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Local Fourier Bases and Modulation Spaces

Salti Samarah, Rania Salman

Abstract

It is shown that local Fourier bases are unconditional bases for modulation spaces.

We prove first a version of the Schur test for double sequence with mixed norm and

then use it to show boundedness of the analysis operator on the modulation space

Mw
p,q

Key Words: local Fourier bases, Schur test, mixed norm space, atomic decompo-

sition

1. Introduction

It is an important theme that “nice” functions are unconditional bases for some
function spaces. Results of this type are proven in several articles and in almost every
book on wavelets. In all those places, the results depend on the particular space and
the bases. In this paper we consider the spaces of modulation spaces Mw

p,q and the local
Fourier bases to be defined later.

In [16], Feichtinger, Gröchenig and Walnut proved that the Wilson bases of Daubbechies,
Jaffard and Journé constructed in [5] are unconditional bases for modulation spaces. Since
the Wilson bases are a special case of the local Fourier bases, we proved in [18] during
our work in nonlinear approximation problem that local Fourier bases are unconditional
bases for the modulation spaces Mw

p,p. In this paper we generalize this result to the case
Mw
p,q with p 6= q.
Let us start with some definitions and notations. If w is a weight function then the

weighted mixed-norm space Lp,qw (R2) is defined to be the space of all measurable functions
on R2 for which the following norm is finite:
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‖f‖Lp,qw =

(∫
R

(∫
R
|f(x, y)|pw(x, y)pdx

)q/p
dy

)1/q

, (1)

with the obvious modifications if p or q =∞, in which case we use the supremum.
If p = q, then Lp,qw (R2) coincides with Lpw(R2). It is known [3] that these spaces

are Banach spaces for p, q ≥ 1 and quasi-Banach spaces for 0 < p, q < 1. If Λ1

and Λ2 are two countable index sets, then `p,q(Λ1 × Λ2) is the space of all sequences
c = (cij)(i,j)∈Λ1×Λ2 ⊆ IC such that

‖c‖`p,q =
(∑
i∈Λ1

∑
j∈Λ2

|cij|p
q/p )1/q

<∞.

If w′ is the restriction of w to the set Λ1 × Λ2, then `p,qw′ (Λ1 × Λ2) is

{c = (cij)i∈Λ1,j∈Λ2 : ‖c‖`p,q
w′

= ‖cw′‖p,q <∞}.

The Hölder inequality for double sequences with discrete mixed-norm is given as
follows
If a ∈ `p,qw and b ∈ `p′,q′

1/w
, 1 < p, p′, q, q′ <∞, 1

p
+ 1

p′ = 1, 1
q

+ 1
q′ = 1, then∣∣∣∣∣∑

Z2

aαβbαβ

∣∣∣∣∣ ≤ ||a||`p,qw ||b||`p′,q′1/w
. (2)

The Minkowski’s inequality is given by∑
β

∣∣∣∣∣∑
α

aαβ

∣∣∣∣∣
p
1/p

≤
∑
α

∑
β

|aαβ|p
1/p

(3)

for 1 ≤ p <∞ These inequalities will be used later.

2. The Modulation Spaces

In this section we collect some facts about the short-time Fourier transform (STFT)
such as its definition and a pointwise estimation. We also give some results on modulation
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spaces needed for the subject. Let S be the Schwartz space of smooth functions with rapid
decay, and let S′ be the space of tempered distributions. Also let

Txf(t) = f(t − x) and Myf(t) = e2πiytf(t) (4)

be the operators of translation and modulation by x, y ∈ R. Then the STFT of f ∈ S′
with respect to the window g ∈ S is defined to be

Sgf(x, y) = 〈f,MyTxg〉 =
∫
R
f(t)g(t − x)e−2πiytdt (5)

for all x, y ∈ R. In this paper we consider the weighted mixed norm of the function
Sgf(x, y) which induces a norm on f and obtain the so-called modulation spaces. These
spaces are a mathematical tool to measure the joint time-frequency distribution of tem-
pered distribution, and they are defined by the decay properties of the STFT. To define
these spaces we consider moderate weights, i.e. non-negative continuous functions satis-
fying

w(x+ y) ≤ C(1 + |x|)aw(y) for x, y ∈ R, (6)

for some constants C > 0, a ≥ 0. The modulation space Mw
p,q for 0 < p, q ≤ ∞ is the

space of all tempered distribution f for which the norm

‖f‖Mw
p,q

=

(∫
R

(∫
R
|Sgf(x, y)|p(w(x, y))p dx

)q/p
dy

)1/q

(7)

is finite. For p or q = ∞, we use the supremum. If p = q we write Mw
p , and if w is

constant then we write Mp,q . These spaces were defined by Feichtinger and most of their
properties were established (see [7, 10, 11, 15]). Mw

p,q are Banach spaces for 1 ≤ p, q ≤ ∞
and quasi Banach spaces for 0 < p, q < 1 whose definition is independent of the window
g (see [14, 20]). This means that different windows define the same space and yield

equivalent norms. Recall that the dual space of Mw
p,q is the space M1/w

p′,q′ where 1
p

+ 1
p′ = 1

and 1
q

+ 1
q′ = 1

Examples of modulation spaces:

1. Feichtinger’s Segal algebra S0(R) = M1,1 [8].

2. M2,2(R) = L2(R).
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3. The Bessel potential space Hs = Mw
2 , where w(x, y) = (1 + |y|2)s/2.

The modulation spaces have nice atomic decomposition. Given ϕ ∈ S there exist β > 0
and γ > 0 small enough and a dual window ϕ◦ ∈ S, independent of 1 ≤ p, q ≤ ∞ and w

such that every f ∈ S′ has an expansion

f =
∑
m,n∈Z

〈f, TβmMγnϕ
◦〉TβmMγnϕ. (8)

Moreover, f ∈Mw
p,q if and only if

(∑
m∈Z

(∑
n∈Z
|〈f, TβmMγnϕ

◦〉|pw(βm, γn)p
)q/p)1/q

<∞ (9)

and the sequence space norm in ( 9) is equivalent to the Mw
p,q-norm. If 1 ≤ p, q < ∞,

then the so-called Gabor expansion (8) converges unconditionally in the norm of Mw
p,q.

(see [7, 13, 17]).
Next we mention a pointwise estimate of STFT of elements of the set C defined by

C = C(M,K,N) = {g ∈ CN (R) : supp g ⊆ [−K,K], max
k=0,1,...,N

‖g(k)‖1 ≤M}, (10)

Lemma 1 [18, 19] Let ϕ ∈ C∞(R), supp ϕ ⊆ [−L, L], and C = K + L. Then

sup
g∈C
|Sϕg(x, y)| ≤ C0

1
(1 + |y|)N χ[−C,C](x) for all x, y ∈ R , (11)

with a constant C0 > 0 depending only on M,K,N .

3. Local Fourier Bases

One way to study a signal is to focus on its local properties. In mathematical language
this means that if we are given a function f on R, we divide R into intervals Ij = [αj, αj+1]
with −∞ < . . . < αj < αj+1 < . . . < ∞ and study χIjf . An example of a complete
orthonormal system for L2[αj, αj+1] is

ϕj,k(x) =

√
2
|Ij|

χIj (x) sin
2k + 1

2
π

|Ij|
(x− αj),
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where k ranges through the non-negative integers Z+. If j ranges through the integers
Z, then we obtain a basis for L2(R). Such systems are appropriate for focusing on
local properties but not for global properties due to the abrupt ”cutoff” effected by
multiplication by the characteristic function χIj . In [4], Coifman and Meyer introduced
orthonormal bases of this type that involve an arbitrary smooth cut off. In [1] Auscher,
Weiss and Wickerhauser constructed such bases by introducing the bell function bIj using
projections such that the set{√

2
αj+1 − αj

bIj(x) sin
2k + 1

2
π

αj+1 − αj
(x− αj), j ∈ Z, k ∈ N

}

is an orthonormal basis for L2(R). Other forms are also given in [1]. The main property
of such bases is for any N ∈ N ∪ {∞} there exists a bell function bj ∈ CN(R) with
support in [αj − εj, αj+1 + εj+1] such that these sets are orthonormal bases for L2(R),
where εk ≥ ε > 0. If ∆k = αk+1 − αk and {εk : k ∈ Z} is the accompanying sequence,
then these formes are written [18] as

1
2

(
2

∆k

)1/2

Tαk

(
M l

2∆k
±M −l

2∆k

)
gk, (12)

or

1
2

(
2

∆k

)1/2

Tαk

(
M l− 1

2
2∆k

±M
− l−

1
2

2∆k

)
gk, (13)

where My and Tx are as in (4) and supp gk ⊆ [−εk, αk+1− αk + εk+1].
In what follows, we work with the structure (12) since the other is similar, and it

requires only replacing l by l − 1
2 .

4. Unconditional bases For Modulation Spaces

In this section we prove that local Fourier bases are unconditional bases for modulation
spaces Mw

p,q.

Definition 1 . A set {ei, i ∈ I} of vectors in a Banach space B is an unconditional
basis, if
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(1) the finite linear combinations of the ei’s are dense in B, and if
(2) there exists a constant C ≥ 1, such that

‖
∑
i∈F

ciλiei‖ ≤ C sup
i
|λi| ‖

∑
i∈F

ciei‖

holds for any finite subset F ⊆ I and any sequence (λi) ⊆ IC.

Theorem 1 Suppose that {ψkl, (k, l) ∈ Z × N} ⊆ CN (R) is a local Fourier base whose
underlying partition satisfies 1

A
≤ αk+1 − αk ≤ A, A > 1, and infk εk = ε > 0. If w is a

weight function on R2 for N > q
p + a, 0 < p ≤ q < ∞, then {ψkl} is an unconditional

basis for Mw
p,q. Every distribution f ∈ Mw

p,q has a unique expansion

f =
∑

(k,l)∈Z×N
〈f, ψkl〉ψkl (14)

with unconditional convergence in the norm of Mw
p,q. Moreover,

1
C
‖f‖Mw

p,q
≤

∑
k∈Z

(∑
l∈N
|〈f, ψkl〉|pw(αk,

l

2∆k
)p
)q/p1/q

≤ C‖f‖Mw
p,q

(15)

for some constant C > 0. If p = q =∞, then {ψkl} is a weak basis, that is, the expansion

(14) converges only in the weak∗-topology with respect to the predual M1/w
1,1 .

Since the Wilson bases are a special case of local Fourier bases [1], then this theorem
covers the results given in [16]. the following two corollaries.

Corollary 1 The Wilson basis of exponential decay constructed in [5] is an unconditional
basis for Mw

p,q for 0 < p ≤ q <∞.

Corollary 2 (see [18]) Any local Fourier basis in CN(R) is an unconditional bases for
S0, if N > 1 and Hs if s < N − 1.

To prove Theorem 1 we use the pointwise estimate for the STFT given in Lemma 1.
We consider

the set of windows given by

C = C(M,K,N) = {g ∈ CN(R) : sup g ⊆ [−K,K], max
k=0,1,... ,N

‖g(k)‖1 ≤M}.
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The explicit construction of the bell functions of a local Fourier basis leads to the following
consequence.

Lemma 2 [18] If 1
A
≤ αk+1 − αk ≤ A and if εk ≥ ε > 0 for all k ∈ Z, then

{gk = T−αkbk, k ∈ Z} ⊆ C(M,K,N)

for some M,K, and N .

To prove Theorem 1 so we shall extend the orthonormal expansion (14) from L2(R) to
the modulation spaces Mw

p,q. For this purpose we study the action of certain associated
operators.

The analysis operator τ is defined by

τf = (〈f, ψkl〉)(k,l)∈I . (16)

Since {ψkl, (k, l) ∈ I} is an orthonormal basis, τ is well defined and maps L2(R) onto `2(I).
The formal adjoint is the synthesis operator τ∗ which acts on “sequences” c = (ckl)(k,l)∈I
as

τ∗((ckl)k,l∈I ) =
∑

(k,l)∈I
cklψkl. (17)

The next two propositions show that both operators extend to other function or
sequence spaces. We write

ηkl = (αk,
l

2∆k
), (k, l) ∈ Z2,

for the points in the time-frequency plane associated to ψkl, and for a given weight
function w, w′ denotes its restriction w′(k, l) = w(ηkl) to the discrete set {ηkl}. Then
`p,qw′ (I) consists of all sequences on I for which

‖c‖p,q,w′ =
(∑

k

(∑
l

|ckl|pw(ηkl)p
)q/p)1/q

<∞ .

We first prove an estimate for the STFT of a local Fourier bases
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Lemma 3 [18, 19] Using the notation of Lemma 1, set

G(x, y) = χ[−C,C](x)
1

(1 + |y|)N .

If {ψkl, (k, l) ∈ I} ⊆ CN(R) is a local Fourier bases which satisfies the assumptions of
Theorem 1, then there exists C1 > 0, such that

|Sϕψkl(x, y)| ≤ C1(TηklG(x, y) + Tηk,−lG(x, y)) for all x, y ∈ R . (18)

To prove that τ is bounded, we prove first a weighted version of Schur’s Test.

5. A Schur Test For Discrete Weighted Mixed-Norm Spaces

In this section, we prove a version of Schur’s test for discrete weighted mixed-norm
spaces `p,qw . Precisely, we prove that ifA = (a(i,j),(k,l))i∈I,j∈J,k∈K,l∈L is an infinite matrix,
then under some certain conditions the map A from `wp,q1

to `wp,q2
is bounded.

Lemma 4 Suppose that w1(k, l) and w2(i, j) are two weight functions on the index sets
K ×L and I ×J respectively, and let A = (a(i,j),(k,l))i∈I,j∈J,k∈K,l∈L be an infinite matrix
such that ∑

k∈K

∑
l∈L
|a(i,j),(k,l)|w1(k, l)−1 ≤ C◦w2(i, j)−1 <∞ for all i ∈ I, j ∈ J (19)

and

∑
i∈I

(∑
J∈J
|a(i,j),(k,l)|q/pw2(i, j)q/p

)p/q
≤ C1w1(k, l)ϕ(k) <∞ for all k ∈ K, l ∈ L (20)

for some constants C◦, C1 > 0 and some sequence ϕ(k) ∈ `u. If 1 ≤ p ≤ q < ∞ and
u = q

q−p , then the map A is bounded from `p,qw1
(K × L) into `p,qw2

(I × J).

Proof. The case p = q is treated in [18], so we study the case p 6= q. Let c = (ckl) be
an element in `p,qw1

, and let 1 < p′ <∞ with 1
p + 1

p′ = 1, then we estimate ‖Ac‖q
`p,qw2

using
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Hölder inequality (2), viz

‖Ac‖q
`p,qw2

=
∑
j

(∑
i

∣∣∣∣∣∑
k

∑
l

a(i,j),(k,l)ckl

∣∣∣∣∣
p

w2(i, j)p
)q/p

≤
∑
j

{∑
i

w2(i, j)p
(∑

k

∑
l

∣∣a(i,j),(k,l)ckl
∣∣)p}q/p

=
∑
j

{∑
i

w2(i, j)p
(∑

k

∑
l

∣∣a(i,j),(k,l)

∣∣ 1
p+ 1

p′ |ckl|w1(k, l)
1
p′ −

1
p′

)p}q/p

≤
∑
j

{∑
i

w2(i, j)p
(∑

k

∑
l

∣∣a(i,j),(k,l)

∣∣ |ckl|pw1(k, l)
p

p′

)

·
(∑

k

∑
l

∣∣a(i,j),(k,l)

∣∣w1(k, l)−1

) p

p′

q/p

≤
∑
j

{∑
i

w2(i, j)pC
p

p′
◦ w2(i, j)−

p

p′
∑
k

∑
l

∣∣a(i,j),(k,l)

∣∣ |ckl|pw1(k, l)
p

p′

} q
p

= C
q
p′
◦
∑
j

{∑
i

w2(i, j)
∑
k

∑
l

∣∣a(i,j),(k,l)

∣∣ |ckl|pw1(k, l)
p

p′

}q/p

where we used Hölder inequality (2) in the third inequality and condition (19) in the
fourth inequality. Now we write ‖Ac‖q

`p,qw2
in the form

(
‖Ac‖q

`p,qw2

)p/q
≤ Cp/p

′
◦

∑
j

{∑
k

∑
l

∑
i

∣∣a(i,j),(k,l)

∣∣w2(i, j)|ckl|pw1(k, l)
p

p′

}q/pp/q

.
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Using Minkowski’s inequality (3) twice, we get

‖Ac‖p
`p,qw2

≤ C
p/p′
◦

∑
k

∑
j

{∑
l

∑
i

∣∣a(i,j),(k,l)

∣∣w2(i, j)|ckl|pw1(k, l)
p

p′

}q/pp/q

≤ C
p/p′
◦

∑
k

∑
l

∑
i

∑
j

{∣∣a(i,j),(k,l)

∣∣w2(i, j)|ckl|pw1(k, l)
p

p′
}q/pp/q

= C
p/p′
◦

∑
k

∑
l

|ckl|pw1(k, l)
p

p′
∑
i

∑
j

∣∣a(i,j),(k,l)

∣∣q/pw2(i, j)q/p

p/q

.

Now, using condition (20), we have

‖Ac‖p
`p,qw2

≤ C
p/p′
◦ C1

∑
k

∑
l

|ckl|pw1(k, l)
p

p′ +1
ϕ(k)

= C
p/p′
◦ C1

∑
k

∑
l

|ckl|pw1(k, l)pϕ(k).

Since p
q + q−p

q = 1, we apply Hölder inequality and get

‖Ac‖p
`p,qw2
≤ Cp/p

′
◦ C1

∑
k

(∑
l

|c(k,l)|pw1(k, l)p
)q/pp/q

·
(∑

k

ϕ(k)
q
q−p

) q−p
q

.

Therefore

‖Ac‖`p,qw2
≤ C1/p′

◦ C
1/p
1 ‖c‖`p,qw1

‖ϕ(k)‖1/p`u
<∞

2

The boundedness of the analysis operator is the content of the following proposition.

Proposition 1 . Under the hypotheses of Theorem 1, τ is a bounded operator from Mw
p,q

into `p,qw′ (I) for 1 ≤ p, q ≤ ∞.

The proof of this proposition is based the Schur test as well as the following lemma
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Lemma 5 Let φ(k) = (
∑

l(1 + C + |γn − ±l
2∆k
|)aq/p(1 + | ±l2∆k

− γn|)−Nq/p)p/q ,

and N > q
p + a, 1

A < ∆k < A, A ≥ 1.if u = q
q−p for 1 ≤ p ≤ q Then φ(k) ∈ `u.

Proof. Since u = q
q−p then u′ = q

p where 1
u + 1

u′ = 1.
Now

‖φ‖`u =
(∑

k

(∑
l

(1 + C + |γn − ±l
2∆k
|)aq/p(1 + | ±l

2∆k
− γn|)−Nq/p

) p
q−p
) q−p

q

=
∥∥∥∥(1 +C + |γn − ±l

2∆k
|)a(1 + | ±l

2∆k
− γn|)−N

∥∥∥∥
u′,u

≤
∥∥∥∥(1 +C + |γn − ±l

2∆k
|)a(1 + | ±l

2∆k
− γn|)−N

∥∥∥∥
1,u

=
(∑

k

(∑
l

(1 + C + |γn − ±l
2∆k
|)a(1 + | ±l

2∆k
− γn|)−N

) q
q−p
) q−p

q

=
∥∥∥∥∑

l

(1 + C + |γn − ±l
2∆k
|)a(1 + | ±l

2∆k
− γn|)−N

∥∥∥∥
`u

≤
∥∥∥∥∑

l

(1 + C + |γn − ±l
2∆k
|)a(1 + | ±l

2∆k
− γn|)−N

∥∥∥∥
`1

=
∑
k

∑
l

(1 + C + |γn − ±l
2∆k
|)a(1 + | ±l

2∆k
− γn|)−N .

The last equality is less than

sup
k

∑
l

(1 + C + |γn − ±l
2∆k
|)a(1 + | ±l

2∆k
− γn|)−N ,

(see [18]) and since N > q
p + a > 1 + a, 1

A < ∆k < A, A ≥ 1. Then

‖φ‖`u <∞,

which implies that. φ ∈ `u 2

Now we prove proposition 1.
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Proof. The cases p = q = 1 and p = q =∞ are treated in [18, 19]. For 1 ≤ p ≤ q <∞,
we use lemma 4.

Given ϕ ∈ C∞ with compact support and β, γ small enough, there exists [17] a dual
window ϕ◦ ∈ S, such that every f ∈ S′ has an atomic decomposition

f =
∑
m,n∈Z

〈f, TβmMγnϕ
◦〉TβmMγnϕ ,

with f ∈ Mw
p,q, if and only if

(∑
m∈Z

(∑
n∈Z
|〈f, TβmMγnϕ

◦〉|pw(βm, γn)p
)q/p)1/q

<∞.

Then

(τf)kl =
∑
m,n

〈f, TβmMγnϕ
◦〉〈TβmMγnϕ, ψkl〉 .

Therefore the proposition is proved if we can show that the map defined by the matrix

A(k,l),(m,n) = 〈TβmMγnϕ, ψkl〉

maps the sequence

cmn = 〈f, TβmMγnϕ
◦〉 ∈ `p,qw1

(Z2), w1(m, n) = w(αm, γn)

into `p,qw′ (I), w
′(k, l) = w(ηkl). For this it is enough to verify the conditions of Schur’s

test. Since the first condition is similar to the first condition in [18], it is enough to verify
the second condition of Schur’s test. We write (6) in the form

w(αk,
±l

2∆k
) ≤ w(βm, γn)

(
1 + |αk − βm| + |

±l
2∆k

− γn|
)a

. (21)

Now, using this inequality, we estimate the sum

Σ =
∑
k∈N

(∑
l∈Z
|〈TβmMγnϕ, ψkl〉|q/pw(αk,±

l

2∆k
)q/p

)p/q
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as

Σ≤
∑
k∈Z

(∑
l∈Z
|〈TβmMγnϕ, ψkl〉|q/pw(βm, γn)q/p

·
(

1 + |αk − βm| + |
±l

2∆k
− γn|

)aq/p)p/q

≤C1w(βm, γn)
∑
k∈Z

(∑
l∈Z

(
G(βm− αk, γn −

l

2∆k
) + G(βm− αk, γn +

l

2∆k
)
)q/p

·
(

1 + |αk − βm| + |
±l

2∆k
− γn|

)aq/p)p/q

≤C1w(βm, γn)
∑
k∈Z

(∑
l∈Z

(
2 sup

k
{G(βm−αk, γn−

l

2∆k
), G(βm−αk , γn+

l

2∆k
)}
)aq/p

·
(

1 + |αk − βm| + |
±l

2∆k
− γn|

)aq/p)p/q
.

Since |βm− αk| ≤ C and

G(βm− αk, γn−
±l

2∆k
) ≤ χ[−C,C](βm − αk) · (1 + | ±l

2∆k
− γn|)−N ,

we have

Σ ≤ 2a+1C1C
aw(βm, γn)

∑
k∈Z

(∑
l∈Z

(1 +C + |γn− ±l
2∆k
|)aq/p(1 + | ±l

2∆k
− γn|)−Nq/p

)p/q
.

Since 1
A
≤ αk+1 − αk ≤ A, A > 1, we have

Σ ≤ 2a+1C1C
aw(βm, γn)

∑
k

(∑
l

(1 +C + |γn− ±l
2∆k
|)aq/p(1 + | ±l

2∆k
− γn|)−Nq/p

)p/q
.

Let φ(k) = (
∑

l(1 + C + |γn − ±l
2∆k
|)aq/p(1 + | ±l

2∆k
− γn|)−Nq/p)p/q. Then by using

lemma 5 we conclude that (φ(k))) is in `u. and we have the second condition of lemma
4. 2

The following proposition is proved in [18] for Mw
p,q , p = q, We prove it for Mw

p,q , p 6= q

for convenience.

459



SAMARAH, SALMAN

Proposition 2 The map τ∗ is a bounded map from `p,qw′ into Mw
p,q for 1 ≤ p ≤ q ≤ ∞.

Proof. Assume that p, q < ∞, and let c = (ckl)(k,l)∈I be finitely supported. If

h ∈M1/w
p′,q′ , the dual of Mw

p,q, then proposition 1 implies∣∣∣∣∑
k,l

〈cklψkl, h〉
∣∣∣∣ = |

∑
k,l

ckl(τh)kl| ≤ ‖c‖`p,q
w′
‖(τh)‖

`p
′,q′

1/w′
≤ ‖c‖`p,q

w′
‖τ‖op‖h‖M1/w

p′,q′

Hence the estimates

‖τ∗c‖Mw
p,q

= ‖Mw
p,q

sup
‖h‖

M
1/w
p′,q′
≤1

|
∑
k,l

〈cklψkl, h〉| ≤ ‖c‖`p,q
w′
‖τ‖op

show that τ∗ is bounded on `p,qw′ where ‖.‖op is the operator norm.
Furthermore, for any ε > 0 there exists a finite subset Fε ⊆ I, such that

‖
∑
(k,l)

cklψkl‖Mw
p,q
≤ ‖τ‖op

∑
k

(∑
l

|ckl|pw(ηkl)p
)q/p1/q

< ε

where (k, l) /∈ F , for all finite subsets F ⊇ Fε. This means that τ∗c converges uncondi-
tionally.

If p =∞ or q =∞, then taking the supremum over M1/w
1 shows that τ∗ is bounded

on Mw
∞,∞ and that sum is w∗-convergent. 2

Proof of Theorem 1:
Since τ and τ∗ are bounded on Mw

p,q and `p,qw′ , the identity

f =
∑
k,l

〈f, ψkl〉ψkl = τ∗τf (22)

extends from L2(IR) to Mw
p,q , 1 < p, q <∞, with unconditional convergence of the series

(22). Thus finite linear combinations are dense in Mw
p,q . The norm equivalence (15)

follows from

‖f‖Mw
p,q
≤ ‖τ∗‖op ‖(〈f, ψkl〉)(k,l)∈I‖`p,q

w′
≤ ‖τ∗‖op‖τ‖op ‖f‖Mw

p,q
.

Furthermore, since in a (finite) linear combination f =
∑

k,l cklψkl the coefficients are
uniquely determined as

ckl = 〈f, ψkl〉 = (τf)kl,
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we can estimate

‖
∑
k,l

λklcklψkl‖Mw
p,q

= ‖τ∗(λklckl)‖Mw
p,q

≤ ‖τ∗‖op ‖(λklckl)(k,l)‖`p,q
w′

≤ ‖τ∗‖op‖λ‖∞‖c‖`p,q
w′

≤ ‖τ∗‖op ‖λ‖∞‖ ‖τ‖op ‖f‖Mw
p,q
,

where λ = (λk,l)(k,l)∈I and c = (ckl)(k,l)∈I . This shows that {ψkl, (k, l) ∈ I} is an
unconditional basis for Mw

p,q . Therefore, Theorem 1 is proved in a general case. (See [18])
2

Remark 1 We can get all result in [18] if we take p = q, and φ(k) = 1, Note that the
conditions in lemma 4 becomes exact conditions in Schur test in [18]; and proposition (1,
2) becomes proposition 1 , 2 in [18].
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[12] Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations

and their atomic decompositions, II, Monatsh. Math. 108, 129-148 (1989).
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[14] Feichtinger, H.G., Gröchenig, K.: Gabor Wavelets and the Heisenberg Group: Gabor

expansions and Short Time Fourier Transform from the Group Theoretical Point of View,

In “Wavelets- A Tutorial in Theory and Applications”, C. K. Chui, ed., Academic Press,

(1992).
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