case of $T M_{n}$ we find diagonal lift stadied by S.Sasaki ([13]).

4. Levi-Civita Connetion of ${ }^{D} \mathbf{g}$

Let ∇ be a linear levi-Civita connection on M_{n}, and taking account that ∇ is torsion free we shall need the following identities:

$$
\begin{align*}
& {\left[X^{0}, Y^{0}\right]=[X, Y]^{0}-\sum_{k=1}^{2}(R(X, Y) u)^{k}} \\
& {\left[X^{0}, Y^{j}\right]=\left(\nabla_{X} Y\right)^{j}} \tag{11}\\
& {\left[X^{i}, Y^{j}\right]=0 \quad \forall i, j=1,2}
\end{align*}
$$

(for proof, see [7], [8], [12]).
And by koszule formula, the levi-Civita connection ${ }^{D} \nabla$ of $\left(T^{2} M_{n},{ }^{D} g\right)$ is given as following

$$
\begin{align*}
& 1 /{ }^{D} \nabla_{X^{0}} Y^{0}=\left(\nabla_{X} Y\right)^{0}-\frac{1}{2} \sum_{k=1}^{2}(R(X, Y) u)^{k} \\
& 2 /{ }^{D} \nabla_{X^{0}} Y^{1}=\left(\nabla_{X} Y\right)^{1}+\frac{1}{2}(R(u, Y) X)^{0} \\
& 3 /{ }^{D} \nabla_{X^{0}} Y^{2}=\left(\nabla_{X} Y\right)^{2}+\frac{1}{2}(R(u, Y) X)^{0} \tag{12}\\
& 4 /{ }^{D} \nabla_{X^{1}} Y^{0}={ }^{D} \nabla_{X^{2}} Y^{0}=\frac{1}{2}(R(u, X) Y)^{0} \\
& 5 /{ }^{D} \nabla_{X^{1}} Y^{1}={ }^{D} \nabla_{X^{1}} Y^{2}={ }^{D} \nabla_{X^{2}} Y^{1}={ }^{D} \nabla_{X^{2}} Y^{2}=0
\end{align*}
$$

HATHOUT, DIDA

for any vectors fields $X, Y \in C^{\infty}\left(M_{n}\right)$ and for all $(p, u) \in T M_{n}$.
Thus, according to (8), (9) and (12), the components ${ }^{D} \Gamma_{\beta \gamma}^{\alpha}$ with respect to the adapted frame are given by

$$
\begin{align*}
& { }^{D} \Gamma_{i j}^{h}=\Gamma_{i j}^{h} ;{ }^{D} \Gamma_{\bar{i} j}^{h}={ }^{D} \Gamma_{\overline{\bar{i}} j}^{h}=\frac{1}{2} y^{k} R_{k i j}^{h} ;{ }^{D} \Gamma_{i \bar{j}}^{h}={ }^{D} \Gamma_{i \bar{j}}^{h}=\frac{1}{2} y^{k} R_{k j i}^{h} \\
& { }^{D} \Gamma_{\bar{i} \bar{j}}^{h}={ }^{D} \Gamma_{\overline{\bar{i}} \bar{j}}^{h}={ }^{D} \Gamma_{\overline{\bar{i}} \overline{\bar{j}}}^{h}={ }^{D} \Gamma_{\overline{\bar{i}}}^{h}{ }_{\bar{j}}^{h}=0 \\
& { }^{D} \Gamma_{i j}^{\bar{h}}=-y^{k} \Gamma_{i j}^{k} \Gamma_{k}^{h}-y^{k} \frac{1}{2} R_{i j k}^{h} ;{ }^{D} \Gamma_{\bar{i} j}^{\bar{h}}={ }^{D} \Gamma_{\bar{i} j}^{\bar{h}}=-\frac{1}{2} y^{k} \Gamma_{s}^{h} R_{k i j}^{s} \\
& { }^{D} \Gamma_{i \bar{j}}^{\bar{h}}=\Gamma_{i j}^{h}-\frac{1}{2} y^{k} \Gamma_{s}^{h} R_{k i j}^{s} ;{ }^{D} \Gamma_{\bar{i} \bar{j}}^{\bar{h}}={ }^{D} \Gamma_{\overline{\bar{i}} \bar{j}}^{\bar{h}}=0 \tag{13}\\
& { }^{D} \Gamma_{i \overline{\bar{j}}}^{\bar{h}}=-\frac{1}{2} y^{k} \Gamma_{s}^{h} R_{k j i}^{s} ; \Gamma_{\bar{i} \overline{\bar{j}}}^{\bar{h}}={ }^{D} \Gamma_{\overline{\bar{i}}}^{\overline{\bar{j}}} \overline{\bar{j}}=0 \\
& { }^{D} \Gamma_{i j}^{\overline{\bar{h}}}=-\Gamma_{i j}^{k} A_{k}^{h}+\Gamma_{s}^{h} y^{k} R_{i j k}^{s}-\frac{1}{2} y^{k} R_{i j k}^{h} ;{ }^{D} \Gamma^{\overline{\bar{h}}}{ }^{\bar{\imath}}=-\frac{1}{2} y^{k} R_{i j k}^{h} A_{s}^{h} \\
& { }^{D} \Gamma^{\overline{\bar{h}}}{ }_{\overline{\bar{i}} j}=-\frac{1}{2} R_{k i j}^{s} A_{s}^{h} ;{ }^{D} \Gamma_{i \bar{j}}^{\overline{\bar{h}}}=-\frac{1}{2} y^{k} R_{k j i}^{s} A_{s}^{h}-2 \Gamma_{i j}^{s} \Gamma_{s}^{h} ;{ }^{D} \Gamma_{\Gamma \bar{i} \overline{\bar{h}}}^{\overline{\bar{h}}}={ }^{D} \Gamma_{\Gamma_{\overline{\bar{j}} \bar{j}}^{\bar{h}}}^{\overline{\bar{h}}}=0 \\
& { }^{D} \Gamma_{i \overline{\bar{j}}}^{\overline{\bar{h}}}=-\frac{1}{2} y^{k} R_{k j i}^{s} A_{s}^{h}+\Gamma_{i j}^{h} ; \quad D_{\Gamma_{\bar{i}}^{\bar{j}}}^{\overline{\bar{h}}}={ }^{D} \Gamma_{\overline{\bar{i}}}^{\overline{\bar{h}}} \overline{\bar{j}}=0 .
\end{align*}
$$

5. Killing Vector Fields

A vector fields X is said to be infinitesimal isometry or a Killing vector field of a riemannian manifold with metric g, if

$$
\begin{equation*}
\mathfrak{L}_{X} g=X g(Y, Z)-g([X, Y], Z)-g(Y,[X, Z])=0 \tag{14}
\end{equation*}
$$

for all $X, Y \in C^{\infty}\left(M_{n}\right)$. In the terms of components $g_{i j}$ of g, X is an infinitesimal isometry if and only if

$$
X^{h} \partial_{h} g_{i j}+g_{h j} \partial_{i} X^{h}+g_{i h} \partial_{j} X^{h}=0
$$

where X^{h} are components of X.(see [3])
We see by virtue of (8) that \tilde{X} is a Killing vector field in $T^{2} M_{n}$ with metric ${ }^{D} g$ if and only if

$$
\begin{equation*}
\mathfrak{L}_{\tilde{X}}{ }^{D} g=\tilde{X} g(\tilde{Y}, \tilde{Z})-{ }^{D} g([\tilde{X}, \tilde{Y}], \tilde{Z})-{ }^{D} g(\tilde{Y},[\tilde{X}, \tilde{Z}])=0 \tag{15}
\end{equation*}
$$

HATHOUT, DIDA

for all $\tilde{Z}, \tilde{Y} \in C^{\infty}\left(T^{2} M_{n}\right)$.
Then by (11) we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(\mathfrak{L}_{X^{0}}{ }^{D} g\right)\left(Y^{i}, Z^{i}\right)=X g(Y, Z)-g\left(\nabla_{X} Y, Z\right)-g\left(Y, \nabla_{X} Z\right)=0 \\
\left(\mathfrak{L}_{X^{0}}{ }^{D} g\right)\left(Y^{0}, Z^{j}\right)=g\left(R(X, Y) u^{j}, Z^{j}\right)=g(R(X, Y) u, Z) \\
\left(\mathfrak{L}_{X^{0}}{ }^{D} g\right)\left(Y^{j}, Z^{0}\right)=g\left(R(X, Z) u^{j}, Y^{j}\right)=g(R(X, Y) u, Z) \\
\left(\mathfrak{L}_{X^{0}}{ }^{D} g\right)\left(Y^{1}, Z^{2}\right)=\left(\mathfrak{L}_{X^{0}}{ }^{D} g\right)\left(Y^{2}, Z^{1}\right)=0
\end{array}\right. \tag{16}\\
& \left\{\begin{array}{l}
\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{i}, Z^{i}\right)=0 \\
\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{0}, Z^{1}\right)=g\left(\nabla_{Y} X, Z\right) \\
\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{1}, Z^{0}\right)=g\left(Y, \nabla_{Z} X\right) \\
\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{0}, Z^{2}\right)=\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{2}, Z^{0}\right)=0 \\
\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{1}, Z^{2}\right)=\left(\mathfrak{L}_{X^{1}}{ }^{D} g\right)\left(Y^{2}, Z^{1}\right)=0
\end{array}\right. \tag{17}\\
& \left\{\begin{array}{l}
\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{i}, Z^{i}\right)=0 \\
\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{0}, Z^{1}\right)=\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{1}, Z^{0}\right)=0 \\
\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{0}, Z^{2}\right)=g\left(\nabla_{Y} X, Z\right) \\
\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{2}, Z^{0}\right)=g\left(Y, \nabla_{Z} X\right) \\
\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{1}, Z^{2}\right)=\left(\mathfrak{L}_{X^{2}}{ }^{D} g\right)\left(Y^{2}, Z^{1}\right)=0
\end{array}\right. \tag{18}
\end{align*}
$$

for all $X \in C^{\infty}\left(M_{n}\right), j=1,2$ and $i=0,1,2$.
Since we have

$$
\begin{aligned}
X g(Y, Z)-g([X, Y], Z)-g(Y,[X, Z])= & X g(Y, Z)-g\left(\nabla_{X} Y, Z\right)- \\
& g\left(Y, \nabla_{X} Z\right)+g\left(\nabla_{Y} X, Z\right)+g\left(Y, \nabla_{Z} X\right)
\end{aligned}
$$

we conclude by means of (16), (17) and (18) that if $\mathfrak{L}_{X^{0}}{ }^{D} g$ and $\mathfrak{L}_{X^{1}}{ }^{D} g$ or $\mathfrak{L}_{X^{2}}$, that ${ }^{D} g$ vanishes implies that $\mathfrak{L}_{X} g=0$.

We next have

$$
\left\{\begin{array}{l}
R(X, Y) u=0 \Leftrightarrow X^{h} R_{h i j}^{k}=0 \tag{20}\\
\nabla_{Z} X=\nabla X(Z)=0
\end{array}\right.
$$

and $\mathfrak{L}_{X} g=0$ imply that $\mathfrak{L}_{X^{i}}{ }^{D} g=0$ for $i=0,1,2$. Thus, we have.

HATHOUT, DIDA

Theorem 6 The vector field X in M_{n} is a killing vector field if its 0-lift and λ-lift $(\lambda=1$ or 2) are killing vectors fields in $T^{2} M_{n}$. Conversely,
If X is a killing vector field, parallel and $R(X, Y) u=0$ vanishes for all $Y \in C^{\infty}\left(M_{n}\right)$ (i.e. $X^{h} R_{h i j}^{k}=0$), then λ-lift $(\lambda=0,1,2)$ of X is a killing vector field in $T^{2} M_{n}$.

6. Geodesics in $T^{2} M_{n}$ with metric ${ }^{D} \mathbf{g}$

Let C be a curve in M_{n} expressed locally by $x^{i}=x^{i}(t)$ and $y^{i}(t)$ be a vector field along C. Then, in the tangent bundle of order two $T^{2} M_{n}$ over the Riemannian manifold M_{n} with metric ${ }^{D} g$, we define a curve \tilde{C} by

$$
x^{i}=x^{i}(t), \quad x^{\bar{i}}=y^{i}(t), \quad x^{\overline{\bar{i}}}=z^{i}(t) .
$$

We consider now differentiel equations of the geodesics of the tangent bundle of order two $T^{2} M_{n}$ with the metric ${ }^{D} g$. If t is the arc length of the curve $x^{A}=x^{A}(t)$ in $T^{2} M_{n}$, equations of geodesic in $T^{2} M_{n}$ have the usual form

$$
\begin{equation*}
\frac{\delta^{2} x^{A}}{d t^{2}}=\frac{d^{2} x^{A}}{d t^{2}}+{ }^{D} \Gamma_{C B}^{A} \frac{d x^{C}}{d t} \frac{d x^{B}}{d t} \tag{21}
\end{equation*}
$$

with respect to the induced coordinates $\left(x^{i}, x^{\bar{\imath}}, x^{\bar{i}}\right)=\left(x^{i}, y^{i}, z^{i}\right)$ in $T^{2} M_{n}$.
We find it more convenient to refer equations (22) to the adapted frame $\left\{d x_{i}^{0}, d x_{i}^{1}, d x_{i}^{2}\right\}$.
Using (6), we write

$$
\begin{aligned}
\theta^{i} & =d x_{i} \\
\theta^{\bar{\imath}} & =\delta y_{i}=\Gamma_{i}^{k} d x_{k}+d y_{i} \\
\theta^{\bar{i}} & =\delta z_{i}=\bar{A}_{i}^{k} d x_{k}+2 \Gamma_{i}^{k} d y_{k}+d z_{i}
\end{aligned}
$$

and put

$$
\begin{aligned}
& \frac{\theta^{i}}{d t}=\frac{d x_{i}}{d t} \\
& \frac{\theta^{\bar{\imath}}}{d t}=\frac{\delta y_{i}}{d t}, \quad \frac{\theta^{\bar{i}}}{d t}=\frac{\delta z_{i}}{d t}
\end{aligned}
$$

HATHOUT, DIDA

along a curve $x^{A}=x^{A}(t)$, i.e., $x^{i}=x^{i}(t), \quad x^{\bar{i}}=y^{i}(t), \quad x^{\overline{\bar{i}}}=z^{i}(t)$ in $T^{2} M_{n}$.

If we write, therefore, down the form equivalent to (22), namely,

$$
\frac{d}{d t}\left(\frac{d \theta^{\alpha}}{d t}\right)+{ }^{D} \Gamma_{\beta}^{\alpha} \frac{d \theta^{\beta}}{d t} \frac{d \theta^{\gamma}}{d t}=0
$$

with respect to the adapted frame and take account of (13), then the curve $x^{A}=x^{A}(t)$ in $T^{2} M_{n}$ with the metric ${ }^{D} g$ is a geodesic in $T^{2} M_{n}$ if and only if

$$
\left\{\begin{array}{l}
\frac{\delta^{2} x^{i}}{d t^{2}}+y^{h} R_{h j k}^{i} \frac{\delta y^{j}}{d t} \frac{d x^{k}}{d t}+y^{h} R_{h j k}^{i} \frac{\delta z^{j}}{d t} \frac{d x^{k}}{d t}=0 \tag{22}\\
\frac{\delta^{2} y^{i}}{d t^{2}}-\Gamma_{j k}^{h} \Gamma_{h}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}-y^{h} R_{h j k}^{s} \Gamma_{s}^{i} \frac{\delta y^{j}}{d t} \frac{d x^{k}}{d t}-y^{h} R_{h j k}^{s} \Gamma_{s}^{i} \frac{\delta z^{j}}{d t} \frac{d x^{k}}{d t}=0 \\
\frac{\delta^{2} z^{i}}{d t^{2}}-A_{h}^{i} \Gamma_{j k}^{h} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}-2 \Gamma_{j k}^{h} \Gamma_{h}^{i} \frac{\delta z^{j}}{d t} \frac{\delta y^{k}}{d t}-y^{h} R_{h j k}^{s} A_{i}^{s} \frac{\delta y^{j}}{d t} \frac{d x^{k}}{d t} \\
-y^{h} R_{h j k}^{s} A_{i}^{s} \frac{\delta z^{j}}{d t} \frac{d x^{k}}{d t}=0
\end{array}\right.
$$

with

$$
\begin{align*}
\frac{\delta^{2} z^{i}}{d t^{2}} & =\frac{d}{d t}\left(\frac{\delta z^{i}}{d t}\right)+\Gamma_{\alpha \beta}^{i} \frac{\delta z^{\alpha}}{d t} \frac{d x^{\beta}}{d t} \tag{23}\\
\frac{\delta^{2} y^{i}}{d t^{2}} & =\frac{d}{d t}\left(\frac{\delta y^{i}}{d t}\right)+\Gamma_{\alpha \beta}^{i} \frac{\delta y^{\alpha}}{d t} \frac{d x^{\beta}}{d t}
\end{align*}
$$

If a curve satisfying (22) lies on the a fiber given by $x^{i}=$ const, $y^{i}=$ const in $T M$, then (22) reduce to

$$
\begin{equation*}
\frac{d^{2} z^{i}}{d t^{2}}=0 \tag{24}
\end{equation*}
$$

so that

$$
\begin{equation*}
z^{i}=a^{i} t+b^{i} \tag{25}
\end{equation*}
$$

a^{i} and b^{i} being constant. Thus, we have the following theorem.
Theorem 7 If the geodesic $x^{i}=x^{i}(t), y^{i}=y^{i}(t)$ and $z=z^{i}(t)$ lies in fiber of $T^{2} M_{n}$ with the metric ${ }^{D} g$, the geodesic is expressed by linear equations $x^{i}=c^{i}, y^{i}=d^{i}$ and $z^{i}=a^{i} t+b^{i}$ with induced coordinates $\left(x^{i}, y^{i}, z^{i}\right)$, where a^{i}, b^{i}, c^{i} and d^{i} are constant.

HATHOUT, DIDA

If a curve satisfying (22) lies on the a fiber given by $x^{i}=$ const, then (22) reduce to

$$
\left\{\begin{array}{l}
\frac{\delta^{2} y^{k}}{d t^{2}}=\frac{d^{2} y^{i}}{d t^{2}}=0 \tag{26}\\
\frac{\delta^{2} z^{i}}{d t^{2}}-2 \Gamma_{j k}^{h} \Gamma_{h}^{i} \frac{\delta z^{j}}{d t} \frac{\delta y^{k}}{d t}=0
\end{array}\right.
$$

so that from $(26, \mathrm{i}) y^{i}=a^{i} t+b^{i}, a^{i}$ and b^{i} geing constant.
From (23) we have

$$
\frac{\delta^{2} z^{i}}{d t^{2}}=2 a^{r} a^{l} \Gamma_{r j}^{l}+\frac{d^{2} z_{j}}{d t^{2}}
$$

and (26,ii) become

$$
\begin{aligned}
\frac{\delta^{2} z^{i}}{d t^{2}}-2 \Gamma_{j k}^{h} \Gamma_{h}^{i} \frac{\delta z^{j}}{d t} \frac{\delta y^{k}}{d t} & =2 a^{r} a^{l} \Gamma_{r j}^{l}+\frac{d^{2} z_{j}}{d t^{2}}-2 \Gamma_{j k}^{h} \Gamma_{h}^{i}\left(2 \Gamma_{j}^{l} a^{l} a^{k}+\frac{d z_{j}}{d t} a^{k}\right) \\
& =\frac{d^{2} z_{j}}{d t^{2}}-2 \Gamma_{j k}^{h} \Gamma_{h}^{i} a^{k} \frac{d z_{j}}{d t}-4 \Gamma_{j k}^{h} \Gamma_{h}^{i} \Gamma_{j}^{l} a^{l} a^{k}
\end{aligned}
$$

then $(26, \mathrm{ii})$ is given by

$$
\begin{equation*}
\frac{d^{2} z_{j}}{d t^{2}}-2 \Gamma_{j k}^{h} \Gamma_{h}^{i} a^{k} \frac{d z_{j}}{d t}=4 \Gamma_{j k}^{h} \Gamma_{h}^{i} \Gamma_{j}^{l} a^{l} a^{k} \tag{27}
\end{equation*}
$$

Thus, we have the following theorem.
Theorem 8 If the geodesic $x^{i}=x^{i}(t), y^{i}=y^{i}(t)$ and $z=z^{i}(t)$ lies in fiber of $T^{2} M_{n}$ with the metric ${ }^{D} g$, the geodesic is expressed by linear equations $x^{i}=c^{i}$, $y^{i}=a^{i} t+b^{i}$ and z^{i} solution of differential system (27) with induced coordinates $\left(x^{i}, y^{i}, z^{i}\right)$, where a^{i}, b^{i}, c^{i} and d^{i} are constant.

References

[1] Morimoto, A.: Prolongation of geometric structures. Lect. Notes Math. Inst. Nagoya 1969.
[2] Morimoto, A.: Liftings of tensors fields and connections to the tangent bundles of Higher order, Nogoya Math. Jour.,40, 99-120 (1970).
[3] Yano, K., Ishihara, S.: Tangent and cotangent Bundles, Marcel Dekker Inc., New York 1973.

HATHOUT, DIDA

[4] Yano, K., Ishihara, S.: Horizontal lifts of tensors fields and connection to the tangent bundles. j.Math. Mech. 16, 1015-1030 (1967).
[5] Yano, K., Ishihara, S., Kobayashi, S., Nomizu, K.: Fondation of Differential Geometry, vol. I. Intersciense, New York-London 1963.
[6] Yano, K.: The Theory of Lie Derivatives and its Applications, Amsterdam, (1957).
[7] de Leon, M. Vasques, E.: On the geometry of the tangent bundles of order 2. preprint, Univ. of Santiago de Compostela (spain), 1984.
[8] Djaa, M., Gancarzewicz, J.: The geometry of tangent bundles of order r. boletin Academia Galega de Ciencias, spain.Vol. IV, pags.147-165 (1985).
[9] Djaa, M.: Prolongation des structures géométriques au fibré tangent d'ordre supérieur et classification spèctrale des opérateurs de multiplications, PHD theses Oran university (1998).
[10] Cengiz, N., Salimov, A.A.: Diagonal lift in the tensor bundle and its applications. Elsevier Science Inc. New York, NY, USA. Vol 142, pags. 309-319 (2003).
[11] Akbulut, S. Özdemir, M., Salimov, A.A.: Diagonal Lift in the Cotangent Bundle and its Applications. Turk J Math 25, pags. 491-502 (2001).
[12] Gudmundsson, S., Kappos, E.: On the Geometry of tangent bundles Expo.math. 20, 1-41 (2002).
[13] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J., 10, 338-354 (1958).
F. HATHOUT, Hamou Mohammed DIDA

Received 21.03.2005
Geometry, Analysis, Control and Applications
Laboratory of Saida University pb 138
"20000" ALGERIA
e-mail: f.hathout@caramail.com
e-mail: didamohammed@yahoo.fr

[^0]: AMS Mathematics Subject Classification: Primary 53A45; secondary 53B21
 *Acknowledgements to Prof. A.A.Salimov for his suggestions

