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Remarks About Some Weierstrass Type Results

Mihai Turinici

Abstract

The Weierstrass type results of Gajek and Zagrodny [7] are not in general

retainable in the precise context. Our first aim in this exposition is to show that a

completion of the imposed conditions may be offered so that these results be true.

As a second aim, alternate proofs of the statements in question are performed, via

ordering principles comparable with the one in Brezis and Browder [3].
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1. Introduction

Let M be some nonempty set. By a relation over it we mean any (nonempty) part
S ⊆ M ×M ; usually, we declare that (x, y) ∈ S is identical with xSy. For each n ≥ 2
denote Sn= the n-th relational power of S:

x(Sn)y iff x = u1 ⊥ ... ⊥ un = y (in the sense:
ui ⊥ ui+1, ∀i ∈ {1, ..., n− 1}), for some u1, ..., un ∈M .

Further, put I := {(x, x); x ∈M} (the diagonal of M); and S−1:=the (relational) inverse
of S (introduced as: x(S−1)y iff ySx). The relation S will be termed (a) reflexive, if
I ⊆ S; (b) transitive, provided S2 ⊆ S; (c) irreflexive if I∩S = ∅; (d) antisymmetric when
S∩S−1 ⊆ I; (e) quasi-order, provided it is reflexive and transitive; and (f) order, when it is
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antisymmetric and quasi-order. Returning to the general case, denote Ŝ = ∪{Sn;n ≥ 1}
(where S1 = S), S̃ = I ∪ Ŝ. These are, respectively, a transitive relation a quasi-order
including S and minimal with such properties; we shall refer to them as the transitive
relation (respectively, quasi-order) induced by S. Finally, let R be another relation over
M ; and V some nonempty part of M . We say that z ∈ V is (S,R)-maximal on V if

w ∈ V and zSw imply wRz. (1.1)

Note that, if S = R=quasi-order on M , then (1.1) is just the standard concept of S-
maximal element (over V ); cf. Ward [14].

We may now describe the basic facts to be discussed. Let X, Y be nonempty sets;
and S ⊆ Y × Y be some relation. Take a function f : X → Y , and some nonempty part
U ⊆ X. We say that f achieves at a ∈ U its (S, Ŝ)-maximal value over U , provided

f(a) is (S, Ŝ)-maximal in V = f(U). (1.2)

Equivalently, this will be referred to as a ∈ U being a (S, Ŝ)-maximal point for f over U .

If (1.2) holds for at least one a ∈ U , we say that f achieves its (S, Ŝ)-maximal value over

U ; or, equivalently, that f has a Weierstrass type property (modulo (S, Ŝ)) over U . Note
that, if

Y = R ∪ {∞} and S=the usual dual order (≥) (hence S = Ŝ),

the (S, Ŝ)-maximal value property (1.2) means

f(a) ≤ f(x), for all x ∈ U ; i.e., f(a) = min[f(U)].

Therefore, solving such questions is not without interest for optimization theory. To do
this, some additional convergence structures over X must be considered. For example,
the 1994 results in this area due to Gajek and Zagrodny [7] are based on the underlying
structure introduced by a metric d : X × X → R+. To state them, we need some
conventions. Denote

X(a, ρ) = {x ∈ X; d(a, x) < ρ}, X[a, ρ] = {x ∈ X; d(a, x) ≤ ρ}

as the open/closed sphere centered at a ∈ X with radius ρ > 0. The convergence of
(xn) ⊆ X towards a ∈ X (written as xn → a) means

∀ε > 0, ∃n(ε) such that: n ≥ n(ε) =⇒ xn ∈ X(a, ε).
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Given a sequence (yn) in Y , call it ascending (modulo S) if

ynSyn+1, for all n (also referred to as: (yn) is S-ascending). (1.3)

(Note that, if S is transitive, this reads: ynSym , whenever n < m. But, in general, these
are distinct concepts). The point v ∈ Y is called an upper bound (modulo S) of (yn)
provided

ynSv, for all n (written as: (yn)Sv); (1.4)

and if v is generic, we say that (yn) is bounded above (modulo S). Further, call the
function f (introduced as before) monotonically semicontinuous (in short: msc) at a ∈ X
provided

xn → a and (f(xn)) is Ŝ-ascending imply (f(xn))Ŝf(a). (1.5)

If this happens at each a ∈ X, then f will be termed msc over X. An intermediate prop-
erty of this type is obtainable by restricting the latter one to open/closed neighborhoods
of a ∈ X. Denote for simplicity

dz(x) = d(z, x), x ∈ X, for each z ∈ X.

We say that f is monotonically semicontinuous (in short: msc) towards a, if there exists
γ = γ(a) > 0 such that

(xn) ⊆ X(a, γ), xn → u, (f(xn)) is Ŝ-ascending and
(da(xn)) is strictly descending imply (f(xn))Ŝf(u).

(1.6)

Finally, call the metric space X, d-compact when

each sequence in X has a convergent subsequence (in X). (1.7)

The following answers obtained in the quoted paper are available:

Theorem 1. Assume that (X, Y ; f,S; a) satisfy

f is msc towards a and X is d-compact. (1.8)

Then, f achieves its (S, Ŝ)-maximal value on X(a, γ), where γ > 0 is subject to the same
conditions as in (1.6).
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Theorem 2. Assume that (X, Y ; f,S) fulfills in addition

f is msc over X and X is d-compact. (1.9)

Then, f achieves its (S, Ŝ)-maximal value on X.

The argument used there—based essentially on maximality principles involving count-
ably ordered structures (cf. Gajek and Zagrodny [6])—is rather technical; moreover, as
we shall see by concrete examples, the imposed conditions are not, in general, sufficient
for the written conclusions be retainable. It is our aim in the following to show that i) a
simplification of this argument is possible, so as to avoid the recursion to such structures;
and ii) an appropriate completion of these conditions may be found in order that the
precised conclusions be true. All necessary details will be given in Section 3 (for Theo-
rem 1) and Section 4 (for Theorem 2). The basic tool of our investigations is a collection
of ordering principles (exposed in Section 2) related to the Brezis-Browder’s [3]. Further
aspects will be discussed elsewhere.

2. Brezis-Browder ordering principles

Let M be some nonempty set. Take a quasi-order (≤) (i.e.: reflexive and transitive
relation) over M ; as well as a function x ` ϕ(x) from M to R+ = [0,∞[. Call the point
z ∈M , (≤, ϕ)-maximal when

w ∈M and z ≤ w imply ϕ(z) = ϕ(w). (2.1)

A basic result about the existence of such points is the 1976 Brezis-Browder ordering
principle [3]:

Proposition 1. Suppose that;

each ascending sequence in M has an upper bound (2.2)

ϕ is (≤)-decreasing (x ≤ y =⇒ ϕ(x) ≥ ϕ(y)). (2.3)

Then, for each u ∈ M there exists a (≤, ϕ)-maximal v ∈ M with u ≤ v.

This statement, including the well known Ekeland’s variational principle [5], found
useful applications to convex and nonconvex analysis (cf. the above references). So, it
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cannot be surprising that many extensions of Proposition 1 have been proposed. A basic
one is the 1982 contribution in Altman [1]; various extensions of it were proposed by
Kang [9] and Anisiu [2]. The obtained results are interesting from a technical viewpoint.
However, we must emphasize that, in all concrete situations when a maximality principle
of this type is to be applied, a substitution by the Brezis-Browder’s is always possible.
This raises the question of to what extent are these enlargements of Proposition 1 effective.
It is our aim in the following to show that the answer is essentially negative.

To begin with, let (M,≤) be taken as above; and x ` ϕ(x) stand for a function
between M and R+ ∪ {∞} = [0,∞]. Denote, for each x ∈M

M(x,≤) = {y ∈ M ; x ≤ y} (the x-section of (≤)).

Proposition 2. Assume (2.2)–(2.3) are true, as well as

for each x ∈ X, ε > 0, there exists y = y(x, ε) ≥ x with ϕ(y) ≤ ε. (2.4)

Then, for each u ∈ M there exists v ∈ M with u ≤ v and ϕ(v) = 0 (hence v is (≤, ϕ)-
maximal).

Proof. Let u ∈ M be arbitrary fixed. By (2.4), there must be some z ≥ u with
ϕ(z) < ∞. Clearly, (2.2)–(2.3) apply to M(z,≤) and (≤, ϕ). So, for the starting point
z ∈M(z,≤) there exists v ∈M(z,≤) with

z ≤ v (hence u ≤ v) and v is (≤, ϕ)-maximal in M(z,≤). (2.5)

Suppose, by contradiction, that η := ϕ(v) > 0. By (2.4) there must be y = y(v, η/2) ≥ v
(hence y ∈ M(z,≤)) with ϕ(y) ≤ η/2 < ϕ(v). This cannot be in agreement with (2.5).
Hence, ϕ(v) = 0; and the conclusion follows. 2

Clearly, Proposition 2 is a logical consequence of Proposition 1. But, the converse
inclusion is also true. To verify this, we need a convention. By a generalized pseudometric
over M we shall mean any map d : M ×M → R+ ∪ {∞} fulfilling d(x, x) = 0, ∀x ∈ M .
Suppose that we introduced such an object. Call the point z ∈ M , (≤, d)-maximal, in
case

u, v ∈ M and z ≤ u ≤ v imply d(u, v) = 0. (2.6)
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Note that, if the pseudometric d is sufficient (d(x, y) = 0 implies x = y), this property
may be written as

w ∈M, z ≤ w =⇒ z = w (referred to as: z is (≤)-maximal). (2.7)

So, existence results involving such points may be viewed as ”metrical” versions of the
Zorn maximality principle (cf. Moore [11, Ch 4, Sect 4]). To get sufficient conditions
for these, one may proceed as below. Let (xn) be an ascending sequence in M . The
d-Cauchy property for it is introduced as:

∀ε > 0, ∃n(ε) such that n(ε) ≤ p ≤ q =⇒ d(xp, xq) ≤ ε.

Also, call this sequence d-asymptotic, when

d(xn, xn+1)→ 0, as n→∞.

Clearly, each (ascending) d-Cauchy sequence is d-asymptotic too. The reverse implication
is also true when all such sequences are involved; i.e., the global conditions below are
equivalent each other:

each ascending sequence is d-Cauchy (2.8)

each ascending sequence is d-asymptotic. (2.9)

Moreover, either of these implies the structural property

d is (≤)-admissible: ∀x ∈M, ∀ε > 0,
∃y = y(x, ε) ≥ x such that y ≤ u ≤ v =⇒ d(u, v) ≤ ε.

(2.10)

The following ordering principle is available (cf. Kang and Park [10]):

Proposition 3. Assume that (2.2) and (2.10) are true. Then, for each u ∈ M there
exists a (≤, d)-maximal v ∈M with u ≤ v.

Proof. Without loss of generality, one may assume that

sup{d(x, y); x, y ∈M} <∞ (d is bounded on M).

For, otherwise, the map (from M ×M to R+)

e(x, y) = inf{µ, d(x, y)}, x, y ∈M (for some µ > 0)
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is a pseudometric over M fulfilling this property, as well as (2.10). And, if the conclusions
of the statement are true modulo e, this will remain as such modulo d. Put ϕ(x) =
sup{d(u, v); x ≤ u ≤ v}, x ∈ M . Clearly, (2.3) holds; as well as (2.4) (if one takes (2.10)
into account). Hence, Proposition 2 is applicable to M and (≤, ϕ). This, added to the
remark

ϕ(z) = 0 if and only if z is (≤, d)-maximal

gives the desired conclusion; and completes the argument. 2

As a direct consequence of this, we have (cf. Turinici [12]):

Proposition 4. Assume that (2.2) is true, as well as either of the (mutually equivalent)
conditions (2.8)/(2.9). Then, the conclusion of Proposition 3 is retainable.

So far, Proposition 4 is a logical consequence of Proposition 1. The reciprocal of this
is also true, by simply taking

d(x, y) = |ϕ(x)− ϕ(y)|, x, y ∈M (where ϕ is the above one).

We therefore deduce that

Proposition 1 ⇐⇒ Proposition 3 (from a logical viewpoint). (2.11)

Summing up, all these variants of the Brezis-Browder ordering principle are nothing but
logical equivalents of it.

The following completion of these developments is to be made. Remember that, when
the pseudometric d : M ×M → R+ is sufficient, the point v ∈M assured by Proposition
3 is (≤)-maximal (according to (2.7)); hence, in particular, is (≤,≤)-maximal (cf. (1.1)).
So, it is natural to ask whether genuine statements of this type are available in the absence
of sufficiency. An appropriate answer is to be given below. Let dist(., .) stand for the
associated (to d) point to set distance function

dist(x, Z) = inf{d(x, z); z ∈ Z}; x ∈M, Z ⊆M.

Call the ambient pseudometric d eventually (≤)-asymptotic, provided

∀x ∈M , ∀ε > 0, there exists y = y(x, ε) ≥ x
with the property: y ≤ u ≤ v =⇒ dist(u,M(v ≤)) ≤ ε.

(2.12)
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Further, let → stand for the (dual) convergence structure over M

xn → x if and only if [d(x, xn)→ 0 as n→∞].

This will be referred to as (xn) converges to x; or, equivalently, that x is a limit of (xn).
Call the subset Z ⊆M , (≤)-closed, when

the limit of each ascending sequence in Z belongs to Z.

In particular, we say that (≤) is self-closed, if

M(x,≤) is (≤)-closed, for each x ∈M ; or, equivalently:
the limit of each ascending sequence is an upper bound of it.

(2.13)

We are now in position to state the following proposition.

Proposition 5. Suppose that (2.2) and (2.12)–(2.13) are true. Then, for each u ∈ M
there exists a (≤,≤)-maximal v ∈M with u ≤ v; i.e., (≤) appears as a Zorn quasi-order.

Proof. Define the function (from M to R+ ∪ {∞})

ϕ(x) = sup{dist(p,M(q,≤)); x ≤ p ≤ q}, x ∈M.

Clearly, ϕ satisfies (2.3), and (2.4) (if we take (2.12) into account); i.e., Proposition 2 is
applicable here. So, for the starting point u ∈ M , there exists v ∈M with

u ≤ v and ϕ(v) = 0 (hence v is (≤, ϕ)-maximal).

We now claim that the generic implication is valid:

(∀z ∈M) ϕ(z) = 0 =⇒ z is (≤,≤)-maximal (cf. (1.1)).

(And from this, the conclusion is clear). Take some w ≥ z. Since

dist(z,M(y,≤)) = 0, for each y ≥ z,

it is not hard to construct an ascending sequence (xn) in M with

xn ≥ w, for all n; xn → z, as n→∞.
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But then, (2.13) gives at once xn ≤ z, for all n; hence w ≤ z. 2

The following particular aspect is to be noted. Call the (ascending) sequence (xn)
eventually d-asymptotic when

∀n, ∀ε > 0, ∃(p, q) such that [n ≤ p < q and d(xp, xq) < ε].

The generic implication below is clear:

d-asymptotic =⇒ eventually d-asymptotic;

but, the converse is not in general valid. We claim that the global condition

each ascending sequence is eventually d-asymptotic (2.14)

yields (2.12). In fact, if this were not true, then

∃x ∈M , ∃ε > 0 with the property:
∀y ≥ x, ∃(u, v) such that [y ≤ u ≤ v, dist(u,M(v,≤)) ≥ ε].

Put x0 = x; with y = x0 there must be (x1, x2) with x0 ≤ x1 ≤ x2, dist(x1,M(x2,≤)) ≥ ε.
Further, with y = x2 there exist (x3, x4) with x2 ≤ x3 ≤ x4, dist(x3,M(x4,≤)) ≥ ε; and
so on. This finally yields an ascending sequence (xn) with

d(x2p+1, xk) ≥ ε, for all k > 2p+ 1 and all p ≥ 0.

So, for the ascending sequence (yn = x2n+1) we must have

d(yp, yq) ≥ ε, for all p, q ≥ 1 with p < q;

in contradiction with (2.14). We thus deduced (cf. Turinici [13]): 2

Proposition 6. Suppose that (2.2) is true, as well as (2.13)–(2.14). Then, the conclusion
of Proposition 5 is retainable.

In particular, assume that d : M ×M → R+ ∪ {∞} is a semi-metric over M . Then,
a sufficient condition for (2.14) is

M is (≤, d)-compact:
each ascending sequence has a convergent subsequence.

(2.15)
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In addition, if (2.13) is admitted, the regularity condition (2.2) holds. In fact, let (xn)
be an ascending sequence of M . By (2.15), there exists a subsequence (yn) of (xn) which
converges (in M). By (2.13), each of these limits is an upper bound of (yn); hence of
(xn) (by the definition of a subsequence); and this proves our claim. We have therefore
deduced

Proposition 7. Let the quasi-ordered semi-metric space (M, d;≤) be such that (2.13)
and (2.15) hold. Then, for each u ∈M there exists a (≤,≤)-maximal v ∈M with u ≤ v.

As before, these maximal principles are obtainable from Proposition 1. The question
of the reciprocal inclusion being also true remains open; we conjecture that the answer
is positive. Some related aspects may be found in Brunner [4]; see also Hyers, Isac and
Rassias [8, Ch 5].

3. Technical discussions on Theorem 1

Let us now return to the framework of Section 1. We make some remarks on the proof
of Theorem 1; which, as said above, is due to Gajek and Zagrodny [7]. Then (by the
developments in the preceding section) an alternate proof is proposed, in a quasi-order
context.

For a better understanding, we must begin with a description of the argument in
question (under the precised notational conventions).

Original proof of Theorem 1. Define a relation R over X by

(x, u ∈ X) xRu iff f(x)Sf(u) and da(x) > da(u). (3.1)

It is not hard to see that X is countably ordered (modulo R):

each (nonempty) part U ⊆ X endowed with
a well order T ⊆ R̃ is at most countable.

(3.2)

Let γ > 0 be the number given by the condition (1.6). If

for all x ∈ X(a, γ) one has f(x)Ŝf(a),
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then f achieves its (S, Ŝ)-maximal value on X(a, γ) at the point a. So, without loss of
generality, one may assume that

there exists x∗ ∈ X(a, γ) such that f(x∗)Ŝf(a) is false. (3.3)

Denote for simplicity A = {x ∈ X(a, γ); f(x∗)Ŝf(x)} (hence a /∈ A). The subset
C = {x∗} ∪ A is nonempty; and (cf. (3.2)), countably ordered with respect to R. In
addition, by (1.8) it follows that

each R-ascending sequence in C is bounded above (modulo R) in C.

Summing up, the maximality principle in Gajek and Zagrodny [6, Section 3] applies to

the structure (C,R). Hence, there exists at least one (R̂, R̂)-maximal element z ∈ C.
Note that z 6= a; because

f(x∗)Ŝf(z) and x∗ is taken as in (3.3).

This element has the desired properties, because R is irreflexive (cf. Section 1); hence
the conclusion. 2

For a technical analysis of this argument, it will be useful considering a particular
case.

Example 1. Fix a certain m ≥ 1; and let E = Rm stand for the usual m-dimensional
space. Denote by || · || the standard Euclidean norm over E; and let d stand for the
associated metric. Fix some a ∈ E, α > 0; and put X = E[a, α] (clearly, (1.7) is valid
here). Further, take Y = R; and let S be some relation over it. Take a function f : X → R

in such a way that

x, u ∈ X, f(x)Ŝf(u) imply da(x) ≤ da(u). (3.4)

Clearly, the regularity condition (1.6) is vacuously satisfied, for each γ in ]0, α[. So, by

Theorem 1, it follows that, for any such γ, the function f achieves its (S, Ŝ)-maximal
value on X(a, γ). This, however, may be not in general true, for certain pairs (f,S)
fulfilling (3.4); such as, e.g.,

f = da, S=the usual order (≤) of R (hence S = Ŝ = S̃).
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In fact, assume by contradiction that f achieves its (S, Ŝ)-maximal value on X(a, γ) at
some point z of this set. The property in question may be written as

f(z) ≥ f(x) (i.e.: d(z, a) ≥ d(x, a)), for all x ∈ X(a, γ).

This, along with da having no maximal value on X(a, γ) proves our claim. So, the
conclusion of Theorem 1 cannot be retainable for such data.

It follows that, in the quoted result, the imposed conditions are not in general sufficient
for the written conclusions to hold. The motivation of such a ”bad” property comes from
R = ∅ being not excluded; so, it is natural to ask whether or not is this removable. It is
our aim in the following to show that a positive answer is available. This will necessitate a
slight reformulation of (1.6). Precisely, call the function f , Monotonically semicontinuous
(in short; Msc) towards a, if there exists γ = γ(a) > 0 such that

(xn) ⊆ X(a, γ), xn → u, (f(xn)) is S̃-ascending
and (da(xn)) is descending imply (f(xn))S̃f(u).

(3.5)

Note that such a condition is not in general comparable with (1.6). In fact, if the premises
of the last requirement are true, then so are the premises of (3.5). But, from this, one

deduces (f(xn))S̃f(u); which, in general, may be strictly larger than (f(xn))Ŝf(u); hence
the claim. The following counterpart of Theorem 1 is then available.

Theorem 3. Assume that (X, Y ; f,S; a) satisfy

f is Msc towards a and X is d-compact. (3.6)

Then, f achieves its (S̃, S̃)-maximal value on X[a, δ], for some δ in [0, γ[; where γ > 0
is that given by (3.5).

Proof. Define a relation L over X by the convention

(x, u ∈ X): xLu iff f(x)S̃f(u) and da(x) ≥ da(u). (3.7)

Clearly, L is a quasi-order on X; i.e., L = L̃. If one happens that f(x)S̃f(a), for all

x ∈ X(a, γ), then f achieves its (S̃, S̃)-maximal value on X(a, γ) at the point a. So,
without loss, one may assume that

f(x0)S̃f(a) does not hold, for some x0 ∈ X(a, γ). (3.8)
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Denote for simplicity B = {x ∈ X(a, γ); f(x0)S̃f(x)} (clearly, x0 ∈ B, a /∈ B). By (3.5),
L is self-closed on B:

the limit of each ascending (modulo L) sequence in B
is an upper bound (modulo L) of it (in B).

On the other hand, by (3.6) (the second half), B is (L, d)-compact:

each L-ascending sequence in B has a convergent (in B) subsequence.

Summing up, Proposition 7 is applicable to (B, d;L); hence, there exists at least one
(L,L)-maximal element z ∈ B. Note that z 6= a (by the remark above) so, δ := d(a, z)

fulfills 0 < δ < γ. It is now clear that f achieves its (S̃, S̃)-maximal value on X[a, δ] at
z; and the proof is complete. 2

Some remarks are in order. The very formulation of (3.5) and the proof of Theorem 3

show that one may replace ab initio S by S̃ in all these developments; i.e., to work with
quasi-orders (S̃) over Y . Further, (3.5) may be expressed in terms of L above; and this
is also valid for the regularity condition (1.7). Finally, a direct use of the Brezis-Browder
principle is possible, without passing through Proposition 7; we do not give details.

4. A simplified proof of Theorem 2

Let us again return to the Section 1; precisely, to the second main result. As in Section
3, we intend to make some technical remarks about the original proof of it; due, as above
said, to Gajek and Zagrodny [7]. Then (by the developments of Section 2) an alternate
proof is proposed.

To begin with, it would be useful having a description of the argument in question
(under the precised notational conventions).

Original proof of Theorem 2. Define a relation R over X by

(x, u ∈ X): xRu iff x 6= u, f(x)Ŝf(u) and
there exists γ > 0 such that {z ∈ X(x, γ); f(u)Ŝf(z)} = ∅.

(4.1)
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Firstly, X is countably ordered (modulo R) [cf. (3.2)]. Secondly, by the admitted
hypothesis about f , one derives

each R-ascending sequence in X is bounded above (modulo R) in X.

Summing up, the maximality principle in Gajek and Zagrodny [6, Section 3] applies to

(X,R); and from here, it follows that there exists at least one (R̂, R̂)-maximal element
z ∈ X. This is the desired one; and the conclusion is clear. 2

For a technical analysis of this reasoning it would be useful starting with a particular
case.

Example 2. Let the metric space (X, d) be introduced as in Example 1 (hence (1.7)
holds). Further, choose (Y,S) according to

Y = R, S = {(y, y); y ∈ R} (hence S = Ŝ = S̃).

Finally, take some continuous function f : X → R. Clearly, (1.5) is true for each a ∈ X;

i.e., f is msc (modulo S) over X. On the other hand, f achieves its (S, Ŝ)-maximal value
over X; in fact, this holds at the level of each point of X. However, such a conclusion is
not obtainable from the proof of Theorem 2. For, the definition (4.1) of R becomes

(x, u ∈ X) xRu iff x 6= u, f(x) = f(u) and
there exists γ > 0 such that {z ∈ X(x, γ); f(z) = f(x)} = ∅.

(4.2)

The first half is false whenever f is injective. But, even if this cannot happen, the second
half is false; because

f(x) = f(x) implies [{z ∈ X(x, γ); f(z) = f(x)} 6= ∅}, for all γ > 0].

In other words, R = ∅; and then, all subsequent constructions related to it remain without
object.

Now, it is natural to ask whether this can be removed. A positive answer is available;
but it requires a slight reformulation of (1.5). Precisely, call the function f , Monotonically
semicontinuous (in short: Msc) at a ∈ X provided

xn → a and (f(xn)) is S̃-ascending imply (f(xn))S̃f(a). (4.3)
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If this happens at each a ∈ X, then we say that f is Msc over X. Note that (4.3) is
not comparable in general with (1.5). In fact, if the premises of this last requirement

are true, then so are the ones of (4.3). But, from this, one has (f(xn))S̃f(a); which, in

general, may be strictly larger than (f(xn))Ŝf(a). The following counterpart of Theorem
2 is available.

Theorem 4. Assume that

f is Msc over X and X is d-compact. (4.4)

Then, f achieves its (S̃, S̃)-maximal value on X.

Proof. Define a relation L over X by

(x, u ∈ X) xLu if and only if f(x)S̃f(u). (4.5)

Clearly, L is a quasi-order on X; i.e., L = L̃. By the admitted condition upon f , it is
clear that L is self-closed over X:

the limit of each ascending (modulo L) sequence
in X is an upper bound (modulo L) of it (in X).

On the other hand, by (4.4) (the second half), X is (L, d)-compact; i.e.,

each L-ascending sequence in X has a convergent (in X) subsequence.

Summing up, Proposition 7 is applicable to (X, d;L); hence, there exists at least one

(L,L)-maximal element z ∈ X. It is now clear that f achieves its (S̃, S̃)-maximal value
at z; and the proof is complete. 2

Some remarks are in order. The very formulation of (4.3) and the proof of Theorem 4

show that one may replace ab initio S by S̃ in all these developments; i.e., to work with
quasi-orders (S̃) over Y . Further, (4.3) may be expressed in terms of L above; and this
is also valid for the regularity condition (1.7). Finally, a direct use of the Brezis-Browder
ordering principle is possible, without passing through Proposition 7. Further aspects
will be discussed elsewhere.
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5. Conclusions

An interesting extension of the classical Weierstrass theorem was obtained in 1994 by
Gajek and Zagrodny [7]. But, the argument used there—based essentially on maximality
principles involving countably ordered structures (cf. Gajek and Zagrodny [6])—is rather
technical. Moreover, the imposed conditions are not in general sufficient for the written
conclusions be retainable. It was the first aim in the present exposition to verify this
last claim, by concrete examples. Further, as a second aim, an appropriate completion
of the imposed conditions has been proposed in order that the precised statements be
true. Finally, a simplification of the initial proof is being obtained; the basic tool of our
investigations is a lot of ordering principles related to the Brezis-Browder’s [3].
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