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Weighted Norm Inequalities for a Class of Rough

Maximal Operators

H. M. Al-Qassem

Abstract
We consider maximal singular integral operators arising from rough kernels
satisfying an H'-type condition on the unit (n — 1)-sphere and prove weighted L”
estimates for certain radial weights. We also prove weighted L? estimates with
A,-weights where in this case the H'-type condition is replaced by an LI-type
condition with ¢ > 1. Some applications of these results are also obtained regarding
singular integrals and Marcinkiewicz integrals. Our results are essential extensions

and improvements of some known results.

Key words and phrases: LP boundedness, Hardy space, maximal operators,

Fourier transform, rough kernel, A, weight.

1. Introduction and Results

Throughout this paper, let R” be the n-dimensional Euclidean space and S™~! be the
unit sphere in R™ equipped with the normalized Lebesgue measure do. Let 2’ = 2/ |z|
for z € R™\{0}, p’ denote the conjugate index of p (that is, 1/p+1/p’ = 1) and {Q,} be
an arbitrary but fixed countable subset of L!(S"~1) with

L staot) =0 (L.1)

Let Q be an arbitrary but fixed function defined on S"~! with Q € L'(S"~!) and satisfies
the cancellation condition (1.1) with €; replaced by Q. Let R(R4) denote the set of all
2000 AMS Mathematics Subject Classification: Primary 42B20; Secondary 42B15, 42B25.
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functions b on R satisfying the condition

4 1/2
r
I |‘L2(R+,dr/r) (/R+| (r) T) >

and let M ({Q;}) be the class of all kernels of the form

K(ty)=t" Zb (defined for t > 0 and y € 8™ 1),

where

/ Z|b |2@<1

In 1992, L. K. Chen and X. Wang [5] studied the L? boundedness of the maximal
operator sup g e (o, ) [Tk f|, where the operator T is defined by

Ty f(z / | - Kot

n [5], L. K. Chen and X. Wang proved the following:

Theorem A Let 2n/(2n—1) < p < oo and let {Q;} be a countable subset of L*(S"~1)
with HQJ‘Hig(Sn,l) < 00. Then supyepr((a,p) [Tk f| is bounded on LP(R™). Moreover,
J

the range of p is the best possible.

We notice that if we take in the definition of M ({€;}) our countable set {2;} to be
the the singleton €, where (2 is a fixed function defined on S”~! with Q € L?(S"~!) and
satisfies (1.1) and if we take the countable set {b;} to be the singleton b and letting b
vary with b belongs to the class R(R.), the maximal function supeps(go,y) [Tr f| will
reduce to the maximal operator Mgq(f) given by

f(w—y)%i)

Maf(z) = sup
R |y|

bER(R)

b(lyl)dy| -

Thus obviously, the maximal operator sup M2} [Tk f| is a natural extension of the
maximal operator Mgq. Therefore, as an immediately corollary of Theorem A we get the

following;:
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Theorem B Let Q be a function defined on S"~1 with Q € L?(S™~ 1) and satisfies
(1.1). Then Mq(f) is bounded on LP (R™) for 2n/(2n—1) < p < oo.

We remark that the maximal operator Mg was formally introduced by L. K. Chen
and H. Lin in [4] who proved Theorem B under the stronger condition Q € C'(S™~!) (see
also [5]). The study of the maximal operator Mg has attracted the attention of many
authors in recent years. For example, see [1], [2], [9], [18] and [24].

This paper aims at extending the result in Theorem A in several directions: (1) by
allowing the countable set {Q2;} to be a subset of L4(S™~!) for some 1 < ¢ < oo instead
of being {Q;} a subset of L?*(S"~1!), (2) by allowing the countable set {Q;} to be a
subset of the Hardy space H!'(S™~1) which contains L?(S™"~1) as a proper subset, (3)
by investigating the weighted LP boundedness of these operators instead of investigating
their LP(R™) boundedness, and (4) by considering maximal operators along some types
of submanifolds.

Before stating our results, we first introduce some notations and give some definitions.

Definition For q > 1, let L,({Q;}) be the class of all kernels of the form

K(ty)=t™" Zb (defined for t > 0 and y € S™™ 1),
where
/ Z 1b; ()] @ <1
and {Q;} is a fized countable subset of LY(S™~1) with Q; satisfying (1.1) and
Z HQjHiq(sn—l) < 00.
J

Definition Let H'({Q;}) denote the class of kernels of the form

K(ty) =t™" Zb (defined for t > 0 and y € S"™1),
where
e dt
| mer g <
0
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and {Q;} is a fized countable fized subset of H*(S"™1) with Q; satisfying (1.1) and
2
Z HQjHHl(Sn—l) < 00.
J

Here H'(S™~!) denotes the Hardy space on S"~! in the sense of Coifman and Weiss [6]

and its definition will be reviewed in Section 2. It is well-known that

(8" ') c LUS" !)(g>1) C Llog L)(S™ ) c H'(S" Y c LY(8"7).  (1.2)

The inclusions in (1.2) are proper. In light of (1.2), it is easy to verify that the following

inclusions hold:

L,({Q;}) (for ¢ > 1) S H'({Q}) & L1({925}); (1.3)
L,({Q;}) (for g > 2) C L2({Q;}) C L,({Q;}) (for 1 < ¢ <2). (1.4)

Thus we have

sup Tk f| (forqg > 1)< sup | Tk fl;

KeLq,({9;}) Ker'({Q;})
sup  |Tif| (forq > 2)< sup [Tkfl<  sup [Tif| (for 1< q<2).
KeLq,({9;}) KeM KeLq,({2;})

We shall need the following definitions which are closely related to those appearing in
[15]:

Definition We say that a function ® satisfies "hypothesis I” if

(a) ® is an increasing C' function on [0, 00) with ®(0) = 0,

(b) ®'(t) is increasing on (0,00) or ® satisfies ®(2t) > n®(t) for some fized n > 1 and
@' (t) is decreasing on (0, 00).
Definition We say that ® satisfies “hypothesis D” if

(a') ® is a decreasing C function on [0, 00) with ®(0) = 0,

(t') ®'(t) is decreasing on (0,00) or ®(t) > n®(2t) for some fized n > 1 and P'(t) is

increasing on (0, 00).

Model functions for the ® satisfy hypothesis I are ®(t) = t? with d > 0, and their linear
combinations with positive coefficients. Model functions for the ® satisfy hypothesis D

are ®(t) =t" with r < 0, and their linear combinations with positive coefficients.
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Throughout this paper, for a nonnegative locally integrable function w we shall write
1Al (o I fllpoy) for (/. |f(x)|pw(x)dx)1/p. When w = 1, we shall simply write
£l (or £l ) for LA, .-

We now state our main results.

Theorem 1.1 Let1l < g<oo. Then sup |Tkf]| is bounded on L? (w) if p and w
KeLq,({2;})

satisfy one of the following conditions:

(a) 6 <p<ooandw € Ays;

(0) 2n6/(2n+nd —2) <p < 2, w(z) = |x|a ,3(1=n)(2—p) <a< i(2np—2n-p),
where § = max{2, ¢'}.

Here A, = A,(R™) represents the collection of Muckenhoupt’s A,-weights whose

definition will be recalled in Section 2.

Corollary 1  Assume that Q € L9(S"1) for some ¢ > 1 and satisfies the vanishing
condition (1.1). Then Mgq is bounded on LP (w) if p and w satisfy the same conditions

as in Theorem 1.1.

For radial weights we are able to prove the following sharper and more general result:

Theorem 1.2  Assume that ® satisfies either hypothesis I or D. Then
(a) sup |Tx.af| is bounded on L () if w € AL ,(Ry) and 2 < p < oo;

Keni({9,)) o
(b)  sup |Tk.ef| (for ¢ > 1) is bounded on LP (|x|a) ifil-n)2-p) <a<
KeL,({25})

2(2np —2n — p) and 2n8/(2n +né — 2) < p < 2, where

Teaf@) = [ [ = s@nKe)e dot,

and AZI)(RJF) is a special class of radial weights introduced by Duoandikoetzea [10]. The
definition of flz[)(RJr) will be reviewed in Section 2.
Corollary 2 Let Q be a homogeneous function of degree zero satisfies the vanishing

condition (1.1). Assume that © satisfies either hypothesis I or D. Then the mazximal
operator Mq. o defined by

(z — 2(ly))y) ‘l’y(ly’ h())dy

Maaf(x)= sup

heR(R4) /R
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is bounded on L? (w) if Q, p and w satisfy the same conditions as in Theorem 1.2.

Remarks (1) By the relationships (1.3)—(1.4) one sees that, even in the special cases
®(t) =t and w = 1, our results represent substantial extensions of Theorem A.

(2) Corollary 1 was proved by Y. Ding and H. Qingzheng in [9] under the condition
Q € L?(S"1). Later on, Corollaries 1 and 2 were proved by Al-Qassem in [1].

(3) The main tools used in this paper come from [1], [2], [18], [11] and [15], among
others.
Throughout the paper the letter C' will denote a positive constant whose value may

change at each occurrence.

2. Definitions and Lemmas

Let us begin by recalling the definition of the Hardy space H' on the unit sphere
St

Definition 2.1  The Hardy space H'(S"1) is the linear space of distributions f €
S'(S"1) with norm [fll 1 (gn-1y = IPFfllpa(gn-1y < 00, where PTf(a") denotes the
radial maximal function of f. The space H'(S"™') was studied in [6] (see also [7]). A
function a : S*~' — C is called an H' atom if it satisfies the following:

(i) supp(a) C S"~1 N B(zo, p) for some o € S"~1 and p > 0, where B(zo, p) is the
ball with center xo and radius p;

(ii) flallo < P~

(i11) [gn-1 a(y)do(y) = 0.

JFrom [6] or [7], we find that any Q € H'(S"~!) with the mean zero property (1.1)

o0
has an atomic decomposition Q& = }° cja;, where {c;},; . C C, {a;} is a sequence of

j=1

H'! atoms on S™! and

Z |CJ| S C HQHHl(S"’l)

j=1
with C independent of .

Definition 2.2 A locally integrable nonnegative function w is said to belong to A,(R™)
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(1 < p < o0) if there is a positive constant C such that

p—1

sup <|Q|_1/ w(w)dw) <|Q|_1/ w(w)_l/(p_l)dw> <C, forl <p<oo
QCR™ Q Q

and w € A1 (R") if M*w(z) < Cw(x) a.e. © € R™, where Q denotes a cube in R™ with its
sides parallel to the coordinate axes and M* f denotes the usual Hardy-Littlewood mazimal

function.
Now, we give the definition of certain radial weights ([15], [10]).

Definition 2.3 Let w(t) > 0 and w € L}, (Ry). For 1 < p < oo, we say that
w € A,(Ry) if there is a positive constant C such that for any interval I C Ry,

<|1r|—1 /Iw(t)dt> (|I|_1/Iw(t)‘l/(p_l)dt>p_1 <0<

We say that w € A1 (Ry) if there is a positive constant C' such that
|I|_1/w(t)dt < Cess %nﬁw(t) for any interval I C Ry,
I S

It is easy to verify that w € A;(Ry) if and only if there is a positive constant C' such
that

M*w(t) < Cw(t) for a.e. t € Ry

Definition 2.4 Let 1 < p < co. Ifw(z) = v1(|z|)v2(Jz|)1 =P, where either v; € A1(R4)
is decreasing or vi € A1(Ry), j = 1,2, then we say that w € A,(Ry).

Let AZI)(R") be the weight class defined by using all n-dimensional intervals with sides
parallel to coordinate axes (see [17]). It is well-known that |z|” € 121117 for -1 <vy<p—1
(see [17]). Let AZI)(RJF) be the class of all weights w(t) so that w(t) € A,(Ry) and w(|z|) €
AIR™). Ifw e A,(R), it follows from [10] that M*f is bounded on LP(R™, w(|z|)dx).
Therefore, if w(t) € A,(Ry), then w(|z|) € A,(R™).

By following the same argument as in the proof of the elementary properties of A,

weight class (see for example [16]) we get the following:
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Lemma 2.5 If1<p< oo, then the weight class flé(R.ﬁ has the following properties:

(i) AL c AL | if 1 <pi < ps<oo;

(#7) For any w € flz[), there exists an € > 0 such that W' € flz[);

(i4i) For any w € flé and p > 1, there exists an € > 0 such that p —e > 1 and
w e 1211[7_5.

For a fixed p > 0, we let B, (£) = (p*&1, p€a, - - ., pén). Also, for k € Z, set 6), = (2F)
if ® satisfies hypothesis I and 6, = (®(2%))~! if ® satisfies hypothesis D. Then by the

conditions of ®, it is easy to see that {6} is a lacunary sequence of positive numbers

with infiez 9’;% > A > 1, where A = min{2, n}.

By following the same argument as in the proof of Lemma 2.1 in [15], we get the

following;:

Lemma 2.6 Suppose that a(-) is an H* atom on S™~1 with supp(a)C B(e, p) N S" 1,
ok+1

where e = (1,...,0) € S"71. Let
) 1/2
dt
Fa,@,k(g) = (/ ?) .
ok

Then there exist positive constants 3, C independent of k, & and p such that if ® satisfies

/s a(y)e O do ()

hypothesis I,
. -8 -3 8 s
Fuan(@)] < Cuin{o," |8,@1 0 18,0
and if ® satisfies hypothesis D,

Faarl(6)] < Cmin{ekil B, .6 |Bp<s>|‘ﬁ} .

For an Q € LY(S"1) and a C! function ® defined on R, we define the maximal

operator

Q !
Miaf@) =sp| [ s ety

keZ
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If ®(t) =t, we denote Mg ¢, by M.

By the same argument as in ([22], p.57), we get the following lemma.

Lemma 2.7 Let ¢ be a nonnegative, decreasing function on [0, 00) with

/ o(t)dt = 1.
[0,00)

Then

< My’f(x)»

/ fl@ —ty)p(t)dt
[0,00)

where
R

1
M, f(x) = sup = |f(x — sy')|ds
RrRer B Jo

is the Hardy-Littlewood mazimal function of f in the direction of vy .
By Lemma 2.7 and following a similar argument as in [1] and [15] we get:

Lemma 2.8 LetQc L'(S" M andw € A,(Ry), 1 < p < oo. Assume ® satisfies either
hypothesis I or D. Then

||M£7Q(f)||Lp(w) S Cp HQHLl(Snfl) HfHLp(w) ’ (21)

where Cyp is a constant independent of Q0 and f € LP(w).
By the proof of the Theorem 5 in ([10], p. 873), we have the following:

Lemma 2.9 Let Q € L4(S™Y) for some d > 1. If p,d and w satisfy one of the following
conditions:

(a)d <p<oo,p#landwe Aya;

(b)) 1 <p<d,p# oo, wi P € Ay s

then there is a C > 0, independent of f and Q such that

MG F 1l Loy < C U Lagn—1y 1 Lo o) -
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Let Mgpn be the spherical maximal operator defined by

M f@) =sup [ |f(@=r0)|do(o)

>0

We shall need the following result concerning the weighted L? boundedness of Mg, with

power weights.

Lemma 2.10 ([13]) Suppose thatn >2,p>n/(n—1) andl-n < a < (n—1)(p—1)-L1.
Then Mgpn(f) is bounded on LP(R™, |x|a)

Lemma 2.11  Suppose that Q € L4(S™~ ') for some q > 1. Then for some positive

constant C, we have

2

| an@ane)

< ol / QOO | f(o) 2 do(e)  (22)

Sn—
for arbitrary functions f.

Proof. When ¢ > 2 (so that ¢’ < 2), from Holder’s inequality we have
2 ) , 2/q
L e@nease) <10t ([ 1701 doto))

< o / &)2do(e),

which is the statement of the lemma for the case ¢ > 2.

When 1 < ¢ < 2 (so that ¢’ > 2), the conclusion of the lemma follows from Schwarz’s
inequality and the fact that Q € L4(S™~1). This finishes the proof of the lemma. O

Lemma 2.12  Suppose that Q € Li(S"~ ) for some q¢ > 1. Let § = max{2,q'}. Then

for some positive constant C, we have

) . /
L 1201020 (e — )] do(e) < 1002 (Msyn (l?) @)
(2.3)

for all positive real numbers t, x € R™ and arbitrary functions w.
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Proof. Asin the proof of Lemma 2.11, we shall consider the cases ¢ > 2 and 1 < ¢ < 2
separately. We notice that if ¢ > 2, the inequality (2.7) is obvious. However, if 1 < ¢ < 2,
(2.7) follows easily from Holder’s inequality and noticing that (32;)" = ¢'/2. The lemma

is proved. O

3. Proof of Main Results

We shall present the proof of Theorem 1.2 only for the case ® satisfies hypothesis I,
since the proof of these theorems for the case ® satisfies hypothesis D is essentially the

same. We shall start first by proving Theorem 1.2.

Proof of Theorem 1.2 for condition (a)
Assume K € H'({Q;}). By definition of Tk ¢ we have

Teof(a) = [ 000 [ w6 - o0niat)T.

By Shwarz inequality and the definition of the kernel K, we get

1/2

2% = gf(x), (3.1)

Tof@) < | [ X ot

where
1@ = [ )@ - 2ot

Thus the proof of Theorem 1.2 for condition (a) is proved if we can show that
Hg(f)HLP(w) <C HfHLP(w) (3:2)

for w € Azlv/2 (R4), 2 <p < oo and for a constant C' independent of the kernel K. So let

us turn to the proof of (3.2). Since ; € H'(S"~!) has the mean zero property (1.1), we

o0
i e e = - 1
can write Q; = > C; jas ;, where each a, ; is an H' atom and

s=1

Z |CS7J| S C HQjHHl(Snfw

s=1
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with a constant C' independent of €2;. Thus,

2 1/2
dt

oo =X [

> Cojgl f(x)
s=1

where gflt) ;f(x) is defined in the same way as gg]) (x) except that we replace ; by as ;.

By applying Minkowski’s inequality, we get

1/2
9f@) <3 Y IC P Ga f @) ] (3.4)
s=1 7
where
o 1/2
G, @) = ([ o2, 10 F)

The key step in the proof of (3.2), is to prove the following inequality:

||Gas,j(f)||Lp(w) <C HfHLp(w) forw € AZI)/2(R+) and 2 < p < oo, (3.5)

where C' is independent of the atoms as ;(-) and f. Before presenting a proof of (3.5), let
us prove (3.2) by employing (3.5). By (3.4) and (3.5) we have

1/2
19y < ||| 1€ G 1
s=1 J LP(w)
0 1/2
= ZZ ol H|G“°"ff|2‘ Lr/2(w)
s=1 j
< Sl G e
s=1 3
S CZ HQ]|‘§—11(S"71) HfHLP(w)
J
<

ClAller ) -
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Let us now turn to the proof of (3.5). The proof of (3.5) follows a similar argument
employed in [1] except for minor modifications. For the reader’s convenience and since
we need to employ some parts of this proof, we shall present a sketch of the proof of
this inequality and omit some details. For simplicity of the notation, we denote as ;(-)
by a(-) and Ga, ,(f) by Ga(f). In the following we assume that a is an H'atom with
supp(a) C S" 1 NB(x, p) for some x¢g € S"~* and p > 0. Since the weight function w is
radial, by using an appropriate rotation on S"~!, we may assume that x¢ = (0,...,0,1).

Let {I';}”°_ be a smooth partition of unity in (0, co) adapted to the intervals Il [91_:1,

9l__11]. More precisely, we require

I, € C® 0<I,<1, Zfl(t):
l

supp I C I,

d°T (t) < C
dts ts’

Define the multiplier operators S; in R™ by

(517) (€) =Tu(| B, (©) S ©).
Then for any k € Z and f € S(R"), we have

= Sk f(x)

leZ

Therefore, by Minkowski’s inequality we have

S 9 1/2
dt
Gaf(z) = ) (Sigr f) (x — 2(D)y)do(y)| —
’ kez/ = /S -t o L
< > Hif(x), (3.6)
1€z
where

2k+1
H f(z
ER

By applying Plancherel’s theorem and Lemma 2.5, we get
I (f)lly < CA= ]l - (3.7)

2
L o) S (o = wlemaot) F
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Again, by the same argument as in [1] we have

IH ()l < C IS, for2<p<ooandwe A;/2(R+). (3.8)

pw =
By interpolating between (3.7) and (3.8) with w = 1, we get
(I, < CoA~"1I7, (3.9)

for 2 < p < oo and for some ¥ > 0.
Now, using Lemma 2.5, (3.8)—(3.9) and Stein-Weiss’ interpolation theorem with
change of measures [23], we claim that there exists p = u(p) € (0,1) such that

1)y < CA T fll, for2 < p<ooandwe ALp(Ry)  (3.10)

p,w —

which in turn implies

1Ga(Npe < Co D NH ()l < Co lIF (3.11)
l

for2<p<ooandw € A£/2(R+).

To prove (3.10) we consider first the case p > 2. Choose a p; > p. By Lemma 2.5,
there is an € > 0 such that w!*¢ so that w!'™ C A]IJ/2(R+) - A£1/2(R+). Thus, by (3.8),

we have
IHL )y e < CUFIl, wree - (3.12)

Therefore, using interpolation with change of measures, we may interpolate between (3.8)
and (3.12) to get (3.10) for p > 2. To handle the case p = 2, choose an & > 0 such that
wite € AI(R, ). By (3.8) we have

[HL(F)lg,1e < CllFllg e - (3.13)

As above, interpolating between (3.8) and (3.13) yields (3.10) for the case p = 2. This

finishes the proof Theorem 1.2 under condition (a). O

Proof of Theorem 1.2 for condition (b)

As above, Theorem 1.2 for condition (b) is proved if we can show that

Hg(f)HLp(ma) < CHfHLp(|I|a) (3~14)
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for £(1-n)(2—p) <a < 1(2np—2n—p) and 2n6/(2n+né — 2) < p < 2. Let {I;}>_

be as above and

(X /)(€) = Tu(€]) f(€) for € € R™.

By following a similar argument as above and a change of variable we obtain

2 <3 Rif(@), (3.15)
l

where

1/2
®(2) 2
L 20 (i) (o= 2taoe)| F

R P» W

i kez’ @)

As above, we notice that Theorem 1.2 for condition (b) is proved if we can show that

HRl(f)Hp,|;E|a < C)\_Tlll Hpr,|;E|a (316)

holds for 3(1 —n)(2—p) < a < 3(2np —2n — p) and 2né/(2n +nd — 2) < p < 2.
We first compute the L? norm of R;. To this end, for any j, write 2; as

(@) = 9] gn s, (),

where Q;(z) = (Qj(gc)/ HQjHLq(Sn,l)) . Now, we can view Q; as an H' atom supported

in S”~! with the L norm in the definition of an H' atom is replaced with the L? norm.
Thus we may assume that the support of Qj is contained in a ball with radius p = 1.
Thus we have

1/2

3(2) 2 g

le ZHQ HLq(sn 1)2/

kez’ 2(1)

L8500 (i) (o = 24000

By Plancherel’s formula, we have

[ e aa e
sn—1

©(2)
R f Hz ZHQ HLQ(S" 1)2/ (2 2+ €]) (/

keZ (1)

2
@> dx
t
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and hence by Lemma 2.6 we get

1B:(f)lly < CAIF] - (3.17)

By (3.17) and the same argument as above, (3.10) is proved once we show that

IR () oy < C IS

(3.18)

«
P, ||

for 2nd/(2n+nd—2) < p <2 and 3(1 —n)(2—p) < a < 3(2np —2n — p). So, let us turn
to the proof of (3.18). By duality there is a function h = hy ;(z,t) satisfying ||| < 1

and
hisj(a,t) € LV <l2 <l2 [L2 ([@(1),@(2)] : %) k] ,j) || oP /P d:c)

such that

P(2) d
IR () / SN / /s 958 (X f) (@~ 2k7“§)hk,z,j(fﬂ>f)d0(§)?tdw

i kez”’ @)

2(2)

J kez €(1)

o\ 1/2

IN

®(2)
/ /S . (E)hia (- + 2t€, t)da(f)it

keZ 2(1)

N

1/2
X (Z |Xl+kf|2>

keZ a
P, ||

Now set

e dt
0 h (. 2k: , d wb
= Z/b(l) /Sni1 | J(§)|| k,l,g( + 2%t€ t)| (&) "

Since |x|a € A,(R™) if and only if —n < a < n(p — 1), by the weighted Littlewood-Paley

theory we have

IRl o < Co Il ||V (D)2 (3.19)

P el o
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Since p’ > 2 and

vy

_ 1/2
Pzl YOI o gy

there is a function b € L(p,/z),(R", |w|2a/(2_p)) such that HbH(pf/2)f,|w|2a/(2—p) <1and

22 dt
R [—— :/ / / SO [rs  + 246, 0)| do() S )i
®(1) sn—1 t

By Shwarz inequality and Lemma 2.9, we get

( /M)/ \‘hm (z + 2" €, t)‘da({)it>
a(1) _—

®(2) X >
(Z /S - )“hk,l,j(ic-i-Q t&t)‘da({)) =

(1)
22 1 min{2 ma: — 3 2 1/2 ’ dt
< C/ (Z HQszq(Sn{—iz} </ | (g)[P 127 hk,z,j(:c+2kt§7t)‘ da(§)> ) "
(1) [ sn—1
min{2,q} max{0,2—q} k 2 dt
<C Z HQJ'HLQ(Sn—l) o) - 192 (&) R, (2 + 2 t&t)‘ do (&) -
j j "

Therefore, by a change of variable, Fubini’s theorem, Holder’s inequality, and invoking

Lemma 2.12 we get

Hy(h)pr/zJﬂfap’/p

. ®(2) dt
min{2, max{0,2— 2
< o Zmig st ) [ S [ ol §
J "\ kez’/®Q)
_16/2 2/6 .
(MSph (‘b‘ ) (—:c)) dx, where b(z) = b(—x)
2 dt

< ZHQ HLq(Sn 1) ZZ |hk l,_] ? X

kez j p'/2,|z| =o' /P

(i)

('/2)" Jal?/ =P
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By the conditions on p and « we have (2/§)(p'/2)’ > n/(n—1) and 1 —n < 22%17 <

(n—=1)((p'/2) — 1) — 1. Thus by the choice of b and invoking Lemma 2.10, we get
Hy(h)|‘p’/27|$|*apl/17 <C

which when combined with (3.19) easily yields (3.18). This completes the proof of
Theorem 1.2. O

Proof of Theorem 1.1

We notice that Theorem 1.1 (b) is a special case of Theorem 1.2 (b). So, we only need
to prove Theorem 1.1 (a). By the arguments employed in the proof of Theorem 1.2, we

notice that Theorem 1.1 for condition (a) is proved if we can show that the inequality

| <cifl,. (3.20)

)

holds for § < p < oo and w € A, /5, where

1/2
. % dt
/Sn ) Q&) (Xign f) (x — t&)do(€) "

Ri@) |23 [,

j k€Z

Notice that Ry f(z) = Ry f(x) if ®(t) = t. We prove (3.20) by considering two separate
cases: ¢ >2and 1 < g < 2.

Case 6 < p < oo, w€ Ap/; and ¢ > 2: In this case, 2 < p < oo and w € Ap/p. First
we consider the case p > 2. By duality, there is a function g € L(p/2),(w1_(p/2),) with
9l /2y wi-wr2y < 1 such that

AV}

keZ

ok+1 2

dt
— lg(x)| dz.

HRl t

L 000 (e o = 19000

By Lemma 2.11, we have

/S Q5 (&) (X f) (@ — t§)do (£) <C|\Q [ / (Xinf) (z — t&)Pdo(€). (3.21)
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Thus, by Fubini’s theorem and a simple change of variable we get

. 2 it dt
aenl,, < eXzil; [ S5 Ses@r [ [ lote v i0dote) Gz
b j kez "
< OY [ Xiws@)l M @)(-a)da
keZ
< C z:|Xl+kf|2 1M, ) r-twr2r - (3:22)
keZ p/2,w
Since w € A, /9, by the elementary properties of A,(R"), we have wlf(p/z), € A2y

Therefore, by the weighted LP (1 < p < o0) boundedness of the Hardy-Littlewood
maximal operator M* and the weighted Littlewood-Paley theory [16] we get

HRl(f)pr < Cpllll, £, for2<p<ocandwe Ayp(R").  (3.23)

Now, if p=2 and w € A;(R"), by Lemma 2.11 and the definition of A; weight we have

2

7ol =23 [ / 20 0 - i) Lty
gk+1

< CY |19l | X f (2 ( w(z + t&)do(§)— )

s oo ([
< OX [ s M @) (-o)ds

keZ

1/2||2
< (Z |Xl+k(f)|2>
keZ 2w
Thus, by the weighted Littlewood-Paley theory we get
|2, < 1l 111l forw e Av(R™). (3.24)

Case § <p<oo,we€ A,/5 and 1 < ¢ < 2: It is clear that ¢’ < p < oo, w € A,/ and
p > 2.
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As above, by duality, there is a function g € L®/ 2)'(w1—(p/2)’) and satisfies
HgH(p/2)/7w1—(p/2)’ < 1 such that

SOy

keZ

2

| ([ 00 i 16| Lo ae

By Lemma 2.11, Fubini’s theorem, the weighted Littlewood-Paley theory, and a change

of variable we obtain

. 2
|7,
2 ) ) dt
<O Y [ [ 10O 0 -0 Ol
kEZ snt
<OSNUS [| Knf@F Moo @0l
kez !
1/2
2
ST (Z|Xz+kf|> H @ (3.29
j keZ (p/2) \wt=®/2)
2 * ~
< CY NNl | M0 @) - (3.26)
J J (p/2) ,wi=(®/2)’
By applying Lemma 2.9, we now show that
2—q
e @] SO G20

¢ <p<ooandw € A,/,. To see this, let d = ¢/(2 — ¢q). Then we notice that 10,1779 e

,)1—(17/2)

LYS™Y, & = ¢/2, (w1—<P/2> = w € Ayy = Apye and (p/2) < d.

Therefore, d, (p/2)" and w!~®/2)" satisfy condition (b) in Lemma 2.9 and hence (3.27)
holds (see also [8] and [1]). The proof of Theorem 1.1 is complete. O

4. Further Results

Our chief concern in this section is to present some applications of Corollaries 1 and

2 and obtain several results concerning the weighted LP boundedness of singular integral
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operators Sq j, and the Marcinkiewicz integral operators g (see the definitions below).
The weighted LP boundedness of these operators have been studied extensively by a
number of authors under various conditions on Q and h (see, for example [8], [10], [15],
[19], [20]). We shall extend or strengthen the existing results by establishing weighted L?
bounds of these operators which are either that these results were previously unavailable
or were proved under strong conditions on €2 or h. Let us now describe our results. For

simplicity, let us only deal with the case ®(t) = ¢. The operators Sq 5, and ugq , are defined

as follows:
Sanf(z) = lim S© f(z) (4.1)
and
) 1/2
o Q' dt
pans@) = [T sw-n 2 Donhan| | (4.2
0 |Jist |yl
where

Qy')
ly|"

SE) f(x) = /| N flx—y) h(lyl)dy,

Q € L'(S™!) and satisfies the vanishing condition (1.1) and h is a measurable function
on (0, 00).

For v > 1, let A (R) denote the set of all measurable functions A on R such that

R 1/~
1 ~
sup —/|h(t)| dt < 0.
r>0 \ R
0
It is easy to verify that
L*RY) cA, (R")cA (RF) fory <7 (4.3)
and
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We notice that the maximal operator Mg is closely related to the singular integral
operator Sq ;. Let us now recall some known results. We start with some results on

singular integrals.

Theorem C [10] Suppose that h € L (RT) and Q € LI(S"™1) for some q > 1. Then
Sa,n is bounded on LP(w) if ¢ <p <oo,p# 1 andw € Ap/y.

For a special class of radial weights AP(R+), Duoandikoetxea used the method of

rotations and proved the following sharper result:

Theorem D [10] Ifw € A,(Ry) for 1 < p < oo, then Sq is bounded on LP(w)
provided that Q € Llog L (S™~').

In 1999, Fan-Pan-Yang improved the result in Theorem D and obtained the following;:

Theorem E [15] Ifh e A (RY) for somey > 2 and Q € H' (S" '), then Sq is

bounded on LP(w) fory <p < oo and w € 1211[7/7, (Ry).

Theorem F  Let 1 < g <00, 1<p< oo and S be the operator defined by (4.1) with
h=1 and Q € LI(S"™ 1) satisfying (1.2). Then Sq.1 is bounded on Lp(|x|a) if

max(—n,—1—(n—1)p/¢’) < a <min(n(p—1),p— 1+ (n — 1)p/q). (4.5)

Moreover, the range (4.5) is optimal.

This result was proved by Muckenhoupt and Wheeden in [20] and by Duoandikoetxea
[10] with a different proof. We notice that in the limit case ¢ = 1, the range in (4.5)
becomes a € (—1,p — 1). It is well-known that the theorem fails for some € L'(S"~1),
even in the unweighted case o = 0. However Theorem F remains true if « € (—1,p—1) and
Q € Llog L as pointed out in ([10], p. 880). In the ensuing development of this result, an

improvement was obtained by Fan-Pan-Yang in [15] as described in the following result:

Theorem G Ifh e A (R") for some~y > 2 and Q € H! (S"‘l) , then Sq 1, is bounded
on Lp(|x|a) fory <p<ooand a€ (—1,p/y —1).

In view of the above results, one is naturally led to the following question:
Question 1 Under the same condition on §2 and under a similar (or the same) condition

on w in Theorems C-F, does the LP (w) boundedness of the operator Sq still hold if
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h € A (R") for some 1 < v < oo in Theorems C and F and for some 1 < v < 2 in
Theorems E and G?

By applying Corollaries 1 and 2, we are able to get some progress in answering the

above question as described in the following results:

Theorem 4.1 Suppose that h € R(Ry) and Q € LI(S™™1) for some ¢ > 1. Then Sa

is bounded on LP(w) if p and w satisfy the same conditions as in Theorem 1.1.

Theorem 4.2 Ifh e R(Ry) and Q € H' (S"~ 1), then Sqp is bounded on LP(w) for
2<p<ooandw e 1211[7/2(R+).

Theorem 4.3 Let 1 < p < oo. Suppose that h € R(R) and Q € LI(S™~1) for some
g > 1. Then Sq p, is bounded on Lp(|x|a) if

max(—n, —1— (n —1)p/q¢’) < a <min(n(p —1),p— 1+ (n — )p/q’). (4.6)
Theorem 4.4 Ifh e R(Ry) and Q € H' (S"71), then Sq  is bounded on Lp(|x|a) for

2<p<ooandac(—1,p/2-1).

Proof of Theorems 4.1-4.4

There is no loss of generality to assume that h € R(R,) with |\hHL2(R+7dT/T) = 1.

Then we notice that

$Of@) = [ fla—y2W)

2 h(|y])dy,
. "

where h(|y]) = h(|y|)xe(|y|) is the characteristic function on the set {y € R™ : |y| > e} .

Since

7

L2(Ry ,dr/7) < HhHLz(R+,dr/r) =1,

by Corollaries 1 and 2 we get

501

<
pw

< Cp lf]

p,w —

p,w

sup |sg,hf|H ~ Mo
h pw
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with a C), independent of €. Passing to the limit as ¢ — 0, Fatou’s lemma gives

50,1 fll 0 < Coll £l

pw =
which completes the proofs of Theorems 4.1-4.4.

Now, let us see how we can apply Corollaries 1 and 2 to improve some results on the
Marcinkiewicz integral operator pqo . Let us first recall some known results. We start

with the following theorem due to Ding-Fan-Pan.
Theorem H [8] Suppose that h € L (RT) and Q € LY(S"1) for some ¢ > 1. Then
pa,n is bounded on LP(w) if ¢ < p < oo, and w € Ap/q.
Theorem I [19] Ifh e L™ (R*Y) and Q € H (S"™ ), then pq. is bounded on LP(w)
forl<p<ooandw € AZIJ(R_F).
Theorem J [12] Letl < g <o00,1<p<oo and uq, be the operator defined by (4.2)
with h =1 and Q € LY(S"™1). Then pq 1 is bounded on Lp(|x|a) if

max(—n,—1— (n—1)p/¢’) < @ <min(n(p —1),p— 1+ (n — 1)p/q’). (4.7)
In view of the above results, one is naturally led to the following question:

Question 2 Under the same condition on 0 and under a similar (or the same)
condition on w in Theorems H-J, does the LP (w) boundedness of the operator uq.p still
hold if h € A (R™) for some 1 <+ < oo in Theorems H-J?

By applying Corollaries 1 and 2, we are able to obtain some progress in answering

Question 2 as described in the following results:

Theorem 4.5 Suppose that h € R(Ry) and Q € LI(S™™1) for some q > 1. Then uq.n

is bounded on LP(w) if p and w satisfy the same conditions as in Theorem 1.1.
Theorem 4.6 Ifh € R(Ry) and Q € H' (S"7!), then pq p is bounded on LP(w) for
2<p<ooandw e 1211[7/2(R+).
Theorem 4.7 Ifh € R(Ry) and Q@ € H' (S"71), then pq.p is bounded on Lp(|x|a) for
2<p<ooand ae(—1,p/2—-1).
Proof of Theorems 4.5-4.7 By the argument in [2], we get

1
V2

Thus all the weighted results which hold to Mg also hold for g p. O

panf(x) < —=Maf(z).
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