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Estimates for Fourier Transform of Measures

Supported on Singular Hypersurfaces

Isroil A. Ikromov∗

Abstract

We consider hypersurfaces S ⊂ IR3 with zero Gaussian curvature at every ordi-

nary point with surface measure dS and define the surface measure dµ = ψ(x)dS(x)

for smooth function ψ with compact support. We obtain uniform estimates for the

Fourier transform of measures concentrated on such hypersurfaces. We show that

due to the damping effect of the surface measure the Fourier transform decays faster

than O(|ξ|−1/h), where h is the height of the phase function. In particular, Fourier

transform of measures supported on the exceptional surfaces decays in the order

O(|ξ|−1/2) (as |ξ| → +∞).

Key Words: Oscillatory Integrals, oscillation index, singular hypersurfaces, curva-

ture.

1. Introduction

It is well-known that the Lp−estimates of the maximal operators associated to hyper-
surfaces in Euclidean spaces are strongly related to the decay of the Fourier transform of
measures carried on S, i.e. to oscillatory integrals of the form

dµ̂(ξ) =
∫
S

ei(ξ,x)ψ(x)dS(x), (1.1)

where dµ = ψ(x)dS(x) is a compactly supported density on S, (x, ξ) is the inner product
of the vectors x and ξ.
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Uzbekistan, grant No. 1.1.13 and Foundation of Academy of Sciences of Uzbekistan, grant no. 76-06.
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The decay of the oscillatory integral (1.1) as |ξ| → ∞, in return, is connected to
geometric properties of the surface S and may be very complicated depending on the
direction of ξ. The problem on the decay of such oscillatory integrals has been considered
by various authors, including van Der Corput [25], E. Hlawka [8], C.S. Hertz [7], W.
Littman [14], B. Randol [17], [18], I. Svenson [24], A. Varchenko [26], C.D. Sogge, E.M.
Stein [23], J.J. Duistermaat [5], Colin de Verdier [3]. We refer the reader to [23] for
references, also to results on maximal operators associated to surfaces.

On the other hand some problems of mathematical physics are connected to uniform
estimates of the oscillatory integrals (1.1) [21].

An optimal uniform estimates for oscillatory integrals (1.1) in the case dim(S) = 1
were obtained by B. Randol [17], and for analytic hypersurfaces in the case dim(S) = 2
were obtained by A.N. Varchenko and V.N. Karpushkin [13], [26]. The optimal estimates
based on decomposition of the phase function were obtained by H. Schulz [19] (see also
[18], [12]) in the case of convex smooth finite type hypersurfaces.

In this paper we consider the problem on a behavior of dµ̂(ξ) in a special case, when
S ⊂ IR3 has zero Gaussian curvature at every ordinary point. Such hypersurfaces may
have singularities.

It is well-known that the hypersurfaces in IR3 with zero Gaussian curvature in general
may be cylindric, cone or ruled surface. We define ruled surface as a tangent space to a
space curve [22].

Following [9], [10] we define ruled surfaces. Let γ : (IR, 0) �→ IR3 be a germ of C∞

parametrized space curve at the origin of IR . Representing γ as
x(t) = (x1(t), x2(t), x3(t)), we say that γ is of finite type at 0 if the infinite number
of vectors x′(0), x

′′
(0), . . . generate the three dimensional space. Then for some affine

coordinates and for some positive integers m, n, k the curve γ is written in the form

x1(t) = tmg1(t), x2(t) = tm+ng2(t), x3(t) = tm+n+kg3(t),

where g1, g2, g3 are smooth functions and g1(0) = g2(0) = g3(0) = 1. The triplet
(m,m+n,m+n+k) is independent of the choice of affine local coordinates, and is called
the type of the curve-germ γ : typ(γ) = (m,m + n,m+ n + k). Notice that if a curve
germ does not have an infinite tangency with any affine plane, then it is of finite type.

A type of space curve-germ is called smoothly determinative (respectively topologi-
cally determinative) if it determines the tangent developable up to local diffeomorphism
(respectively local homeomorphism).
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Recently, the list of developable surfaces has been given by G. Ishikawa [9],[10],
continuing the results of O.P. Shcherbak [19]. We consider estimates for Fourier transform
of Borel’s measures associated to hypersurfaces with zero Gaussian curvature. In this case
there is a finite list of smoothly determinative singularities, namely (1, 2, 2 + k)(k ≥ 1)
type surfaces and exceptional surfaces of types (2, 3, 4), (1, 3, 4), (3, 4, 5) and (1, 3, 5). It is
interesting that, although the phase function associated to exceptional singularities has
degenerate singularities depending on their types, oscillatory integrals with this phase
function decays faster due to the damping effect of the surface measure.

More precisely, it should be noted that in the case (1, 2, 2 + k), the optimal form of

decay is defined by “height” h of the phase function and it has the form O(|ξ|− 1
h ). But

in the exceptional cases the decay of oscillatory integrals more faster than O(|ξ|− 1
h ).

The main results of this paper are the following statements.

Theorem 3.1 Let γ be a smooth curve-germ at zero of type (m,m+n,m+n+k). Then
there exists a neighborhood U of the origin such that for any ψ ∈ C∞

0 (U) the estimate

|J(ξ)| ≤ c‖ψ‖C1

(1 + |ξ|)β

holds, where β = min{ 1
2 ,

n
n+k} and ‖ · ‖C1 is the norm of the space of continuous

differentiable functions.
Note that the exponent β in the Theorem 3.1 is optimal.

Corollary 3.2 1) If S is a developable hypersurface of type (1, 2, 2+ k)(k ≥ 1). then for
the oscillatory integral J the estimate

|J(ξ)| ≤ C‖ψ‖C1

(1 + |ξ|) 1
k+1

holds;
2) If the hypersurface has one of the types (2, 3, 4), (1, 3, 4), (3, 4, 5), or (1, 3, 5) then for
any ψ ∈ C∞

0 (IR3) the following estimate

|J(ξ)| ≤ C‖ψ‖C1

(1 + |ξ|)1/2

holds.
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Note that in the case of hypersurfaces of types (2, 3, 4) and (3, 4, 5), the ”height” h of
phase functions is 2 by Varchenko terminology . But in the case (1, 3, 4) h = 3, and in
the other case (1, 3, 5) h = 4. Nevertheless, the associated oscillatory integrals decay in

the order O(|ξ|−1
2 )(as |ξ| → ∞).

The paper is organized as follows. In Section 2 we consider estimates for oscillatory
integrals and also we consider some auxiliary statements about Lebesgue measure of
sublevel sets. In Section 3 we consider some applications of results of the Section 2. In
particular, we prove our main theorem. The Section 4 is devoted to estimates for Fourier
transform of measures supported on the cone surfaces.

2. Estimates for Oscillatory Integrals with Smooth Phases

In this section we consider oscillatory integrals having the form

J(λ, s) =
∫

IR2
eiλ(yp(x,s)+g(x,s))|y|a(x, y, s)dxdy,

where p(x, s) is the polynomial function in the form

p(x, s) = xn+1 + s1xn−1 + · · ·+ sn−1x+ sn,

where g(x, s) is a smooth function and a is a smooth function with compact support.

Theorem 2.1 Let U × V be a bounded neighborhood of the origin in IR2 × IRn. There
exists a constant C such that for any a ∈ C∞

0 (U × V ) the estimate

|J(λ, s)| ≤ C‖a(., s)‖C1(U)

|λ| 1
n+1

holds.
If g is an analytic function and the amplitude function is smooth then the result follows

from Karpushkin’s theorem on uniform estimates for two-dimensional oscillatory integrals
[13]. We give more elementary proof of Theorem 2.1 for a wider class of amplitude
functions.

Lemma 2.2 There exists a constant C such that for any λ �= 0 and s ∈ V ⊂ IRn the
following inequality

J1 =
∫
{x: |λp(x,s)|>1}

dx

|p(x, s)| ≤ C|λ|
n

n+1
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holds.

Proof of Lemma 2.2 We prove Lemma 2.2 by the induction method over n. If n = 1
then we deal with the integral

∫
{x: |λ(x2+s1)|>1}

dx

|x2 + s1 |
.

Let’s note that if s1 ≥ 0 then we have

∫
{x: |λ(x2+s1)|>1}

dx

|x2 + s1|
≤

∫
{x: |λx2|>1}

dx

x2
= 2|λ|1/2.

Further, assume that s1 < 0. In this case we use the change of variables x = |s1|1/2y
and obtain

∫
{x: |λ(x2+s1)|>1}

dx

|x2 + s1|
=

1
|s1|1/2

∫
{y: |λs1(y2−1)|>1}

dy

|y2 − 1| .

First, we consider the case |λs1| < 1
3
. If |λs1| < 1

3
then, straightforward computations

show that
1

|s1|1/2
∫
{y: |λs1(y2−1)|>1}

dy

|y2 − 1| ≤ 4|λ|1/2.

Suppose 1
3 < |λs1| < 4. In this case the last integral has an upper bound c|s1|−1/2.

This bound gives a required estimate for our integral.
Finally, we consider the case |λs1| > 4. Then it is easy to show that the following

estimate ∫
{y: |λs1(y2−1)|>1}

dy

|y2 − 1| ≤ C log(|λs1|)

holds. From the last inequality the required estimate follows immediately. Thus, we
obtain the inequality ∫

{x: |λ(x2+s1)|>1}

dx

|x2 + s1|
≤ C|λ|1/2.

In other words, we get the conclusion of Lemma 2.2 in the case n = 1.
From now, we suppose that n ≥ 2 and the conclusion of Lemma 2.2 is fulfilled for any

k ≤ n− 1. We shall prove it for the case k = n.
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First, we introduce a number ρ defined by

ρ := ρ(s) = |s1|
n+1
2 + |s2|

n+1
3 + · · ·+ |sn|.

Let us use a change of variables x = ρ
1

n+1 y in the integral J1 and obtain

J1 =
1

ρ
n

n+1

∫
{y: |λρp(y,ξ)|>1}

dy

|p(y, ξ)| ,

where ξk = sk

ρ
k+1
n+1

, k = 1, n.

We introduce the so-called quasisphere Σ by Σ := {s ∈ IRn : ρ(s) = 1}. So, ξ ∈ Σ.
Since Σ is a compact set there exists a number N and a function ϕ(y, ξ) defined on the

set {|y| > N}×Σ such that p(y, ξ) = yn+1ϕ(y, ξ). Moreover, there exist positive numbers
C1, C2 such that for any (y, ξ) ∈ {|y| > N} × Σ the inequalities C1 ≤ ϕ(y, ξ) ≤ C2

hold. Note that if ε is a sufficiently small positive number then we have the inclusion
{y : ε|p(y, ξ)| > 1} ⊂ {|y| > N} ×Σ.

Consequently, if ε is a sufficiently small positive real number, then for |λρ| < ε we get
the estimate

∫
{|y:λρp(y,ξ)|>1}

dy

|p(y, ξ)| ≤
∫
{y:C1|λρyn+1|>1}

dy

C1|yn+1| ≤ C|λρ|
n

n+1 .

Thus, in this case we have the required upper bound for the integral J1.
Now, we consider the case 0 < ε < |λρ| < M , where M is a fixed positive number.

Then there exists a positive number C(M,n) such that the inequality

∫
{y: |λρp(y,ξ)|>1}

dy

|p(y, ξ)| ≤ C(M,n)

holds. Consequently, the estimate

1
ρ

n
n+1

∫
{y: |λρp(y,ξ)|>1}

dy

|p(y, ξ)| ≤ C|λ|
n

n+1

is fulfilled. Finally, we consider the case |λρ| > M , where M is a sufficiently large fixed
positive real number. We fix ξ = ξ0 ∈ Σ. Assume that the polynomial p(y, ξ) has some
real roots y1, . . . , yl with multiplicities k1, . . . , kl satisfying the conditions kj ≤ n for
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j = 1, l, otherwise the conclusion of Lemma 2.2 is obvious for some neighborhood of the
point ξ0.

Due to the Weierstrass-Malgrange Theorem [15], there exist a neighborhood V of
ξ0 and neighborhoods U1, . . . , Ul of points y1, . . .yl such that in Uj × V we have the
factorization

p(y, ξ) = pj(y, ξ)Qj(y, ξ),

where pj(y, ξ) = (y − yj)kj + η1(ξ)(y − yj)kj−1 + · · ·+ ηkj(ξ) is a pseudopolynomial the
coefficients of which are real analytic vanishing at ξ0 functions. Qj is a real analytic
function satisfying the condition |Qj(y, ξ)| ≥ δ > 0 for any (y, ξ) ∈ Uj × V .

We can choose a neighborhood V of ξ0 such that p(y, ξ) �= 0 for any (y, ξ) ∈ (IR\
{∪lj=1Uj})× V .

Therefore, there exists a number C such that for any ξ ∈ V the following estimate

∫
IR\(∪l

j=1Uj)

dy

|p(y, ξ)| ≤ C

holds.
On the other hand, due to the induction hypothesis, we have

∫
Uj∩{y: |λρp(y,ξ)|>1}

dy

|p(y, ξ)| ≤
∫
Uj∩{y: |λδρpj(y,ξ)|>1}

dy

|δpj(y, ξ)|
≤ C(δ)|λρ|

kj
kj+1 ≤ C|λρ| n

n+1 .

Thus for any ξ ∈ V (ξ0) we obtain the estimate

1
ρ

n
n+1

∫
{y: |λρp(y,ξ)|>1}

dy

|p(y, ξ)| ≤ C|λ|
n

n+1 .

Since Σ is a compact set by standard arguments we get the last estimate on the
quasisphere.

This proves the Lemma 2.2.
Now we prove an analog of Lemma 2.2 for special type of functions. Let p(x, s1, s2)

be a function defined by

p(x, s1, s2) = xr1 + s1xg1(xr) + s2g2(xr),

with domain IR+, where g1(y), g2(y) are smooth bounded functions on IR, satisfying the
condition g1(0) = g2(0) = 1, and r1, r are fixed positive real numbers, r1 > 1.
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Lemma 2.3 There exist a positive number δ and C such that the estimate

I =
∫
{x∈IR+:λ|p(x,s1,s2)|>1}

dx

|p(x, s1, s2)|
≤ Cλβ

holds, for any λ > 2 and s ∈ {s : |s| < δ}, where β = max{ 1
2
, r1−1

r1
}.

Proof of Lemma 2.3
First, we introduce a quasidistance ρ(s) = |s1|

r1
r1−1 + |s2| and the quasisphere

Σ1 = {s ∈ IR2 : ρ(s) = 1}. Let’s use a change of variables: x = ρ
1

r1 y. Then we obtain

I = ρ
1−r1

r1

∫
{y∈IR+: |λρp̃(y,σ1,σ2,ρ)|>1}

dy

|p̃(y, σ1, σ2, ρ)|
,

where

p̃(y, σ1, σ2, ρ) = yr1+σ1yg1(ρ
r

r1 yr)+σ2g2(ρ
r

r1 yr), σ1 = s1ρ
1−r1

r1 , σ2 =
s2
ρ
, σ := (σ1, σ2).

Note that σ ∈ Σ1. Since g1, g2 are bounded functions, there exist a positive number
N > 0 and a function ϕ(y, σ, ρ) such that for any y > N and σ ∈ Σ1, ρ ∈ IR+ the identity

p̃(y, σ1, σ2, ρ) = yr1ϕ(y, σ1, σ2, ρ)

holds. Moreover, ϕ is essentially constant function on that set, i.e. there exist positive
real numbers c1, c2 such that the inequalities c1 ≤ ϕ(y, σ1, σ2, ρ) ≤ c2 hold for any
(y, σ, ρ) ∈ (N,+∞)×Σ1 × IR+.

Let N be a fixed real number with above-mentioned property. There exists a positive
number ε > 0 such that the inclusion

{(y, σ, ρ) : ε|p̃(y, σ1, σ2, ρ)| > 1} ⊂ (N,+∞)× Σ1 × IR+

is fulfilled.
Now, we consider the case |λ|ρ < ε. Then

I = ρ
1−r1

r1

∫
{y∈IR+: |λρp̃(y,σ1,σ2,ρ)|>1}

dy

|p̃(y, σ1, σ2, ρ)|
≤ ρ

1−r1
r1

∫
{y: c1|λ|ρyr1>1}

dy

c1yr1
≤ c|λ|

r1−1
r1 .

If M is any fixed real number and ε < λρ < M then the integral I has an upper

bound cρ
1−r1

r1 . This upper bound implies the estimate I ≤ c|λ|
r1−1

r1 .
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Finally, we consider the case |λ|ρ > M , where M is a sufficiently large fixed positive
number. We divide the set of integration into two parts and consider two integral over
that sets:

I1 = ρ
1−r1

r1

∫
(N,δρ

−1
r1 )∩{y: |λρp̃(y,σ1,σ2,ρ)|>1}

dy

|p̃(y, σ1, σ2, ρ)|

and

I2 = ρ
1−r1

r1

∫
(0,N)∩{y: |λρp̃(y,σ1,σ2,ρ)|>1}

dy

|p̃(y, σ1, σ2, ρ)|
.

Then we write the integral I as a sum of the two integrals: I = I1 + I2.

The integral I1 can be estimate by cρ
1−r1

r1 ; therefore it satisfies a required inequality.
Take a positive real number ∆ and introduce the new integral

I21 = ρ
1−r1

r1

∫
(0,∆)∩{y:λρ|p̃(y,σ1,σ2,ρ)|>1}

dw

|p̃(y, σ1, σ2, ρ)|
.

Now we fix σ = σ0 ∈ Σ1. If σ0
1 �= 0 then we can choose ∆ and a neighborhood V (σ0)

such that the condition p̃(y, σ1, σ2, ρ) �= 0 is fulfilled for any (y, σ) ∈ (0,∆) × V (σ0).

Therefore, the integral I21 is bounded by cρ
1−r1

r1 . Hence, it satisfies the required inequality.
Let σ = σ0 ∈ Σ1 be a fixed point and σ0

1 = 0. Then σ0
2 = ±1 because ρ(σ0) = 1. In this

case we can use a change of variables:

z =
p̃(y, σ1, σ2, ρ)

g2(ρ
r

r1 yr)
.

The last fraction is a continuous differentiable function in a small neighborhood of the
origin and it is invertible.

Then it is easy to show that the following estimate

I21 ≤ cρ
1−r1

r1 log(ρλ)

holds for the integral I21. The last inequality gives a right estimate for the integral I21.
Finally, we consider the function p̃(y, σ1, σ2, ρ) on the set [∆, N ]. Let σ0 ∈ Σ be a fixed

point. Note that the function p̃(y, σ1, σ2, ρ) can be considered as a smooth deformation of
the function p̃(y, σ0

1 , σ
0
2, 0) = yr1 +σ0

1y+σ0
2 in a small neighborhood of its roots belonging

to the set [∆, N ]. The function yr1 + σ0
1y + σ0

2 has no roots of multiplicity greater
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than 2 in that interval. Therefore, we can use Malgrange preparation theorem [15] to
the function p̃(y, σ1, σ2, ρ) and have the factorization p̃(y, σ1, σ2, ρ) = g(y, σ, ρ)p2(y, σ, ρ),
where g(y, σ, ρ) is a smooth nonzero function and p2(y, σ, ρ) is the polynomial function
of the second order with respect to variable y. Its coefficients are smooth functions of
(σ, ρ

r
r1 ).

Now, we can use Lemma 2.2 and have

|I2 − I21| ≤
C|λρ| 12
ρ

1−r1
r1

≤ C|λ|β.

Lemma 2.3 is proved. ✷

The following lemma is needed for the sequel.

Lemma 2.4 There exist a positive number δ and a constant c such that the estimate

µ({x > 0 : |p(x, s1, s2)| < h}) ≤ chβ

holds for any h > 0 and |s| < δ, where β = min{ 1
2 ,

1
r1
} and µ({x > 0 : |p(x, s1, s2)| < h})

is the Lebesgue measure of the set {x > 0 : |p(x, s1, s2)| < h}.
Lemma 2.4 can be proved as Lemma 2.3.

Lemma 2.5 Let g1, g2, g3 be smooth functions and g1(0) = g2(0) = g3(0) = 1. There
exist a constant δ and C such that for any η ∈ S2 and λ > 2 the following estimate

µ((0, δ) ∩ {t : |η3t
n+k

n g3(t
1
n ) + η2tg2(t

1
n ) + η1g1(t

1
n )| < λ−1}) ≤ Cλ−β1

holds, where β1 = min{ 1
2 ,

k
n+k} and S2 is the unit sphere centered at the origin of IR3.

Lemma 2.5 follows from Lemma 2.4.

The following lemma is needed to prove the Theorem 2.1 ([2], [4]).

Lemma 2.6 Let F be n−times differentiable function on I = [a, b] and |f(n)(x)| ≥ 1
for any x ∈ I. Then there exists a constant C(n) (depending only on n ) such that the
estimate

µ({x ∈ I : |f(x)| < h}) ≤ C(n)h1/n

holds.
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Proof of Theorem 2.1 Note that, due to Lemma 2.6, measure of the set

{x : |λp(x, s)| ≤ 1} is estimated by C(n)λ−
1

n+1 for any s ∈ IRn.

Thus, by using Lemma 2.2 and 2.6 for the oscillatory integral J(λ, s) we have

|J(λ, s)| ≤
∫
{x: |λp(x,s)|≤1}

|ya(x, y, s)|dxdy+ |
∫
{x: |λp(x,s)|>1}

eiλg(x,s)dx×

∫
IR

eiλp(x,s)y|y|a(x, y, s)dy| ≤ C|λ|− 1
n+1 ‖a‖C(U) +

∫
{x: |λp(x,s)|>1}

‖a(x, ., s)‖C1dx

|p(x, s)| .

Now, we use the inequality

sup
x

‖a(x, ., s)‖C1 ≤ ‖a(., ., s)‖C1(U).

Then due to Lemma 2.2 we have

∫
{x: |λp(x,s)|>1}

‖a(x, ., s)‖C1dx

|p(x, s)| ≤ ‖a(., ., s)‖C1(U)

∫
{x: |λp(x,s)|>1}

dx

|p(x, s)|

≤ C|λ| −1
n+1 ‖a(., s)‖C1(U).

The last estimate establishes Theorem 2.1. ✷

3. Estimates for Fourier Transform of Measures Supported on Ruled
Surfaces

Let γ be a space curve-germ at the origin of IRand S be a surface which is the tangent
developable of the curve. Consider the measure dµ = ψ(x)dS(x) and its Fourier transform
J(ξ) := dµ̂(ξ).

Theorem 3.1 Let γ be a smooth curve-germ at zero of type (m,m+n,m+n+k). Then
there exists a neighborhood U of the origin such that for any ψ ∈ C∞

0 (U) the estimate

|J(ξ)| ≤ c‖ψ‖C2

(1 + |ξ|)β ,

holds, where β = min{ 1
2 ,

n
n+k }.
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Proof. If γ is a curve germ of type (m,m+ n,m+ n+ k), then the surface defined by
the curve has the form

x1(t, v) = tmg1(t) + (mg1(t) + tg′1(t))v, x2(t, v) = tm+ng2(t) + tn((m+ n)g2(t) + g′2(t))v,

x3(t, v) = tm+n+kg3(t) + ((m+ n+ k)tn+kg3(t) + tn+k+1g′3(t))v.

Straightforward computations show that |xv ∧ xt| = |vtn−1|g(t), where xv ∧ xt is an
exterior product of the vectors xv, xt and g(t) is a smooth function, g(0) =mn(m+n) �= 0.

We define the function p(η, t) by the relation

p(η, t) = η1(mg1(t) + tg′1(t)) + η2((m+ n)tng2(t) + tn+1g′2(t))+

η3((m+ n+ k)tn+kg3(t) + tn+k+1g′3(t)),

where η ∈ S2 is a unit vector.

Note that due to Lemma 2.5 we get

µ((0, δ) ∩ {t : |η3t
n+k

n g3(t
1
n ) + η2tg2(t

1
n ) + η1g1(t

1
n ))| < λ−1}) ≤ Cλ−β.

We write the integral J(ξ) as a sum of two integrals: J(ξ) = J−(ξ) + J+(ξ), where

J+(ξ) =
∫
D

ei(ξ,x(t,v))ψ(x(t, v))|xt(t, v) ∧ xv(t, v)|θ(t)dtdv, J−(ξ) := J(ξ) − J+(ξ),

θ is the Heaviside’s function. We consider estimates for the integral J+(ξ). The integral
J−(ξ) can be estimated analogously:

|J+(ξ)| ≤
∫
{|ξ||η3t

n+k
n g3(t

1
n )+η2tg2(t

1
n )+η1g1(t

1
n )|<1}

|ψ(t 1
n , v)|dtdv+

|ξ|−1

∫
{|ξ||η3t

n+k
n g3(t

1
n )+η2tg2(t

1
n )+η1g1(t

1
n )|>1}

‖ψ(u
1
n
1 , .)‖C1du

|η3t
n+k

n g3(t
1
n ) + η2tg2(t

1
n ) + η1g1(t

1
n )|
.

Due to the Lemma 2.5 we obtain

|ξ|−1

∫
{|ξ||4η3u3/2

1 +3η2w+η1|>1}

‖ψ(u1/n
1 , .)‖C1du1

|4η3u3/2
1 + 3η2w + η1|

≤ C‖ψ‖C1(D)

|ξ|β .

12
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We remind that 1− β1 = β. Thus we get the estimate

|J+(ξ)| ≤
C‖ψ‖C1(D)

|ξ|β .

From this inequality we obtain a proof of Theorem 3.1. ✷

Corollary 3.2 1) If S is a developable hypersurface of type (1, 2, 2 + k)(k ≥ 1) then for
the oscillatory integral J the estimate

|J(ξ)| ≤ C‖ψ‖C1

(1 + |ξ|) 1
k+1

holds;
2) Let the hypersurface has one of the types (2, 3, 4), (1, 3, 4), (3, 4, 5), or (1, 3, 5) then for
any ψ ∈ C∞

0 (IR3) the estimate

|J(ξ)| ≤ C‖ψ‖C1

(1 + |ξ|)1/2

holds.
Let S ⊂ IR3 be a hypersurface with zero Gaussian curvature at any ordinary point.

Let H := k1+k2
2 be a mean curvature of the surface, where k1, k2 are principal curvatures

of the surface. It is a smooth function defined on the set of ordinary (non-singular) points
of the hypersurface. We assume that H is a finite type function and its type no greater
than n at the non-singular point x0 ∈ S. A type of the function H at the point x0 is
defined as a minimal non-negative integer number n such that dnH(x0) �= 0.

Theorem 3.3 Let S ⊂ IR3 be a hypersurface with zero Gaussian curvature at any
ordinary point and the function H has a type n at the ordinary point x0 ∈ S. There
exists a neighborhood U of the point x0 such that for any ψ ∈ C∞

0 (U) the associated
integral J(ξ) has the estimate

|J(ξ)| ≤
c‖ψ‖L1

2(U)

(1 + |ξ|) 1
n+2

.

The following Lemma is needed for the sequel [6]

13
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Lemma 3.4 If x0 is an ordinary point of the hypersurface then the curvature lines
passing through that point are smooth curves.

Proof of Theorem 3.3 Let x0 ∈ S be an ordinary point and ρ = ρ(u) be the orthogonal
curve passing from the point x0 and e = e(u) be the direction of generators [22]. Without
loss of generality we may assume that u is the natural parameter. Then for the surface
we have

r = r(u, v) = ρ(u) + ve(u).

It is well-known that if ρ = ρ(u) is orthogonal to e = e(u) for any u then e(u) can be
written as

e(u) = cos(c −
∫ u

0

κ(τ )dτ )n(u) + sin(c−
∫ u

0

κ(τ )dτ )b(u),

where n is the principal normal, b is the binormal and κ is a torsion of the curve ρ = ρ(u),
and c is a constant depending only on the surface.

It is easy to show that ρ = ρ(u) is a line of curvature passing from the point x0 = ρ(0).
Indeed, the unit normal vector to the surface alone the curve ρ = ρ(u) has the form

m(u) = − sin(c −
∫ u

0

κ(τ )dτ )n(u) + cos(c−
∫ u

0

κ(τ )dτ )b(u).

The direct computations based on the Frenet formulas show that [22]

m′(u) = k(u) sin(c−
∫ u

0

κ(τ )dτ )t(u),

where k(u) is the curvature of the curve ρ = ρ(u). Therefore, due to Rodrique’s theorem,
the principal curvature along the curve ρ = ρ(u) is defined by the formula

k1(u) = k(u) sin(c−
∫ u

0

κ(τ )dτ ).

Now we consider the Fourier transform of the surface:

J(ξ) =
∫
ei|ξ|(η1x1(u,v)+η2x2(u,v)+η3x3(u,v))ϕ(u, v)dudv,

where η = ξ
|ξ| is a unit vector. And also we define associated one-dimensional oscillatory

integral

14



IKROMOV

J1(ξ) =
∫
ei|ξ|(η1x1(u,v)+η2x2(u,v)+η3x3(u,v))ϕ(u, v)du.

We consider behavior of the integral near critical direction. Let u = 0, v = 0 be a
fixed point and η0 = m(0, 0) be the unite normal vector to the hypersurface at the point
x0. We assume that the support of the amplitude function is concentrated in a small
neighborhood of the point (0, 0). In this case the phase function F (η, u, v) := (η, r(u, v))
can be considered as a smooth deformation of the function f(u) := (η0, r(u, 0)).

If the curvature k1 = k1(u) has a root of order n at r(0, 0), then we have

f(u) = un+2ψ(u) + c,

where ψ is a smooth function satisfying the condition ψ(0) �= 0. Therefore, due to
the Mather theorem [1], [16], there exists a smooth function z = z(u, η, v) such that
∂z(0,η0,0)

∂u
�= 0 and the function F has the form

F (η, u(z, η, v), v) = zn+2 + λ1(η, v)zn + · · ·+ λn(η, v)z + λn+1(η, v),

where λk(η0, 0) = 0 for (k = 1, ,̇n) and λk, (k = 0, . . . , n+ 1) are real analytic functions.
Now, we consider the interior integral

J1(ξ) =
∫
ei|ξ|(η1x1(u(z,η,v),v)+η2x2(u(z,η,v),v)+η3x3(u(z,η,v),v))ϕ(u(z, η, v), v)

∂u(z, η, v)
∂z

dz.

The Generalized Van der Corpute Lemma yields [4]:

|J1(ξ)| ≤
c‖ψ‖C1(U)

|ξ| 1
n+2

.

Moreover, the last inequality is fulfilled uniformly with respect to the other variables.
Therefore, by integrating in v variable we obtain

|J(ξ)| ≤ c‖ψ‖C1(U)

|ξ| 1
n+2

.

Theorem 3.3 is proved. ✷

Let S ⊂ IR3 be the cylindric hypersurface and ψ ∈ C∞
0 (S) be a fixed cut-off function.

We consider the measure defined by dµ = ψ(x)dS(x), where dS is the induced Lebesgue
measure on S.

15
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From Theorem 3.3 it follows the following corollary
Corollary 3.4. If S ⊂ IR3 is a cylindric hupersurface and its mean curvature H has

no roots of order more than n and ψ ∈ C∞
0 (S) is any fixed function, then for the integral

J(ξ) the uniform estimate

|J(ξ)| ≤ c‖ψ‖C1(S)

(1 + |ξ|) 1
n+2

holds.

4. Estimates for Fourier Transforms of Surface-Carried Measures Supported
on the Cone Surfaces

Let S ⊂ IR3 be a cone surface and x0 ∈ S be a fixed point of the surface. Without loss
of generality we assume that the origin of IR3 is the vertex of the cone and x0 �= 0. Thus,
straight line passing from the origin and the point x0 lies on the surface S. We assume
that the straight line is transversal to the hyperplane x10x2.

Lemma 4.1 There exist a cone neighborhood U of the point x0 and a smooth (out of
the origin) homogeneous function f of the order 1 such that the set U ∩S can be written
as a graph of the function f .

Proof. Of Lemma 4.1 is straightforward. ✷

Lemma 4.2 Let (x0
1, x

0
2) be a fixed point and x0

2 �= 0. Then order of mean curvature H
at that point and order of fx1x1 coincide. The same conclusion holds if x0

1 �= 0.

Proof. Note that f is homogeneous function. Therefore, by Euler’s homogeneity
relation we have f(x1, x2) = x1fx1(x1, x2) + x2fx2(x1, x2) for any x �= 0. Moreover, both
fx1 and fx2 are also homogeneous functions of order zero. Hence

x1fx1x1(x1, x2) + x2fx1x2(x1, x2) = 0, x1fx2x1(x1, x2) + x2fx2x2(x1, x2) = 0.

Consequently, we obtain x2
1fx1x2(x1, x2) − x2

2fx2x2(x1, x2) = 0. Moreover, if x2 �= 0 then
we have

fx2x2(x1, x2) =
x2

1

x2
2

fx1x1(x1, x2).
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Note that for the mean curvature one holds the relation [6]

H = div
( ∇f
(1 + |∇f |2)1/2

)
.

Therefore, straightforward calculations show that

H =
(
(1 + x2

1x
−2
2 )(1 + |∇f |2)− (fx1 + x1x

−1
2 fx2)

2
) fx1x1

(1 + |∇f |2)3/2 .

Due to the Cauchy-Schwartz inequality we have

(1 + x2
1x

−2
2 )|∇f(x1, x2)|2 − (fx1(x1, x2) + x1x

−1
2 fx2(x1, x2))2 ≥ 0.

Therefore, if x0 is a fixed point satisfying the condition x0
2 �= 0, then we obtain

H = fx1x2(x1, x2)b(x1, x2),

where

b(x1, x2) =
(1 + x2

1x
−2
2 )(1 + |∇f(x1, x2)|2)− (fx1(x1, x2) + x1x

−1
2 fx2(x1, x2))2

(1 + |∇f |2)3/2

is a smooth function in some cone neighborhood of the point x0. Moreover, it is a
homogeneous function of order zero and b(x0) �= 0.

Consequently if fx1x1 (x0
1, x

0
2) �= 0, then one principal curvature is non-zero at the

point x0. If fx1x1(x0
1, x

0
2) = 0 and it is a finite type function then due to the results by

[11] (Lemma 3.2) in some neighborhood of the point (x0
1, x

0
2) we have

fx1x1(x1, x2) = (x1 − cx2)ng(x),

and g(g(x0
1, x

0
2) �= 0) is a smooth function in some cone neighborhood of the point x0,

and also c = x0
1(x

0
2)

−1. Thus, the orders of roots of fx1x1 and H at that point coincide.
Lemma 4.2 is proved. ✷

Theorem 4.3 Let S ⊂ IR3 be the conic hypersurface and H be mean curvature of the
surface. If H has no roots of order greater than n, then for the Fourier transform of the
measure µ(X) = ψ(X)dS(X) supported on that hypersurface, the estimate

|J(ξ)| ≤
c‖ψ‖L1

2(S)

(1 + |ξ|) 1
n+2

17
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holds.
Note that the last estimate holds not only in a small neighborhood of ordinary points,

but, in any compact neighborhood of the vertex of the cone.

Proof. Without loss of generality, we may assume that the cone is given as a graph of
the homogeneous function f . In this case we consider the oscillatory integral

J(ξ) =
∫
D

ei(x1ξ1+x2ξ2+f(x1,x2)ξ3)ψ̃(x1, x2)dx1dx2,

where ψ̃(x1, x2) = ψ(x1, x2, f(x1, x2))(1 + |∇f(x1, x2)|2)1/2.
Without loss of generality we may assume that the support of ψ̃ is contained in a ball

of radius 1 centered at the origin. We choose a non-negative function ψ0 ∈ C∞
0 ({ 1

2 <

|x| < 2}) such that the relation
∞∑
k=0

ψ0(2kx) = 1

holds for any x ∈ suppψ̃ \ {(0, 0)}.
It is obvious that for any fixed ξ we have the relation

J(ξ) =
∞∑
k=0

Jk(ξ),

where

Jk(ξ) =
∫
D

ei(x1ξ1+x2ξ2+f(x1,x2)ξ3)ψ0(2kx)ψ̃(x)dx.

Further, we consider estimates for the integral Jk(ξ). Let’s use scaling 2kx �→ x then
we obtain

Jk(ξ) = 2−2k

∫
D

ei2
−k(x1ξ1+x2ξ2+f(x1,x2)ξ3)ψ0(x)ψ̃k(x)dx,

where the function ψ̃k has the form

ψ̃k(x) = ψ̃(2−kx1, 2−kx2, 2−kf(x1, x2))(1 + |∇f(x1, x2)|2)1/2,

because f(|∇f |) is a homogeneous function of degree 1(0), respectively. Note that
both functions are smooth on the support of ψ0. If |ξ1| ≥ M max{|ξ2|, |ξ3|} or |ξ2| ≥

18
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M max{|ξ1|, |ξ3|}, where M is a sufficiently large fixed positive real number, then the
integration by parts formula yields

|Jk(ξ)| ≤
c‖ψ̃‖L1

2(D)2−2k

(1 + 2−k|ξ|) .

Now, we consider the case |ξ3| ≥ M−1 max{|ξ1|, |ξ2|}. In this case we deal with the
phase function

F (x, s) = f(x1, x2) + s1x1 + s2x2, where, s1 =
ξ1
ξ3
, s2 =

ξ2
ξ3
.

Note that both numbers s1, s2 are bounded. We fix s = s0 ∈ {|s1| ≤ M, |s2| ≤ M}
and consider the set of critical points of the phase function F (x, s0). The set of critical
points of the phase function coincides with the projection into x10x2 plane of the set of
points on S such that the unit normal to the surface S is co linear to the vector (s01, s02, 1).

Due to Lemma 4.2, multiplicity of roots of the mean curvature and fx1x1(x1, x2)
(fx2x2(x1, x2)) if x0

2 �= 0(x0
2 �= 0) at critical point coincide. Therefore, we can use the Van

der Corpute method [2], [4], [11] and obtain:

|Jk(ξ)| ≤
c2−2k‖ψ̃‖L1

2(D)

(1 + 2−k|ξ|) 1
n+2

.

Note that, if 2−k|ξ| ≤ 1, then the trivial estimate for the integrals gives

∑
{2−k|ξ|≤1}

|Jk(ξ)| ≤ C2−2k0‖ψ̃‖L1(D) ≤
C

|ξ|2 ‖ψ̃‖L1(D),

where k0 is the minimal natural number satisfying the inequality 2−k|ξ| ≤ 1. Otherwise,
we obtain

∑
{2−k|ξ|≥1}

|Jk(ξ)| ≤ C
∞∑
k=0

2−k(2− 1
n+2 )

‖ψ̃‖L1
2(D)

(1 + |ξ|) 1
n+2

≤
c‖ψ̃‖L1

2(D)

(1 + |ξ|) 1
n+2

.

Theorem 4.3. is proved. ✷
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