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Abstract

Variational principles for real eigenvalues of self-adjoint operator pencils in non-

separated root zones are studied.
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1. Introduction

Let L(λ) be a function defined on an interval [a, b] ⊂ R, whose values are operators
in a Hilbert or Banach space. Such functions are called operator functions or operator
pencils. Linear pencils of the form L(λ) = A − λB and polynomial pencils of the form
L(λ) = λnAn+λn−1An−1+...+λA1+A0, where A, B and Ai, i = 0, 1, ..., n are operators,
form important subclasses of operator pencils. In general, an operator pencil L(λ) may
be analytic, smooth or nonsmooth. Polynomial pencils arise mainly from the evolution
of equations in abstract spaces (see [10]) but nonpolynomial pencils arise from equations
depending on a parameter.

The main concern of this paper is the variational theory of the spectrum for a class of
self-adjoint operator pencils. The spectrum of an operator pencil L(λ) is defined in the
following way:

We say that λ ∈ σ(L) if and only if 0 ∈ σ(L(λ)), where σ(L) denotes the spectrum of
the operator pencil L(λ) and σ(L(λ)) denotes the spectrum of the operator L(λ) which
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43



HASANOV

is the value of the operator pencil L(λ) at the point λ. The set of eigenvalues σe(L), the
continuous spectrum σc(L) and other spectral sets are defined analogously. In particular,
λ ∈ [a, b] is called an eigenvalue of the pencil L(λ) if there exists a vector x �= 0, called
an eigenvector such that L(λ)x = 0. Evidently, if L(λ) = A− λI then σ(L) = σ(A).

It is well known that discrete eigenvalues of a self-adjoint operator A in a Hilbert space
H , which lie below or above the essential spectrum of A, can be characterized by three
fundamental variational principles, namely by Rayleigh’s principle, by the Poincaré-Ritz
minimax principle and by the Courant-Fischer-Weyl principle applied to the Rayleigh

quotients p(x) = (Ax,x)
(x,x) , x ∈ H , x �= 0.

Arrange the eigenvalues below the minimum of the essential spectrum of A as λ1 ≤
λ2 ≤ ... ≤ λn ≤ .... counted according to their multiplicities. In this case the Rayleigh’s
principle is

λn = min
x�=0,(x,xi)=0
i=1,... ,n−1

p(x),

where xi are eigenvectors corresponding to the eigenvalues λi and the minimum is attained
at the eigenvector xn. The Poincaré-Ritz principle is defined by

λn = min
L⊂D(A)
dim L=n

max
x∈L
x�=0

p(x).

The third variational principle, known as the Courant-Fischer-Weyl principle, can be
given in the form

λn = max
L⊂H

dim L=n−1

min
x∈D(A)

x⊥L

p(x).

For λ-nonlinear eigenvalue problems of the form L(λ)x = 0, the Rayleigh quotient

p(x) = (Ax,x)
(x,x) , x ∈ H , x �= 0 of a linear problem Ax = λx is replaced by the so called

Rayleigh functional p, which is homogeneous, nonlinear functional defined by the equation
(L(p(x))x, x) = 0, for x �= 0.

There are two cases in the variational theory of λ-nonlinear spectral problems:
A) The Rayleigh functional p(x) is defined on the entire space H \ {0}. In this case

the λ-nonlinear eigenvalue problem L(λ)u = 0 is called overdamped. Methods applied in
this case depend on whether the operator function L(λ), λ ∈ ∆ = [a, b] is polynomial,
analytic, and smooth or nonsmooth. On this subject the classical works of R. J. Duffin,
R. Turner, E. H. Rogers, B. Werner (see the books [1], and [10]) should be mentioned.
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B) The Rayleigh functional p(x) is defined only on a conic subset of H \ {0} and
the conditions given in the above mentioned works are partially fulfilled. Such spectral
problems are said to be nonoverdamped.

Notice that investigations in recent years have been concentrated on Case B). The
operator pencils of waveguide type form one of the main classes of nonoverdamped
operator pencils and have very important applications to physical problems (see [2], [8],
[13]). Some classes of nonoverdamped operator pencils were studied in [3], [11] and [12].

A different class of nonoverdamped spectral problems is connected with spectral
problems of block operator matrices and λ-rational Sturm-Liouville problems ([4], [5]
and [6]). Here the classical overdamped conditions are not satisfied. These conditions are
(see also [7]):

a) L(a) is uniformly positive definite, i. e., L(a) 
 0;
b) L(b) � 0; and
c) the equation (L(λ)x, x) = 0 has exactly one simple zero p(x) in [a, b] for every

x ∈ H \ {0}.
It follows from condition a) that κα := dim{E | 0 �= x ∈ E, (L(α)x, x) < 0} = 0. The

number κα defines the index shift and this equality means that for overdamped spectral
problems the index shift does not occur. It was shown in [4] (see Theorem 3.5) that if
κα > 0 then the classical variational principle is replaced by

λn = min
L

dim L=n+κα

sup
x∈L
x�=0

p(x), n = 1, 2, . . .

These problems for unbounded operator pencils were studied in [6] (see Theorem 2.1,
p. 293). As mentioned above for λ-nonlinear spectral problems the Rayleigh quotients

p(x) = (Ax,x)
(x,x) , x ∈ H , x �= 0 in the operator theory is replaced by nonlinear functionals

p(x) defined by the roots of the equation ϕx(λ) := (L(p(x))x, x) = 0, x �= 0. Moreover,
distribution of roots of the equation ϕx(λ) = 0 plays an important role in the variational
theory of the spectrum of operator pencils. We now recall some notions.

Definition 1.1 Let G be a cone in Hilbert space and the functional p(x) is defined on

G \ {0}. Then the set Wp := {p(x)
∣
∣
∣x ∈ G \ {0}} is called a root zone of pencil L or the

numerical range of functional p(x). In addition, we say that p(x) is a root of the first or
second kind if the function ϕx(λ) increases or decreases through p(x), respectively. The
other roots are said to be neutral.
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Definition 1.2 A root zone Wp is said to be separated if it consists of roots of the same
kind for x ∈ G\{0} and the setWp does not contain other roots of the equations ϕx(λ) = 0
for x �∈ G.

It is known that only the part of the spectrum of the pencil L in Wp can be charac-
terized by the functional p(x). Consequently, to investigate the whole spectrum we have
to construct several functionals whose numerical ranges include a part of the spectrum.
Note that in all of the cited papers spectral problems in a separated root zone are studied.

In this paper we study eigenvalue problems for a class of nonoverdamped pencils in a
non-separated root zone. We now define this class.

Let L : R → S(H) be a continuously differentiable operator-valued function, where
S(H) is the set of bounded self-adjoint operators in a Hilbert space H . We suppose:

I) The Hilbert space H has decomposition into disjoint cones of the form H =
H+

⊔
H0

⊔
H∅ (let 0 ∈ H+ ) such that, for all 0 �= x ∈ H+ the function ϕx(λ) =

(L(λ)x, x) has a simple zero p+(x) in [a, b] and ϕx(λ) increases through p+(x) i.e.,
λ ∈ [a, b], λ < p+(x) ⇒ ϕx(λ) < 0 and λ ∈ [a, b], λ > p+(x) ⇒ ϕx(λ) > 0.

If x ∈ H0, then the equation ϕx(λ) = 0 has at least one zero in [a, b] and ϕx(λ) ≥ 0
for all x ∈ H0 and λ ∈ [a, b].

Finally, ϕx(λ) > 0 for x ∈ H∅ and λ ∈ [a, b].

It is clear that in condition I) we may assume b = supH+
p+(x) because the interval

[a, supH+
p+(x)] has the same properties. It follows from these conditions that the interval

[a, b] may include the first kind and neutral zeros of the functions ϕx(λ) . Since an
eigenvalue λ is a root of the equation (L(λ)x, x) = 0, where x is an eigenvector we
classify eigenvalues as the roots of the equation ϕx(λ) = 0. The set of eigenvalues of the
first kind, second kind and neutral eigenvalues are denoted by σ+

e (L), σ−
e (L) and σN

e (L),
respectively.

Throughout this paper we assume that together with conditions I) the condition

II) b = supH+
p+(x) and [a, b]∩ σN

e (L) = ∅
is satisfied.

Finally note that in this paper we use a method quite different from the methods used
in [4], [5], [6] and [7]. Particularly, we do not extend the functional p+(x) on whole space
as in the above mentioned papers. Our technique is based on properties of the triple
〈L, p+(x), H+〉 which will be studied in detail in the following sections.
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2. On the structure of the triple 〈L, p+(x), H+〉

In this section we give some properties of the triple 〈L, p+(x), H+〉, which will be used
in next section. The functional p+(x) and the cone H+ are defined by condition I. An
immediate corollary to condition I is the following lemma.

Lemma 2.1 If α ∈ [a, b] and x ∈ H+ then (L(α)x, x) > 0 (resp. < 0,= 0) if and only if
p+(x) < α (resp. > α,= α).

It is clear that the cone H+ contains all eigenvectors, corresponding to eigenvalues of
the first kind in [a, b]. Although H+ is not a subspace, it contains all subspaces spanned
by eigenvectors of the first kind in [a, b]. We now prove this fact.

Lemma 2.2 Let λ1, λ2, ..., λn be eigenvalues in [a, b] of the first kind and x1, x2, ..., xn be
corresponding eigenvectors. Then

a) E := span{x1, x2, ..., xn} ⊂ H+;

b) p+(x) ∈ [mini λi,maxi λi] for ∀x ∈ E.

Proof. It can be assumed that λ1 > λ2 > ... > λn. We consider only the case
n = 2. The general case can be proved by induction. Set x = c1x1 + c2x2 (c1, c2 �= 0).
Since (L(λ1)x1, x1) = 0 and x1 ∈ H+ we have (L(λ2)x1, x1) < 0. Consequently,
(L(λ2)(c1x1 + c2x2), c1x1 + c2x2) = |c1|2(L(λ2)x1, x1) < 0. Thus, (L(λ2)x, x) < 0. On
the other hand, because of (L(λ2)x2, x2) = 0 and x2 ∈ H+, we have (L(λ1)x2, x2) > 0.
Hence (L(λ1)x, x) = |c2|2(L(λ1)x2, x2) > 0. Now from the inequalities (L(λ2)x, x) < 0
and (L(λ1)x, x) > 0, it follows that x ∈ H+ and, by Lemma 2.1, p+(x) ∈ (λ2, λ1). ✷

Now we consider an extremal problem for p+(x) on subspaces in H . Let λ1, λ2, ..., λn, ...

be eigenvalues of the first kind of the pencil L in [a, b]. Arrange these in decreasing order

λ1 ≥ λ2 ≥ ....λn−1 > λn = .....= λn = ...λn > λn+1 ≥ ...,

where n = min{i| θi = θn} and n = max{i| θi = θn}.
We denote by Ei(resp., Ei) the set of all subspaces of codimension i (resp., dimension

i).

Lemma 2.3 If E ∈ Ei, 1 ≤ i ≤ n− 1 then

p+(E ∩H+) := supE∩H+
p+(x) ≥ λn.
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Proof. Let Xn be the linear span of eigenvectors, corresponding to λ1, λ2, ..., λn. Since
dimXn = n and i < n − 1, it follows that Xn ∩ E �= {0}. By Lemma 2.2 Xn ⊂ H+.
Consequently, Xn ∩ E ∩H+ �= {0}. Since p+(x) ∈ [λn, λ1] we have

p+(x) ≥ λn, (2.1)

for all x ∈ Xn. Let y be a point from Xn∩E∩H+. It follows from (2.1) that p+(y) ≥ λn.
It means that p+(E ∩H+) = supE∩H+

p+(x) ≥ p+(y) ≥ λn. ✷

In what follows we shall denote by σ(L), σR(L), and σess(L) the spectrum, the real
spectrum and the essential spectrum of the pencil L, respectively. By definition

σess(L) = {λ
∣
∣∃{xn}, ‖xn‖ = 1, xn → 0 (weakly), L(λ)xn → 0}.

We use also the notation σR
ess(L) := σess(L) ∩R. It is known that the spectrum of L

is discrete in σR(L)\σR
ess(L) (see [1] and [9]). In the following Lemma we give a property

of the boundary points of the set Wp+ .

Lemma 2.4 b = supH+
p+(x) ∈ σR(L).

Proof. Since b = supH+
p+(x) we have ∃{xn} ∈ H+, ‖xn‖ = 1, p+(xn) → b. By

condition I, L(b) ≥ 0. Consequently,

‖L(b)xn‖2 ≤ ‖L(b)‖
∣
∣(L(b)xn, xn)

∣
∣ . (2.2)

On the other hand
∣
∣(L(b)xn, xn)

∣
∣ =

∣
∣((L(b)xn−L(p+(xn))xn, xn)

∣
∣ ≤ ‖L(b)−L(p+(xn))‖ →

0 as n → ∞.
By using (2.2) this gives us L(b)xn → 0. Thus ∃ {xn}, ‖xn‖ = 1 and L(b)xn → 0 . It

means that b ∈ σR(L). ✷

An important Corollary of Lemma 2.4 is

Corollary 2.5 If b /∈ σR
ess(L) then b ∈ σ+

e (L).

3. Variational principles for eigenvalues of the first kind

In this section we establish variational principles for eigenvalues in σ+
e (L). The class

of operator pencils considered in this paper does not generate a Rayleigh system in the
entire space but the triple 〈L, p+(x), H+〉 has some properties similar to properties of
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Rayleigh systems. We use these properties to establish variational principles. Here the
set H+ is a nonconvex homogeneous set, which will be used instead of the Hilbert space
H .

Let λ1, λ2, ..., λn, ... be eigenvalues of the first kind and x1, x2, ..., xn, ... be eigen-
vectors corresponding to eigenvalues λ1, λ2, ..., λn, ..., respectively. With the elements
x1, x2, ..., xn, ... we associate the following vector-valued functions:

xi(α) =
L(α) − L(λi)

α− λi
xi, α ∈ [a, b], i = 1, 2, ..., n, ...

We use the notation Xn(α) = span{xi(α)}n
i=1, Y

n(α) = X⊥
n (α) and Y n = X⊥

n , where
Xn = span{xi}n

i=1. We denote Y n
+ (α) := Y n(α) ∩H+. Define the function

γn(α) = sup
Y n

+ (α)
p+(x).

The following theorem was proved in [1] for smooth Rayleigh systems. The proof in our
case is not different from that given in [1]. For this reason we give it without proof.

Theorem 3.1 If α ∈ [a, b], α ≤ λn and {λi}∞i=1 ⊂ σ+
e (L) then

1. dimXn(α) = n, H = Xn + Y n(α),
2. L(α) : Y n(α) → Y n,
3. The function γn(α) is continuous.
Now we establish a connection between the spectrum of the operator pencil L and

the spectrum of the restriction L|E to a subspace E. Here L|E = QEL, where QE is the
orthogonal projection of H onto E.

Theorem 3.2 If α ∈ [a, b], α ≤ λn and codimE < +∞, then
1) σess(L|E) ⊂ σess(L);
2) If α ∈ σe(L|Y n(α)) then α ∈ σe(L).

Proof. 1) Let α ∈ σess(L|E). Then there exists {xn}∞n=1 ⊂ E, ‖xn‖ = 1, xn →
0 (weakly) such that QEL(α)xn → 0. We have

L(α)xn = QEL(α)xn +QE⊥L(α)xn. (3.1)

Since dimE⊥ < +∞ the operator QE⊥ is compact. Consequently, it follows from xn → 0
(weakly) that QE⊥L(α)xn → 0. Then by taking the limit in (3.1) we obtain L(α)xn → 0,
so that α ∈ σess(L).
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2) To prove this connection we take a point α ∈ σe(L|Y n(α)) and show that α ∈ σe(L).
Since α ∈ σe(L|Y n(α)) there exists 0 �= y ∈ Y n(α) satisfying QY n(α)L(α)y = 0. By
Theorem 3.1 H = Xn + Y n(α). Therefore for all z ∈ H we can write z = u + v, where
u ∈ Xn and v ∈ Y n(α). But then

(L(α)y, v) = (L(α)y, QY n(α)v) = (QY n(α)L(α)y, v) = 0.
Using the condition α ≤ λn by Theorem 3.1 we obtain L(α) : Y n(α) → Y n. Now it

follows from this that (L(α)y, u) = 0. Thus (L(α)y, z) = 0 for all z ∈ H . This implies
L(α)y = 0, y ∈ Y n(α) \ {0}, i.e., α ∈ σe(L). ✷

Now we prove a fixed point theorem for the functions, γn(α), n = 0, 1, 2, .... which is
the main step for establishing variational principles.

Theorem 3.3 Let (c, b] ∩ σess(L) = ∅ for c ≥ a and λ1, λ2, ...., λn, .... be the eigenvalues
of L, arranged in decreasing order counting multiplicity:

λ1 ≥ λ2 ≥ ....λn−1 > λn = .....= λn = ...λn > λn+1 ≥ ......

Then γn(λn+1) = λn+1, n = 0, 1, 2, ...

Proof. By conditions I and II all eigenvalues {λi}∞i=1 are eigenvalues of the first kind.
Consequently, Theorem 3.1 and Theorem 3.2 are satisfied. Let n = 0. Setting Y 0(α) = H

we have
γ0(λ1) = max

H+
p+(x) = b,

and by Corollary 2.5, b = λ1. Thus γ0(λ1) = λ1. Now we suppose

γk(λk+1) = λk+1, k = 0, 1, 2, ..., n− 1. (3.2)

Let us prove (3.2) for k = n. For k = n− 1 it follows from (3.2) that

λn = γn−1(λn) = max
Y n−1

+ (λn)
p+(x). (3.3)

Two cases are possible.
1) λn+1 = λn, i.e., n < n. Using Y n(λn) ∩ Xn �= {0} and Xn ⊂ H+ (Lemma 2.2) it

is not difficult to prove that there exists a vector x ∈ Y n
+ (λn) such that L(λn)x = 0 (see

[1], [6]). From (3.2), taking into account the inclusion Y n
+ (λn) ⊂ Y n−1

+ (λn) we can write

λn+1 = λn = p+(x) ≤ γn(λn) ≤ γn−1(λn) = λn.
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Consequently, γn(λn) = γn(λn+1) = λn+1.

2) Let n = n , i.e., λn+1 < λn. By Theorem 3.1 codimY n(α) = n for α ≤ λn. Then
it follows from Lemma 2.3 that γn(α) ≥ λn+1 for α ≤ λn. In particular,

γn(λn+1) ≥ λn+1. (3.4)

At the same time since Y n(λn) ⊂ Y n−1(λn) then by (3.3)

γn(λn) ≤ γn−1(λn) = λn. (3.5)

By Theorem 3.1 the function γn(α) is continuous on [a, λn]. Let us define the function
F (α) = α − γn(α). Using (3.4) and (3.5) we obtain F (λn) ≥ 0 and F (λn+1) ≤ 0.
The function F (α) is continuous on [λn+1, λn]. Consequently, there exists a point
θ ∈ [λn+1, λn] such that γn(θ) = θ. It remains to show θ = λn+1. By Theorem 3.2
we have θ �∈ σess(L|Y n(θ)), and since the restricted operator function L|E satisfies con-
dition I, by Corollary 2.5 we have θ ∈ σe(L|Y n(θ)), i.e., QY n(θ) L(θ)y = 0 for same
y ∈ Y n(θ) \ {0}. Then by the assertion 2) of Theorem 3.2, θ ∈ σe(L) = σ+

e (L) in [a, b].
This implies y ∈ Y n

+ (θ) and L(θ)y = 0. Since θ ∈ [θn+1, θn] two cases are possible. Let
θ = θn. Then y ∈ Xn. But Xn ∩ Y n

+ (θn) = ∅. We now have a contradiction: y = 0.
Therefore θ = θn+1 and γn(θn+1) = θn+1. ✷

Finally, we give a variational principle for eigenvalues of the first kind.

Theorem 3.4 Under conditions of Theorem 3.3

λn+1 = min
E∈En

sup
E∩H+

p+(x). (3.6)

Proof. By Lemma 2.3 we have

sup
E∩H+

p+(x) ≥ λn+1 for E ∈ En. (3.7)

On the other hand, it follows from Theorem 3.3 that there is a subspace E with codimE =
n satisfying

sup
E∩H+

p+(x) = λn+1. (3.8)

Indeed, setting E = Y n(θn+1) we have supE∩H+
p(x) = λn+1.

Now (3.6) follows from (3.7) and (3.8). ✷
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