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Weighted Norm Inequalities for a Class of Rough

Maximal Operators

H. M. Al-Qassem

Abstract

We consider maximal singular integral operators arising from rough kernels

satisfying an H1-type condition on the unit (n− 1)-sphere and prove weighted Lp

estimates for certain radial weights. We also prove weighted Lp estimates with

Ap-weights where in this case the H1-type condition is replaced by an Lq-type

condition with q > 1. Some applications of these results are also obtained regarding

singular integrals and Marcinkiewicz integrals. Our results are essential extensions

and improvements of some known results.
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Fourier transform, rough kernel, Ap weight.

1. Introduction and Results

Throughout this paper, let Rn be the n-dimensional Euclidean space and Sn−1 be the
unit sphere in Rn equipped with the normalized Lebesgue measure dσ. Let x′ = x/ |x|
for x ∈ Rn\{0}, p′ denote the conjugate index of p (that is, 1/p+ 1/p′ = 1) and {Ωj} be
an arbitrary but fixed countable subset of L1(Sn−1) with∫

Sn−1
Ωj(y)dσ(y) = 0. (1.1)

Let Ω be an arbitrary but fixed function defined on Sn−1 with Ω ∈ L1(Sn−1) and satisfies
the cancellation condition (1.1) with Ωj replaced by Ω. Let R(R+) denote the set of all
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functions b on R+ satisfying the condition

‖b‖L2(R+,dr/r)
=

(∫
R+

|b(r)|2 dr
r

)1/2

≤ 1

and let M({Ωj}) be the class of all kernels of the form

K(ty) = t−n
∑
j

bj(t)Ωj(y) (defined for t > 0 and y ∈ Sn−1),

where ∫ ∞
0

∑
j

|bj(t)|2
dt

t
≤ 1.

In 1992, L. K. Chen and X. Wang [5] studied the Lp boundedness of the maximal
operator supK∈M({Ωj}) |TKf | , where the operator TK is defined by

TKf(x) =
∫ ∞

0

∫
Sn−1

f(x − ty)K(ty)tn−1dσ(y)dt.

In [5], L. K. Chen and X. Wang proved the following:

Theorem A Let 2n/(2n− 1) < p <∞ and let {Ωj} be a countable subset of L2(Sn−1)

with
∑
j
‖Ωj‖2L2(Sn−1) < ∞. Then supK∈M({Ωj}) |TKf | is bounded on Lp(Rn). Moreover,

the range of p is the best possible.

We notice that if we take in the definition of M({Ωj}) our countable set {Ωj} to be
the the singleton Ω, where Ω is a fixed function defined on Sn−1 with Ω ∈ L2(Sn−1) and
satisfies (1.1) and if we take the countable set {bj} to be the singleton b and letting b

vary with b belongs to the class R(R+), the maximal function supK∈M({Ωj}) |TKf | will
reduce to the maximal operator MΩ(f) given by

MΩf(x) = sup
b∈R(R+)

∣∣∣∣∫
Rn

f(x − y)Ω(y)
|y|n b(|y|)dy

∣∣∣∣ .
Thus obviously, the maximal operator supK∈M({Ωj}) |TKf | is a natural extension of the
maximal operator MΩ. Therefore, as an immediately corollary of Theorem A we get the
following:
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Theorem B Let Ω be a function defined on Sn−1 with Ω ∈ L2(Sn−1) and satisfies
(1.1). Then MΩ(f) is bounded on Lp (Rn) for 2n/(2n− 1) < p <∞.

We remark that the maximal operator MΩ was formally introduced by L. K. Chen
and H. Lin in [4] who proved Theorem B under the stronger condition Ω ∈ C(Sn−1) (see
also [5]). The study of the maximal operator MΩ has attracted the attention of many
authors in recent years. For example, see [1], [2], [9], [18] and [24].

This paper aims at extending the result in Theorem A in several directions: (1) by
allowing the countable set {Ωj} to be a subset of Lq(Sn−1) for some 1 < q ≤ ∞ instead
of being {Ωj} a subset of L2(Sn−1), (2) by allowing the countable set {Ωj} to be a
subset of the Hardy space H1(Sn−1) which contains L2(Sn−1) as a proper subset, (3)
by investigating the weighted Lp boundedness of these operators instead of investigating
their Lp(Rn) boundedness, and (4) by considering maximal operators along some types
of submanifolds.

Before stating our results, we first introduce some notations and give some definitions.

Definition For q ≥ 1, let Lq({Ωj}) be the class of all kernels of the form

K(ty) = t−n
∑
j

bj(t)Ωj(y) (defined for t > 0 and y ∈ Sn−1),

where ∫ ∞
0

∑
j

|bj(t)|2
dt

t
≤ 1

and {Ωj} is a fixed countable subset of Lq(Sn−1) with Ωj satisfying (1.1) and∑
j

‖Ωj‖2Lq(Sn−1) <∞.

Definition Let H1({Ωj}) denote the class of kernels of the form

K(ty) = t−n
∑
j

bj(t)Ωj(y) (defined for t > 0 and y ∈ Sn−1),

where ∫ ∞
0

∑
j

|bj(t)|2
dt

t
≤ 1
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and {Ωj} is a fixed countable fixed subset of H1(Sn−1) with Ωj satisfying (1.1) and

∑
j

‖Ωj‖2H1(Sn−1) <∞.

Here H1(Sn−1) denotes the Hardy space on Sn−1 in the sense of Coifman and Weiss [6]
and its definition will be reviewed in Section 2. It is well-known that

C(Sn−1) ⊂ Lq(Sn−1)(q > 1) ⊂ L(logL)(Sn−1) ⊂ H1(Sn−1) ⊂ L1(Sn−1). (1.2)

The inclusions in (1.2) are proper. In light of (1.2), it is easy to verify that the following
inclusions hold:

Lq({Ωj}) (for q > 1)  H1({Ωj})  L1({Ωj}); (1.3)

Lq({Ωj}) (for q ≥ 2) ⊂ L2({Ωj}) ⊂ Lq({Ωj}) (for 1 < q ≤ 2). (1.4)

Thus we have

sup
K∈Lq({Ωj})

|TKf | (for q > 1) ≤ sup
K∈H1({Ωj})

|TKf | ;

sup
K∈Lq({Ωj})

|TKf | (for q ≥ 2) ≤ sup
K∈M

|TKf | ≤ sup
K∈Lq({Ωj})

|TKf | (for 1 < q ≤ 2).

We shall need the following definitions which are closely related to those appearing in
[15]:

Definition We say that a function Φ satisfies ”hypothesis I” if
(a) Φ is an increasing C1 function on [0,∞) with Φ(0) = 0,

(b) Φ′(t) is increasing on (0,∞) or Φ satisfies Φ(2t) ≥ ηΦ(t) for some fixed η > 1 and
Φ′(t) is decreasing on (0,∞).

Definition We say that Φ satisfies ”hypothesis D” if

(a′) Φ is a decreasing C1 function on [0,∞) with Φ(0) = 0,
(b′) Φ′(t) is decreasing on (0,∞) or Φ(t) ≥ ηΦ(2t) for some fixed η > 1 and Φ′(t) is

increasing on (0,∞).

Model functions for the Φ satisfy hypothesis I are Φ(t) = td with d > 0, and their linear
combinations with positive coefficients. Model functions for the Φ satisfy hypothesis D
are Φ(t) = tr with r < 0, and their linear combinations with positive coefficients.
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Throughout this paper, for a nonnegative locally integrable function ω we shall write

‖f‖p,ω (or ‖f‖Lp(ω)) for
(∫

Rn |f(x)|p ω(x)dx
)1/p

. When ω ≡ 1, we shall simply write

‖f‖p (or ‖f‖Lp) for ‖f‖p,ω.
We now state our main results.

Theorem 1.1 Let 1 < q ≤ ∞. Then sup
K∈Lq({Ωj})

|TKf | is bounded on Lp (ω) if p and ω

satisfy one of the following conditions:
(a) δ ≤ p <∞ and ω ∈ Ap/δ ;

(b) 2nδ/(2n+ nδ − 2) < p < 2, ω(x) = |x|
α

, 1
2 (1− n)(2− p) < α < 1

2 (2np− 2n− p),
where δ = max{2, q′}.

Here Ap = Ap(Rn) represents the collection of Muckenhoupt’s Ap-weights whose
definition will be recalled in Section 2.

Corollary 1 Assume that Ω ∈ Lq(Sn−1) for some q > 1 and satisfies the vanishing
condition (1.1). Then MΩ is bounded on Lp (ω) if p and ω satisfy the same conditions
as in Theorem 1.1.

For radial weights we are able to prove the following sharper and more general result:

Theorem 1.2 Assume that Φ satisfies either hypothesis I or D. Then
(a) sup

K∈H1({Ωj})
|TK,Φf | is bounded on Lp (ω) if ω ∈ ÃIp/2(R+) and 2 ≤ p <∞;

(b) sup
K∈Lq({Ωj})

|TK,Φf | (for q > 1) is bounded on Lp
(
|x|

α
)

if 1
2 (1− n)(2− p) < α <

1
2 (2np− 2n− p) and 2nδ/(2n+ nδ − 2) < p < 2, where

TK,Φf(x) =
∫ ∞

0

∫
Sn−1

f(x −Φ(t)y)K(ty)tn−1dσ(y)dt,

and ÃIp(R+) is a special class of radial weights introduced by Duoandikoetxea [10]. The

definition of ÃIp(R+) will be reviewed in Section 2.

Corollary 2 Let Ω be a homogeneous function of degree zero satisfies the vanishing
condition (1.1). Assume that Φ satisfies either hypothesis I or D. Then the maximal
operator MΩ,Φ defined by

MΩ,Φf(x) = sup
h∈R(R+)

∣∣∣∣∫
Rn

f(x − Φ(|y|)y′)Ω(y)
|y|n h(|y|)dy

∣∣∣∣
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is bounded on Lp (ω) if Ω, p and ω satisfy the same conditions as in Theorem 1.2.

Remarks (1) By the relationships (1.3)–(1.4) one sees that, even in the special cases
Φ(t) ≡ t and ω = 1, our results represent substantial extensions of Theorem A.

(2) Corollary 1 was proved by Y. Ding and H. Qingzheng in [9] under the condition
Ω ∈ L2(Sn−1). Later on, Corollaries 1 and 2 were proved by Al-Qassem in [1].

(3) The main tools used in this paper come from [1], [2], [18], [11] and [15], among
others.

Throughout the paper the letter C will denote a positive constant whose value may
change at each occurrence.

2. Definitions and Lemmas

Let us begin by recalling the definition of the Hardy space H1 on the unit sphere
Sn−1.

Definition 2.1 The Hardy space H1(Sn−1) is the linear space of distributions f ∈
S ′(Sn−1) with norm ‖f‖H1(Sn−1) = ‖P+f‖L1(Sn−1) < ∞, where P+f(x′) denotes the

radial maximal function of f. The space H1(Sn−1) was studied in [6] (see also [7]). A
function a : Sn−1 → C is called an H1 atom if it satisfies the following:

(i) supp(a) ⊂ Sn−1 ∩ B(x0, ρ) for some x0 ∈ Sn−1 and ρ > 0, where B(x0, ρ) is the
ball with center x0 and radius ρ;

(ii) ‖a‖∞ ≤ ρ−n+1;
(iii)

∫
Sn−1 a(y)dσ(y) = 0.

¿From [6] or [7], we find that any Ω ∈ H1(Sn−1) with the mean zero property (1.1)

has an atomic decomposition Ω =
∞∑
j=1

cjaj , where {cj}j∈N ⊂ C, {aj} is a sequence of

H1 atoms on Sn−1 and

∞∑
j=1

|cj | ≤ C ‖Ω‖H1(Sn−1)

with C independent of Ω.

Definition 2.2 A locally integrable nonnegative function ω is said to belong to Ap(Rn)
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(1 ≤ p <∞) if there is a positive constant C such that

sup
Q⊂Rn

(
|Q|−1

∫
Q

ω(x)dx
)(
|Q|−1

∫
Q

ω(x)−1/(p−1)dx

)p−1

≤ C, for 1 < p <∞

and ω ∈ A1(Rn) if M∗ω(x) ≤ Cω(x) a.e. x ∈ Rn, where Q denotes a cube in Rn with its
sides parallel to the coordinate axes and M∗f denotes the usual Hardy-Littlewood maximal
function.

Now, we give the definition of certain radial weights ([15], [10]).

Definition 2.3 Let ω(t) ≥ 0 and ω ∈ L1
loc(R+). For 1 < p < ∞, we say that

ω ∈ Ap(R+) if there is a positive constant C such that for any interval I ⊂ R+,

(
|I|−1

∫
I

ω(t)dt
)(
|I|−1

∫
I

ω(t)−1/(p−1)dt

)p−1

≤ C <∞.

We say that ω ∈ A1(R+) if there is a positive constant C such that

|I|−1
∫
I

ω(t)dt ≤ C ess inf
t∈I

ω(t) for any interval I ⊂ R+.

It is easy to verify that ω ∈ A1(R+) if and only if there is a positive constant C such
that

M∗ω(t) ≤ Cω(t) for a.e. t ∈ R+

Definition 2.4 Let 1 ≤ p <∞. If ω(x) = ν1(|x|)ν2(|x|)1−p, where either νj ∈ A1(R+)

is decreasing or ν2
j ∈ A1(R+), j = 1, 2, then we say that ω ∈ Ãp(R+).

Let AIp(Rn) be the weight class defined by using all n-dimensional intervals with sides

parallel to coordinate axes (see [17]). It is well-known that |x|γ ∈ ÃIp for −1 < γ < p− 1

(see [17]). Let ÃIp(R+) be the class of all weights ω(t) so that ω(t) ∈ Ãp(R+) and ω(|x|) ∈
AIp(Rn). If ω ∈ Ãp(R+), it follows from [10] that M∗f is bounded on Lp(Rn, ω(|x|)dx).

Therefore, if ω(t) ∈ Ãp(R+), then ω(|x|) ∈ Ap(Rn).
By following the same argument as in the proof of the elementary properties of Ap

weight class (see for example [16]) we get the following:
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Lemma 2.5 If 1 ≤ p <∞, then the weight class ÃIp(R+) has the following properties:

(i) ÃIp1
⊂ ÃIp1

, if 1 ≤ p1 < p2 <∞;

(ii) For any ω ∈ ÃIp, there exists an ε > 0 such that ω1+ε ∈ ÃIp;

(iii) For any ω ∈ ÃIp and p > 1, there exists an ε > 0 such that p − ε > 1 and

ω ∈ ÃIp−ε.

For a fixed ρ > 0, we let Bρ(ξ) = (ρ2ξ1, ρξ2, . . . , ρξn). Also, for k ∈ Z, set θk = Φ(2k)
if Φ satisfies hypothesis I and θk = (Φ(2k))−1 if Φ satisfies hypothesis D. Then by the
conditions of Φ, it is easy to see that {θk} is a lacunary sequence of positive numbers

with infk∈Z
θk+1
θk
≥ λ > 1, where λ = min{2, η}.

By following the same argument as in the proof of Lemma 2.1 in [15], we get the
following:

Lemma 2.6 Suppose that a(·) is an H1 atom on Sn−1 with supp(a)⊆ B(e, ρ) ∩ Sn−1,

where e = (1, . . . , 0) ∈ Sn−1. Let

Fa,Φ,k(ξ) =

(∫ 2k+1

2k

∣∣∣∣∫
Sn−1

a(y′)e−iΦ(t)<ξ,y′>dσ(y′)
∣∣∣∣2 dtt

)1/2

.

Then there exist positive constants β, C independent of k, ξ and ρ such that if Φ satisfies
hypothesis I,

|Fa,Φ,k(ξ)| ≤ C min
{
θ
−β
k

∣∣Bρ(ξ)
∣∣−β , θβk+1

∣∣Bρ (ξ)
∣∣β} ;

and if Φ satisfies hypothesis D,

|Fa,Φ,k(ξ)| ≤ Cmin
{
θ
−β
k+1

∣∣Bρ (ξ)
∣∣β , θβk ∣∣Bρ (ξ)

∣∣−β} .
For an Ω ∈ L1(Sn−1) and a C1 function Φ defined on R+, we define the maximal

operator

M∗Φ,Ωf(x) = sup
k∈Z

∣∣∣∣∣
∫

2k≤|y|<2k+1
f(x− Φ(|y|)y′) |Ω(y′)|

|y|n dy

∣∣∣∣∣ .
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If Φ(t) ≡ t, we denote M∗Φ,Ω by M∗Ω.
By the same argument as in ([22], p.57) , we get the following lemma.

Lemma 2.7 Let ϕ be a nonnegative, decreasing function on [0,∞) with∫
[0,∞)

ϕ(t)dt = 1.

Then ∣∣∣∣∣
∫

[0,∞)

f(x− ty′)ϕ(t)dt

∣∣∣∣∣ ≤My′f(x),

where

My′f(x) = sup
R∈R

1
R

∫ R

0

|f(x− sy′)| ds

is the Hardy-Littlewood maximal function of f in the direction of y′.

By Lemma 2.7 and following a similar argument as in [1] and [15] we get:

Lemma 2.8 Let Ω ∈ L1(Sn−1) and ω ∈ Ãp(R+), 1 < p <∞. Assume Φ satisfies either
hypothesis I or D. Then∥∥M∗Φ,Ω(f)

∥∥
Lp(ω)

≤ Cp ‖Ω‖L1(Sn−1) ‖f‖Lp(ω) , (2.1)

where Cp is a constant independent of Ω and f ∈ Lp(ω).

By the proof of the Theorem 5 in ([10], p. 873), we have the following:

Lemma 2.9 Let Ω ∈ Ld(Sn−1) for some d > 1. If p, d and ω satisfy one of the following
conditions:
(a) d′ ≤ p <∞, p 6= 1 and ω ∈ Ap/d′ ;
(b) 1 < p ≤ d, p 6=∞, ω1−p′ ∈ Ap′/d′ ,
then there is a C > 0, independent of f and Ω such that

‖M∗Ωf‖Lp(ω) ≤ C ‖Ω‖Ld(Sn−1) ‖f‖Lp(ω) .
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Let MSph be the spherical maximal operator defined by

MSphf(x) = sup
r>0

∫
Sn−1

|f(x − rθ)| dσ(θ).

We shall need the following result concerning the weighted Lp boundedness ofMSph with
power weights.

Lemma 2.10 ([13]) Suppose that n ≥ 2, p > n/(n−1) and 1−n < α < (n−1) (p− 1)−1.

Then MSph(f) is bounded on Lp(Rn, |x|
α

).

Lemma 2.11 Suppose that Ω ∈ Lq(Sn−1) for some q > 1. Then for some positive

constant C, we have∣∣∣∣∫
Sn−1

Ω(ξ)f(ξ)dσ(ξ)
∣∣∣∣2 ≤ C ‖Ω‖min{2,q}

q

∫
Sn−1

|Ω(ξ)|max{0,2−q} |f(ξ)|2 dσ(ξ) (2.2)

for arbitrary functions f.

Proof. When q ≥ 2 (so that q′ ≤ 2), from Hölder’s inequality we have∣∣∣∣∫
Sn−1

Ω(ξ)f(ξ)dσ(ξ)
∣∣∣∣2 ≤ ‖Ω‖2q (∫

Sn−1
|f(ξ)|q

′
dσ(ξ)

)2/q′

≤ ‖Ω‖2q
∫

Sn−1
|f(ξ)|2 dσ(ξ),

which is the statement of the lemma for the case q ≥ 2.
When 1 < q < 2 (so that q′ > 2), the conclusion of the lemma follows from Schwarz’s

inequality and the fact that Ω ∈ Lq(Sn−1). This finishes the proof of the lemma. 2

Lemma 2.12 Suppose that Ω ∈ Lq(Sn−1) for some q > 1. Let δ = max{2, q′}. Then

for some positive constant C, we have∫
Sn−1

|Ω(ξ)|max{0,2−q} |ω(x − tξ)| dσ(ξ) ≤ C ‖Ω‖max{0,2−q}
q

(
MSph

(
|ω|δ/2

)
(x)
)2/δ

(2.3)

for all positive real numbers t, x ∈ Rn and arbitrary functions ω.
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Proof. As in the proof of Lemma 2.11, we shall consider the cases q ≥ 2 and 1 < q < 2
separately. We notice that if q ≥ 2, the inequality (2.7) is obvious. However, if 1 < q < 2,
(2.7) follows easily from Hölder’s inequality and noticing that ( q

2−q )′ = q′/2. The lemma
is proved. 2

3. Proof of Main Results

We shall present the proof of Theorem 1.2 only for the case Φ satisfies hypothesis I,
since the proof of these theorems for the case Φ satisfies hypothesis D is essentially the
same. We shall start first by proving Theorem 1.2.

Proof of Theorem 1.2 for condition (a)

Assume K ∈ H1({Ωj}). By definition of TK,Φ we have

TK,Φf(x) =
∫ ∞

0

∑
j

bj(t)
∫

Sn−1
Ωj(y)f(x −Φ(t)y)dσ(y)

dt

t
.

By Shwarz inequality and the definition of the kernel K, we get

|TK,Φf(x)| ≤

∫ ∞
0

∑
j

∣∣∣g(t)
Ωj
f(x)

∣∣∣2 dt
t

1/2

≡ gf(x), (3.1)

where

g
(t)
Ωj
f(x) =

∫
Sn−1

Ωj(y)f(x −Φ(t)y)dσ(y).

Thus the proof of Theorem 1.2 for condition (a) is proved if we can show that

‖g(f)‖Lp(ω) ≤ C ‖f‖Lp(ω) (3.2)

for ω ∈ ÃIp/2(R+), 2 ≤ p <∞ and for a constant C independent of the kernel K. So let

us turn to the proof of (3.2). Since Ωj ∈ H1(Sn−1) has the mean zero property (1.1), we

can write Ωj =
∞∑
s=1

Cs,jas,j, where each as,j is an H1 atom and

∞∑
s=1

|Cs,j| ≤ C ‖Ωj‖H1(Sn−1)
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with a constant C independent of Ωj . Thus,

gf(x) =

∑
j

∫ ∞
0

∣∣∣∣∣
∞∑
s=1

Cs,jg
(t)
as,jf(x)

∣∣∣∣∣
2
dt

t

1/2

, (3.3)

where g(t)
as,jf(x) is defined in the same way as g(t)

Ωj
f(x) except that we replace Ωj by as,j.

By applying Minkowski’s inequality, we get

gf(x) ≤
∞∑
s=1

∑
j

|Cs,j|2
∣∣Gas,jf(x)

∣∣21/2

, (3.4)

where

Gas,jf(x) =
(∫ ∞

0

∣∣∣g(t)
as,jf(x)

∣∣∣2 dt
t

)1/2

.

The key step in the proof of (3.2), is to prove the following inequality:

∥∥Gas,j(f)
∥∥
Lp(ω)

≤ C ‖f‖Lp(ω) for ω ∈ ÃIp/2(R+) and 2 ≤ p <∞, (3.5)

where C is independent of the atoms as,j(·) and f. Before presenting a proof of (3.5), let
us prove (3.2) by employing (3.5). By (3.4) and (3.5) we have

‖g(f)‖Lp(ω) ≤
∞∑
s=1

∥∥∥∥∥∥∥
∑

j

|Cs,j|2
∣∣Gas,jf∣∣2

1/2
∥∥∥∥∥∥∥
Lp(ω)

≤
∞∑
s=1

∑
j

|Cs,j|2
∥∥∥∣∣Gas,jf∣∣2∥∥∥1/2

Lp/2(ω)

≤
∞∑
s=1

∑
j

|Cs,j|2
∥∥∣∣Gas,jf∣∣∥∥Lp(ω)

≤ C
∑
j

‖Ωj‖2H1(Sn−1) ‖f‖Lp(ω)

≤ C ‖f‖Lp(ω) .
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Let us now turn to the proof of (3.5). The proof of (3.5) follows a similar argument
employed in [1] except for minor modifications. For the reader’s convenience and since
we need to employ some parts of this proof, we shall present a sketch of the proof of
this inequality and omit some details. For simplicity of the notation, we denote as,j(·)
by a(·) and Gas,j(f) by Ga(f). In the following we assume that a is an H1atom with
supp(a) ⊂ Sn−1 ∩B(x0, ρ) for some x0 ∈ Sn−1 and ρ > 0. Since the weight function ω is
radial, by using an appropriate rotation on Sn−1, we may assume that x0 = (0, . . . , 0, 1).
Let {Γl}∞−∞ be a smooth partition of unity in (0,∞) adapted to the intervals Il = [θ−1

l+1 ,

θ−1
l−1]. More precisely, we require

Γl ∈ C∞, 0 ≤ Γl ≤ 1,
∑
l

Γl (t) = 1,

supp Γl ⊆ Il,

∣∣∣∣dsΓl (t)
dts

∣∣∣∣ ≤ C

ts
.

Define the multiplier operators Sl in Rn by

(Ŝlf) (ξ) = Γl(
∣∣B

ρ
(ξ)
∣∣)f̂(ξ).

Then for any k ∈ Z and f ∈ S(Rn), we have

f(x) =
∑
l∈Z

Sl+kf(x).

Therefore, by Minkowski’s inequality we have

Gaf(x) =

∑
k∈Z

∫ 2k+1

2k

∣∣∣∣∣∑
l∈Z

∫
Sn−1

a(y) (Sl+kf) (x− Φ(t)y)dσ(y)

∣∣∣∣∣
2
dt

t

1/2

≤
∑
l∈Z

Hlf(x), (3.6)

where

Hlf(x) =

(∑
k∈Z

∫ 2k+1

2k

∣∣∣∣∫
Sn−1

a(y) (Sl+kf) (x−Φ(t)y)dσ(y)
∣∣∣∣2 dtt

)1/2

.

By applying Plancherel’s theorem and Lemma 2.5, we get

‖Hl(f)‖2 ≤ Cλ−α|l| ‖f‖2 . (3.7)
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Again, by the same argument as in [1] we have

‖Hl(f)‖p,ω ≤ C ‖f‖p,ω for 2 ≤ p <∞ and ω ∈ ÃIp/2(R+). (3.8)

By interpolating between (3.7) and (3.8) with ω = 1, we get

‖Hl(f)‖p ≤ Cpλ−ϑ|l| ‖f‖p (3.9)

for 2 ≤ p <∞ and for some ϑ > 0.
Now, using Lemma 2.5, (3.8)–(3.9) and Stein-Weiss’ interpolation theorem with

change of measures [23], we claim that there exists µ = µ(p) ∈ (0, 1) such that

‖Hl(f)‖p,ω ≤ Cpλ−τ|l| ‖f‖p,ω for 2 ≤ p <∞ and ω ∈ ÃIp/2(R+) (3.10)

which in turn implies

‖Ga(f)‖p,ω ≤ Cp
∑
l

‖Hl(f)‖p,ω ≤ Cp ‖f‖p,ω (3.11)

for 2 ≤ p <∞ and ω ∈ ÃIp/2(R+).

To prove (3.10) we consider first the case p > 2. Choose a p1 > p. By Lemma 2.5,
there is an ε > 0 such that ω1+ε so that ω1+ε ⊆ ÃIp/2(R+) ⊆ ÃIp1/2

(R+). Thus, by (3.8),
we have

‖Hl(f)‖p1,ω1+ε ≤ C ‖f‖p1,ω1+ε . (3.12)

Therefore, using interpolation with change of measures, we may interpolate between (3.8)
and (3.12) to get (3.10) for p > 2. To handle the case p = 2, choose an ε′ > 0 such that
ω1+ε ⊆ ÃI1(R+). By (3.8) we have

‖Hl(f)‖2,ω1+ε′ ≤ C ‖f‖2,ω1+ε′ . (3.13)

As above, interpolating between (3.8) and (3.13) yields (3.10) for the case p = 2. This
finishes the proof Theorem 1.2 under condition (a). 2

Proof of Theorem 1.2 for condition (b)
As above, Theorem 1.2 for condition (b) is proved if we can show that

‖g(f)‖Lp(|x|α) ≤ C ‖f‖Lp(|x|α) (3.14)
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for 1
2 (1− n)(2 − p) < α < 1

2 (2np− 2n− p) and 2nδ/(2n+ nδ − 2) < p < 2. Let {Γl}∞−∞
be as above and

(X̂lf)(ξ) = Γl(|ξ|)f̂(ξ) for ξ ∈ Rn.

By following a similar argument as above and a change of variable we obtain

gf(x) ≤
∑
l

Rlf(x), (3.15)

where

Rlf(x) =

∑
j

∑
k∈Z

∫ Φ(2)

Φ(1)

∣∣∣∣∫
Sn−1

Ωj(ξ) (Xl+kf) (x− t2kξ)dσ(ξ)
∣∣∣∣2 dtt

1/2

.

As above, we notice that Theorem 1.2 for condition (b) is proved if we can show that

‖Rl(f)‖p,|x|α ≤ Cλ−τ|l| ‖f‖p,|x|α (3.16)

holds for 1
2(1− n)(2− p) < α < 1

2 (2np− 2n− p) and 2nδ/(2n+ nδ − 2) < p < 2.
We first compute the L2 norm of Rl. To this end, for any j, write Ωj as

Ωj(x) = ‖Ωj‖Lq(Sn−1) Ω̃j(x),

where Ω̃j(x) =
(

Ωj(x)/ ‖Ωj‖Lq(Sn−1)

)
. Now, we can view Ω̃j as an H1 atom supported

in Sn−1 with the L∞ norm in the definition of an H1 atom is replaced with the Lq norm.
Thus we may assume that the support of Ω̃j is contained in a ball with radius ρ = 1.
Thus we have

Rlf(x) =

∑
j

‖Ωj‖2Lq(Sn−1)

∑
k∈Z

∫ Φ(2)

Φ(1)

∣∣∣∣∫
Sn−1

Ω̃j(ξ) (Xl+kf) (x− t2kξ)dσ(ξ)
∣∣∣∣2 dtt

1/2

.

By Plancherel’s formula, we have

‖Rl(f)‖22 =
X
j

‖Ωj‖2Lq(Sn−1)

X
k∈Z

Z
Rn

Γl(2
k+l |ξ|)

 Z Φ(2)

Φ(1)

����
Z

Sn−1
Ω̃j(ξ)e

−it2k<x,ξ>dσ(ξ)

����
2
dt

t

!
dx
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and hence by Lemma 2.6 we get

‖Rl(f)‖2 ≤ Cλ−ϑ|l| ‖f‖2 . (3.17)

By (3.17) and the same argument as above, (3.10) is proved once we show that

‖Rl(f)‖p,|x|α ≤ C ‖f‖p,|x|α (3.18)

for 2nδ/(2n+nδ− 2) < p < 2 and 1
2 (1−n)(2− p) < α < 1

2 (2np− 2n− p). So, let us turn
to the proof of (3.18). By duality there is a function h = hk,l,j(x, t) satisfying ‖h‖ ≤ 1
and

hk,l,j(x, t) ∈ Lp
′
(
l2
(
l2
[
L2

(
[Φ(1),Φ(2)] ,

dt

t

)
, k

]
, j

)
, |x|−αp

′/p
dx

)
such that

‖Rl(f)‖p,|x|α =
∫

Rn

∑
j

∑
k∈Z

∫ Φ(2)

Φ(1)

∫
Sn−1

Ωj(ξ) (Xl+kf) (x− 2krξ)hk,l,j(x, t)dσ(ξ)
dt

t
dx

=
∫

Rn

∑
j

∑
k∈Z

∫ Φ(2)

Φ(1)

∫
Sn−1

Ωj(ξ) (Xl+kf) (x)hk,l,j(x+ 2ktξ, t)dσ(ξ)
dt

t
dx

≤

∥∥∥∥∥∥∥∥
∑
k∈Z

∑
j

∫ Φ(2)

Φ(1)

∫
Sn−1

Ωj(ξ)hk,l,j(·+ 2ktξ, t)dσ(ξ)
dt

t

2


1/2
∥∥∥∥∥∥∥∥
p′,|x|−αp′/p

×

∥∥∥∥∥∥
(∑
k∈Z

|Xl+kf |2
)1/2

∥∥∥∥∥∥
p,|x|α

.

Now set

Y (h) =
∑
k∈Z

∑
j

∫ Φ(2)

Φ(1)

∫
Sn−1

|Ωj(ξ)|
∣∣hk,l,j(·+ 2ktξ, t)

∣∣dσ(ξ)
dt

t

2

.

Since |x|
α

∈ Ap(Rn) if and only if −n < α < n(p− 1), by the weighted Littlewood-Paley
theory we have

‖Rl(f)‖p,|x|α ≤ Cp ‖f‖p,|x|α
∥∥∥(Y (h))1/2

∥∥∥
p′,|x|−αp′/p

. (3.19)
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Since p′ > 2 and ∥∥∥(Y (h))1/2
∥∥∥
p′,|x|−αp′/p

= ‖Y (h)‖1/2
p′/2,|x|−αp′/p ,

there is a function b ∈ L(p′/2)′(Rn, |x|2α/(2−p)) such that ‖b‖(p′/2)′,|x|2α/(2−p) ≤ 1 and

‖Y (h)‖
p′/2,|x|−αp′/p =

Z
Rn

X
k∈Z

 X
j

Z Φ(2)

Φ(1)

Z
Sn−1

|Ωj(ξ)|
���hk,l,j (x+ 2ktξ, t)

��� dσ(ξ)
dt

t

!2

b(x)dx.

By Shwarz inequality and Lemma 2.9, we get
 X

j

Z Φ(2)

Φ(1)

Z
Sn−1

|Ωj(ξ)|
���hk,l,j (x+ 2ktξ, t)

��� dσ(ξ)
dt

t

!2

≤ C

Z Φ(2)

Φ(1)

 X
j

Z
Sn−1

|Ωj(ξ)|
���hk,l,j (x+ 2ktξ, t)

��� dσ(ξ)

!2
dt

t

≤ C

Z Φ(2)

Φ(1)

 X
j

‖Ωj‖
1
2 min{2,q}
Lq(Sn−1)

�Z
Sn−1

|Ωj(ξ)|max{0,2−q}
���hk,l,j(x + 2ktξ, t)

���2 dσ(ξ)

�1/2
!2

dt

t

≤ C

 X
j

‖Ωj‖min{2,q}
Lq(Sn−1)

!Z Φ(2)

Φ(1)

X
j

�Z
Sn−1

|Ωj(ξ)|max{0,2−q}
���hk,l,j(x+ 2ktξ, t)

���2 dσ(ξ)

�
dt

t
.

Therefore, by a change of variable, Fubini’s theorem, Hölder’s inequality, and invoking
Lemma 2.12 we get

‖Y (h)‖
p′/2,|x|−αp′/p

≤ C

∑
j

‖Ωj‖min{2,q}
Lq(Sn−1)

‖Ωj‖max{0,2−q}
Lq(Sn−1)

∫
Rn

∑
j

∑
k∈Z

∫ Φ(2)

Φ(1)

|hk,l,j(x, t)|2
dt

t

×
(
MSph

(∣∣∣b̃∣∣∣δ/2) (−x)
)2/δ

dx, where b̃(x) = b(−x)

≤ C

∑
j

‖Ωj‖2Lq(Sn−1)

∥∥∥∥∥∥
∑
k∈Z

∑
j

∫ Φ(2)

Φ(1)

|hk,l,j(·, t)|2
dt

t

∥∥∥∥∥∥
p′/2,|x|−αp′/p

×

∥∥∥∥∥
(
MSph(

∣∣∣b̃∣∣∣δ/2)
)2/δ

∥∥∥∥∥
(p′/2)′,|x|2α/(2−p)

.
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By the conditions on p and α we have (2/δ)(p′/2)′ > n/(n − 1) and 1 − n < 2α
2−p <

(n − 1) ((p′/2)′ − 1)− 1. Thus by the choice of b and invoking Lemma 2.10, we get

‖Y (h)‖
p′/2,|x|−αp′/p ≤ C

which when combined with (3.19) easily yields (3.18). This completes the proof of
Theorem 1.2. 2

Proof of Theorem 1.1

We notice that Theorem 1.1 (b) is a special case of Theorem 1.2 (b). So, we only need
to prove Theorem 1.1 (a). By the arguments employed in the proof of Theorem 1.2, we
notice that Theorem 1.1 for condition (a) is proved if we can show that the inequality∥∥∥R̃l(f)

∥∥∥
p,ω
≤ C ‖f‖p,ω (3.20)

holds for δ ≤ p <∞ and ω ∈ Ap/δ , where

R̃lf(x)

∑
j

∑
k∈Z

∫ 2k+1

2k

∣∣∣∣∫
Sn−1

Ωj(ξ) (Xl+kf) (x− tξ)dσ(ξ)
∣∣∣∣2 dtt

1/2

.

Notice that R̃lf(x) = Rlf(x) if Φ(t) ≡ t. We prove (3.20) by considering two separate
cases: q ≥ 2 and 1 < q < 2.

Case δ ≤ p < ∞, ω ∈ Ap/δ and q ≥ 2: In this case, 2 ≤ p < ∞ and ω ∈ Ap/2. First

we consider the case p > 2. By duality, there is a function g ∈ L(p/2)′(ω1−(p/2)′) with
‖g‖(p/2)′,ω1−(p/2)′ ≤ 1 such that

∥∥∥R̃l(f)
∥∥∥2

p,ω
=
∑
k∈Z

∑
j

∫
Rn

∫ 2k+1

2k

∣∣∣∣∫
Sn−1

Ωj(ξ) (Xl+kf) (x − tξ)dσ(ξ)
∣∣∣∣2 dtt |g(x)| dx.

By Lemma 2.11, we have∣∣∣∣∫
Sn−1

Ωj(ξ) (Xl+kf) (x− tξ)dσ(ξ)
∣∣∣∣2 ≤ C ‖Ωj‖2q ∫

Sn−1
|(Xl+kf) (x− tξ)|2 dσ(ξ). (3.21)
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Thus, by Fubini’s theorem and a simple change of variable we get

∥∥∥R̃l(f)
∥∥∥2

p,ω
≤ C

∑
j

‖Ωj‖2q
∫

Rn

∑
j

∑
k∈Z

|Xl+kf(x)|2
∫ 2k+1

2k

∫
Sn−1

|g(x+ tξ)|dσ(ξ)
dt

t
dx

≤ C
∑
k∈Z

∫
Rn

|Xl+kf(x)|2 M∗(g̃)(−x)dx

≤ C

∥∥∥∥∥∑
k∈Z

|Xl+kf |2
∥∥∥∥∥
p/2,ω

‖M∗(g̃)‖
(p/2)′,ω1−(p/2)′ . (3.22)

Since ω ∈ Ap/2, by the elementary properties of Ap(Rn), we have ω
1−(p/2)′ ∈ A(p/2)′ .

Therefore, by the weighted Lp (1 < p < ∞) boundedness of the Hardy-Littlewood
maximal operator M∗ and the weighted Littlewood-Paley theory [16] we get∥∥∥R̃l(f)

∥∥∥
p,ω
≤ Cp ‖Ωj‖q ‖f‖p,ω for 2 < p <∞ and ω ∈ Ap/2(Rn). (3.23)

Now, if p = 2 and ω ∈ A1(Rn), by Lemma 2.11 and the definition of A1 weight we have

∥∥∥R̃l(f)
∥∥∥2

2,ω
=
∑
j

∑
k∈Z

∫
Rn

∫ 2k+1

2k

∣∣∣∣∫
Sn−1

Ωj(ξ) (Xl+kf) (x− tξ)dσ(ξ)
∣∣∣∣2 dtt ω(x)dx

≤ C
∑
j

‖Ωj‖2q
∑
k∈Z

∫
Rn

|Xl+kf(x)|2
(∫ 2k+1

2k

∫
Sn−1

ω(x + tξ)dσ(ξ)
dt

t

)
dx

≤ C
∑
k∈Z

∫
Rn

|Xl+kf(x)|2M∗(ω̃)(−x)dx

≤ C

∥∥∥∥∥∥
(∑
k∈Z

|Xl+k(f)|2
)1/2

∥∥∥∥∥∥
2

2,ω

.

Thus, by the weighted Littlewood-Paley theory we get∥∥∥R̃l(f)
∥∥∥

2,ω
≤ ‖Ωj‖q ‖f‖2,ω for ω ∈ A1(Rn). (3.24)

Case δ ≤ p <∞, ω ∈ Ap/δ and 1 < q < 2: It is clear that q′ ≤ p <∞, ω ∈ Ap/q′ and
p > 2.
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As above, by duality, there is a function g ∈ L(p/2)′(ω1−(p/2)′) and satisfies
‖g‖(p/2)′,ω1−(p/2)′ ≤ 1 such that

∥∥∥R̃l(f)
∥∥∥2

p,ω
=
∑
j

∑
k∈Z

∫
Rn

∫ 2k+1

2k

∣∣∣∣∫
Sn−1

Ωj(ξ) (Xl+kf) (x − tξ)dσ(ξ)
∣∣∣∣2 dtt |g(x)| dx.

By Lemma 2.11, Fubini’s theorem, the weighted Littlewood-Paley theory, and a change
of variable we obtain∥∥∥R̃l(f)

∥∥∥2

p,ω

≤ C
∑
j

‖Ωj‖qq
∑
k∈Z

∫
Rn

∫ 2k+1

2k

∫
Sn−1

|Ωj(ξ)|2−q |(Xl+kf) (x− tξ)|2 dσ(ξ)
dt

t
|g(x)| dx

≤ C
∑
j

‖Ωj‖qq
∑
k∈Z

∫
Rn

|Xl+kf(x)|2 M∗
Ω

(2−q)
j

(g̃)(−x)dx

≤ C
∑
j

‖Ωj‖qq

∥∥∥∥∥∥
(∑
k∈Z

|Xl+kf |2
)1/2

∥∥∥∥∥∥
2

p,ω

∥∥∥∥M∗Ω(2−q)
j

(g̃)
∥∥∥∥

(p/2)′,ω1−(p/2)′
(3.25)

≤ C
∑
j

‖Ωj‖qq ‖f‖
2
p,ω

∥∥∥∥M∗Ω(2−q)
j

(g̃)
∥∥∥∥

(p/2)′,ω1−(p/2)′
. (3.26)

By applying Lemma 2.9, we now show that∥∥∥∥M∗Ω(2−q)
j

(g̃)
∥∥∥∥

(p/2)′,ω1−(p/2)′
≤ C ‖Ω‖2−qq ‖g‖(p/2)′,ω1−(p/2)′ (3.27)

q′ ≤ p <∞ and ω ∈ Ap/q′ . To see this, let d = q/(2− q). Then we notice that |Ωj |2−q ∈

Ld(Sn−1), d′ = q′/2,
(
ω1−(p/2)′

)1−(p/2)

= ω ∈ Ap/q′ = A(p/2)/d′ and (p/2)′ < d.

Therefore, d, (p/2)′ and ω1−(p/2)′ satisfy condition (b) in Lemma 2.9 and hence (3.27)
holds (see also [8] and [1]). The proof of Theorem 1.1 is complete. 2

4. Further Results

Our chief concern in this section is to present some applications of Corollaries 1 and
2 and obtain several results concerning the weighted Lp boundedness of singular integral

432



AL-QASSEM

operators SΩ,h and the Marcinkiewicz integral operators µΩ,h (see the definitions below).
The weighted Lp boundedness of these operators have been studied extensively by a
number of authors under various conditions on Ω and h (see, for example [8], [10], [15],
[19], [20]). We shall extend or strengthen the existing results by establishing weighted Lp

bounds of these operators which are either that these results were previously unavailable
or were proved under strong conditions on Ω or h. Let us now describe our results. For
simplicity, let us only deal with the case Φ(t) ≡ t. The operators SΩ,h and µΩ,h are defined
as follows:

SΩ,hf(x) = lim
ε→0

S(ε)f(x) (4.1)

and

µΩ,hf(x) =

∫ ∞
0

∣∣∣∣∣
∫
|y|≤t

f(x − y) Ω(y′)
|y|n−1h(|y|)dy

∣∣∣∣∣
2
dt

t3

1/2

, (4.2)

where

S(ε)f(x) =
∫
|y|>ε

f(x− y)Ω(y′)
|y|n h(|y|)dy,

Ω ∈ L1(Sn−1) and satisfies the vanishing condition (1.1) and h is a measurable function
on (0,∞).

For γ > 1, let ∆γ (R+) denote the set of all measurable functions h on R+ such that

sup
R>0

 1
R

R∫
0

|h (t)|
γ

dt

1/γ

<∞.

It is easy to verify that

L∞
(
R+
)
⊂ ∆γ2

(
R+
)
⊂ ∆γ1

(
R+
)

for γ1 < γ2 (4.3)

and

R(R+)  ∆
γ

(R+) for 1 < γ ≤ 2. (4.4)
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We notice that the maximal operator MΩ is closely related to the singular integral
operator SΩ,h. Let us now recall some known results. We start with some results on
singular integrals.

Theorem C [10] Suppose that h ∈ L∞ (R+) and Ω ∈ Lq(Sn−1) for some q > 1. Then
SΩ,h is bounded on Lp(ω) if q′ ≤ p <∞, p 6= 1 and ω ∈ Ap/q′ .

For a special class of radial weights Ãp(R+), Duoandikoetxea used the method of
rotations and proved the following sharper result:

Theorem D [10] If ω ∈ Ãp(R+) for 1 < p < ∞, then SΩ,1 is bounded on Lp(ω)
provided that Ω ∈ L logL

(
Sn−1

)
.

In 1999, Fan-Pan-Yang improved the result in Theorem D and obtained the following:

Theorem E [15] If h ∈ ∆
γ

(R+) for some γ ≥ 2 and Ω ∈ H1
(
Sn−1

)
, then SΩ,h is

bounded on Lp(ω) for γ′ ≤ p <∞ and ω ∈ ÃIp/γ′ (R+).

Theorem F Let 1 < q ≤ ∞, 1 < p <∞ and SΩ,h be the operator defined by (4.1) with

h ≡ 1 and Ω ∈ Lq(Sn−1) satisfying (1.2). Then SΩ,1 is bounded on Lp(|x|
α

) if

max(−n,−1− (n − 1)p/q′) < α < min(n(p− 1), p− 1 + (n − 1)p/q′). (4.5)

Moreover, the range (4.5) is optimal.

This result was proved by Muckenhoupt and Wheeden in [20] and by Duoandikoetxea
[10] with a different proof. We notice that in the limit case q = 1, the range in (4.5)
becomes α ∈ (−1, p− 1). It is well-known that the theorem fails for some Ω ∈ L1(Sn−1),
even in the unweighted case α = 0. However Theorem F remains true if α ∈ (−1, p−1) and
Ω ∈ L logL as pointed out in ([10], p. 880). In the ensuing development of this result, an
improvement was obtained by Fan-Pan-Yang in [15] as described in the following result:

Theorem G If h ∈ ∆γ (R+) for some γ ≥ 2 and Ω ∈ H1
(
Sn−1

)
, then SΩ,h is bounded

on Lp(|x|
α

) for γ′ < p <∞ and α ∈ (−1, p/γ′ − 1).

In view of the above results, one is naturally led to the following question:

Question 1 Under the same condition on Ω and under a similar (or the same) condition
on ω in Theorems C-F, does the Lp (ω) boundedness of the operator SΩ,h still hold if
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h ∈ ∆γ (R+) for some 1 < γ < ∞ in Theorems C and F and for some 1 < γ < 2 in
Theorems E and G?

By applying Corollaries 1 and 2, we are able to get some progress in answering the
above question as described in the following results:

Theorem 4.1 Suppose that h ∈ R(R+) and Ω ∈ Lq(Sn−1) for some q > 1. Then SΩ,h

is bounded on Lp(ω) if p and ω satisfy the same conditions as in Theorem 1.1.

Theorem 4.2 If h ∈ R(R+) and Ω ∈ H1
(
Sn−1

)
, then SΩ,h is bounded on Lp(ω) for

2 ≤ p <∞ and ω ∈ ÃIp/2(R+).

Theorem 4.3 Let 1 < p < ∞. Suppose that h ∈ R(R+) and Ω ∈ Lq(Sn−1) for some

q > 1. Then SΩ,h is bounded on Lp(|x|
α

) if

max(−n,−1− (n − 1)p/q′) < α < min(n(p− 1), p− 1 + (n − 1)p/q′). (4.6)

Theorem 4.4 If h ∈ R(R+) and Ω ∈ H1
(
Sn−1

)
, then SΩ,h is bounded on Lp(|x|

α

) for
2 < p <∞ and α ∈ (−1, p/2− 1).

Proof of Theorems 4.1–4.4

There is no loss of generality to assume that h ∈ R(R+) with ‖h‖L2(R+,dr/r)
= 1.

Then we notice that

S(ε)f(x) =
∫

Rn

f(x − y)Ω(y′)
|y|n h̃(|y|)dy,

where h̃(|y|) = h(|y|)χε(|y|) is the characteristic function on the set {y ∈ Rn : |y| > ε} .
Since ∥∥∥h̃∥∥∥

L2(R+,dr/r)
≤ ‖h‖L2(R+,dr/r)

= 1,

by Corollaries 1 and 2 we get

∥∥∥S(ε)f
∥∥∥
p,ω
≤
∥∥∥∥sup

h
|SΩ,hf |

∥∥∥∥
p,ω

= ‖MΩf‖p,ω ≤ Cp ‖f‖p,ω
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with a Cp independent of ε. Passing to the limit as ε→ 0, Fatou’s lemma gives

‖SΩ,hf‖p,ω ≤ Cp ‖f‖p,ω
which completes the proofs of Theorems 4.1–4.4.

Now, let us see how we can apply Corollaries 1 and 2 to improve some results on the
Marcinkiewicz integral operator µΩ,h. Let us first recall some known results. We start
with the following theorem due to Ding-Fan-Pan.

Theorem H [8] Suppose that h ∈ L∞ (R+) and Ω ∈ Lq(Sn−1) for some q > 1. Then
µΩ,h is bounded on Lp(ω) if q′ < p <∞, and ω ∈ Ap/q′ .

Theorem I [19] If h ∈ L∞ (R+) and Ω ∈ H1
(
Sn−1

)
, then µΩ,h is bounded on Lp(ω)

for 1 < p <∞ and ω ∈ ÃIp(R+).

Theorem J [12] Let 1 < q ≤ ∞,1 < p <∞ and µΩ,h be the operator defined by (4.2)

with h ≡ 1 and Ω ∈ Lq(Sn−1). Then µΩ,1 is bounded on Lp(|x|
α

) if

max(−n,−1− (n − 1)p/q′) < α < min(n(p− 1), p− 1 + (n − 1)p/q′). (4.7)

In view of the above results, one is naturally led to the following question:

Question 2 Under the same condition on Ω and under a similar (or the same)
condition on ω in Theorems H-J, does the Lp (ω) boundedness of the operator µΩ,h still
hold if h ∈ ∆γ (R+) for some 1 < γ <∞ in Theorems H-J ?

By applying Corollaries 1 and 2, we are able to obtain some progress in answering
Question 2 as described in the following results:

Theorem 4.5 Suppose that h ∈ R(R+) and Ω ∈ Lq(Sn−1) for some q > 1. Then µΩ,h

is bounded on Lp(ω) if p and ω satisfy the same conditions as in Theorem 1.1.

Theorem 4.6 If h ∈ R(R+) and Ω ∈ H1
(
Sn−1

)
, then µΩ,h is bounded on Lp(ω) for

2 ≤ p <∞ and ω ∈ ÃIp/2(R+).

Theorem 4.7 If h ∈ R(R+) and Ω ∈ H1
(
Sn−1

)
, then µΩ,h is bounded on Lp(|x|

α

) for
2 < p <∞ and α ∈ (−1, p/2− 1).

Proof of Theorems 4.5-4.7 By the argument in [2], we get

µΩ,hf(x) ≤ 1√
2
MΩf(x).

Thus all the weighted results which hold to MΩ also hold for µΩ,h. 2
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