Uniqueness of Coprimary Decompositions

M. Maani-Shirazi and P. F. Smith

Abstract

Uniqueness properties of coprimary decompositions of modules over non-commutative rings are presented.

Key Words: Coprimary, decomposition, normal decomposition, prime ideal, left Noetherian ring, right Noetherian ring.

1. Introduction

Throughout this paper, R is a ring (not necessarily commutative) with an identity element $1 \neq 0$ and M is a non-zero unital left R-module. For any submodules N, L of M, we define $(N: L)=\{r \in R: r L \subseteq N\}$. Note that $(N: L)$ is an ideal of R. Moreover, ($N: L$) $=R$ if and only if $L \subseteq N$. Let N be a submodule of M and let A be an ideal of R; we set $\left(N:_{M} A\right)=\{m \in M: A m \subseteq N\}$. Note that $\left(N:_{M} A\right)$ is a submodule of M.

In this paper, by making use of the technique employed in [7], we shall prove uniqueness properties of coprimary decompositions.

Note that, when R is a commutative Noetherian ring, M is coprimary if and only if M is secondary. It is well known that every non-zero injective module over a commutative Noetherian ring has a secondary representation (see [6]). By a similar method to that used in [6], we obtain the following result. For R non-commutative left and right Noetherian we show that if M is injective and if the zero ideal of R is a finite intersection of strongly primary ideals, then M has a coprimary decomposition.

MAANI SHIRAZI, SMITH

2. Coprimary Decompositions

Definition. Given a prime ideal P of R, a non-zero module M is called P-coprimary if
(i) $(N: M) \subseteq P$ for every proper submodule N of M, and
(ii) $P^{h} \subseteq(0: M)$ for some positive integer h.

Note that if M is P-coprimary, then $P^{h} \subseteq(0: M) \subseteq P$ for some positive integer h. M is called coprimary if it is P-coprimary for some prime ideal P of R.

A non-zero module M has a coprimary decomposition if there exist a positive integer n and submodules $M_{i}(1 \leq i \leq n)$ of M such that
(i) $M=M_{1}+\cdots+M_{n}$, and
(ii) M_{i} is coprimary for each $1 \leq i \leq n$.

If M has a coprimary decomposition, then we say that M has a normal coprimary decomposition if there exist a positive integer n, distinct prime ideals $P_{i}(1 \leq i \leq n)$ of R, and P_{i}-coprimary submodules $M_{i}(1 \leq i \leq n)$ of M such that
(i) $M=M_{1}+\cdots+M_{n}$, and
(ii) $M \neq M_{1}+\cdots+M_{i-1}+M_{i+1}+\cdots+M_{n}$ for all $1 \leq i \leq n$.

Lemma 2.1. Let P be a prime ideal of R and let M be a P-coprimary module. Then M / K is a P-coprimary R-module for each proper submodule K of M.

Proof. This is clear.
Corollary 2.2. If M has a coprimary decomposition, then M / K has a coprimary decomposition for every proper submodule K of M.

Proof. There exist a positive integer n and coprimary submodules $M_{i}(1 \leq i \leq n)$ of M such that $M=M_{1}+\cdots+M_{n}$. Then $M / K=\left(\left(M_{1}+K\right) / K\right)+\cdots+\left(\left(M_{n}+K\right) / K\right)$. Then, for each $1 \leq i \leq n,\left(M_{i}+K\right) / K \cong M_{i} /\left(M_{i} \cap K\right)$ so that $\left(M_{i}+K\right) / K=0$ or $\left(M_{i}+K\right) / K$ is coprimary by Lemma 2.1.

Lemma 2.3. Let P be a prime ideal of R, let n be a positive integer, and let $M_{i}(1 \leq i \leq n)$ be non-zero left R-modules. Then the R-module $M_{1} \oplus \cdots \oplus M_{n}$ is P-coprimary if and only if M_{i} is P-coprimary for each $1 \leq i \leq n$.

Proof. (\Rightarrow) This follows from Lemma 2.1.
(\Leftarrow) Let N be a proper submodule of the module $M=M_{1} \oplus \cdots \oplus M_{n}$. There exists $1 \leq i \leq n$ such that $M_{i} \nsubseteq N$. Then $\left(M_{i}+N\right) / N \cong M_{i} /\left(M_{i} \cap N\right)$ and $M_{i} \cap N$ is a proper
submodule of M_{i} so that $(N: M) \subseteq\left(N: M_{i}+N\right) \subseteq P$. There exists a positive integer h such that $P^{h} \subseteq\left(0: M_{i}\right)$ for each $1 \leq i \leq n$. Then $P^{h} \subseteq \bigcap_{i=1}^{n}\left(0: M_{i}\right)=(0: M)$. Thus M is P-coprimary.

Corollary 2.4. Let P be a prime ideal of R, let n be a positive integer, and let $M_{i}(1 \leq i \leq n)$ be P-coprimary submodules of M. Then the submodule $M_{1}+\cdots+M_{n}$ of M is a P-coprimary R-module.

Proof. This follows from Lemmas 2.1 and 2.3.
Corollary 2.5. If M has a coprimary decomposition, then M has a normal coprimary decomposition.

Proof. This follows from Corollary 2.4.

One can easily prove the following result.
Lemma 2.6. Let P be a prime ideal of R and let M be a semisimple module. Then the following statements are equivalent.
(i) M is P-coprimary.
(ii) Every non-zero submodule of M is P-coprimary.
(iii) Every simple submodule of M is P-coprimary.

Corollary 2.7. Let M be a semisimple module. Then M has a coprimary decomposition if and only if the set $\{(0: N): N$ is a simple submodule of $M\}$ is finite.

Proof. This follows from Lemma 2.6.
Lemma 2.8. Let P be a prime ideal of R. Then M is P-coprimary if and only if, for every ideal A of $R, M=A M$ if $A \nsubseteq P$ and there exists a positive integer h such that $A^{h} M=0$ if $A \subseteq P$.

Proof. This is straightforward.
Lemma 2.9. If M has a coprimary decomposition, then for each ideal A of R there exists a positive integer h such that $M=A M+\left(0:_{M} A^{h}\right)$.

Proof. There exist a positive integer n, prime ideals $P_{i}(1 \leq i \leq n)$ of R, and $P_{i^{-}}$
coprimary submodules $M_{i}(1 \leq i \leq n)$ of M such that $M=M_{1}+\cdots+M_{n}$. Let A be an ideal of R. For each $1 \leq i \leq n$, Lemma 2.8 gives $M_{i}=A M_{i}$ or $M_{i} \subseteq\left(0:_{M} A^{h_{i}}\right)$ for some positive integer h_{i}. Let $h=\max _{1 \leq i \leq n} h_{i}$. Then $M_{i} \subseteq A M+\left(0:_{M} A^{h}\right)$ for all $1 \leq i \leq n$. It follows that $M=A M+\left(0:_{M} A^{h}\right)$.

We shall be interested in the following property of a ring R.
(P) For every proper ideal A of R there exists a positive integer n such that $B^{n} \subseteq A$ for every ideal B of R with $B^{h} \subseteq A$ for some positive integer h.

Note that any ring which has the ascending chain condition on two-sided ideals or any ring in which prime ideals are finitely generated left ideals satisfies the property (P) (see [3, Lemma 3.1]).

Lemma 2.10. R satisfies (P) if and only if for every proper ideal A of R, the sum of all nilpotent ideals of the ring R / A is also a nilpotent ideal of R / A.

Proof. (\Leftarrow) This is clear.
(\Rightarrow) Let C be the ideal of R containing A such that C / A is the sum of all nilpotent ideals of the $\operatorname{ring} R / A$. Let n be the positive integer in the property (P). Let $c_{i} \in$ $C(1 \leq i \leq n)$. There exist a positive integer h and ideals $B_{j}(1 \leq j \leq h)$ of R such that $B_{j}^{n} \subseteq A \subseteq B_{j}(1 \leq j \leq h)$ and $c_{i} \in B_{1}+\cdots+B_{h}(1 \leq i \leq n)$. Note that $\left(B_{1}+\cdots+B_{h}\right)^{h n} \subseteq A$ and hence $\left(B_{1}+\cdots+B_{h}\right)^{n} \subseteq A$. This implies that $c_{1} \cdots c_{n} \in A$. Thus $C^{n} \subseteq A$.

Lemma 2.11. Let R satisfy the property (P). Then M is coprimary if and only if for every ideal A of R either $M=A M$ or $A^{h} M=0$ for some positive integer h.

Proof. (\Rightarrow) This follows from Lemma 2.8.
(\Leftarrow) Let P be the ideal of R containing $A=(0: M)$ such that P / A is the sum of all nilpotent ideals of the ring R / A. By Lemma 2.10, there exists a positive integer n such that $P^{n} \subseteq A$. Let B, C be ideals of R such that $B C \subseteq P$. If $M=B M$ and $M=C M$, then $M=B M=B C M \subseteq P M$ so that $M=P M=P^{2} M=\cdots=P^{n} M=0$, a contradiction. Thus $M \neq B M$ or $M \neq C M$. By the hypothesis, $B \subseteq P$ or $C \subseteq P$. It follows that P is a prime ideal of R and hence M is P-coprimary by Lemma 2.8.

Next we give an example to show that in Lemma 2.11 the condition on R is necessary.

Example 2.12. Let p be any prime number, let F be a field of characteristic p, let G be the Prüfer p-group, and let R be the group algebra $F[G]$. (See [2, p.37] for the definition of Prüfer groups). Then R is a commutative ring with unique maximal ideal $J=\sum_{g \in G} R(g-1)$ and J is a nil ideal of R such that $J=J^{2}$. If A is any ideal of R then A is nilpotent unless $A=J$ or $A=R$. Now let M denote the R-module J. Then, for any ideal A of $R, M=A M$ or $A^{k} M=0$ for some positive integer k. However, M is not coprimary because J is the only prime ideal of R and $M=J M$.

Theorem 2.13. Let M have a coprimary decomposition. Let $M=K_{1}+\cdots+K_{s}$ and $M=L_{1}+\cdots+L_{t}$ be normal coprimary decompositions of M where K_{i} is P_{i} coprimary for some prime ideal $P_{i}(1 \leq i \leq s)$ and L_{j} is Q_{j}-coprimary for some prime ideal $Q_{j}(1 \leq j \leq t)$. Then $s=t$ and $\left\{P_{1}, \ldots, P_{s}\right\}=\left\{Q_{1}, \ldots, Q_{t}\right\}$.

Proof. Without loss of generality, we can suppose that P_{1} is maximal in the set $\left\{P_{1}, \ldots, P_{s}\right\} \cup\left\{Q_{1}, \ldots, Q_{t}\right\}$. There exists a positive integer n such that $P_{1}^{n} K_{1}=0$. Thus

$$
P_{1}^{n} M=P_{1}^{n} K_{1}+\cdots+P_{1}^{n} K_{s} \subseteq K_{2}+\cdots+K_{s}
$$

also

$$
P_{1}^{n} M=P_{1}^{n} L_{1}+\cdots+P_{1}^{n} L_{t}
$$

Because $M \neq P_{1}^{n} M$, there exists a positive integer j such that $1 \leq j \leq t$ and $L_{j} \neq P_{1}^{n} L_{j}$ and hence $P_{1}^{n} \subseteq Q_{j}$ by Lemma 2.8. This implies that $P_{1} \subseteq Q_{j}$. Without loss of generality, we can suppose that $j=1$ and hence $P_{1}=Q_{1}$. We can suppose that $P_{1}^{n} K_{1}=Q_{1}^{n} L_{1}=0$. Then Lemma 2.8 gives

$$
P_{1}^{n} M=P_{1}^{n} K_{1}+\cdots+P_{1}^{n} K_{s}=K_{2}+\cdots+K_{s},
$$

and

$$
P_{1}^{n} M=P_{1}^{n} L_{1}+\cdots+P_{1}^{n} L_{t}=L_{2}+\cdots+L_{t}
$$

By induction, $s=t$ and $\left\{P_{i}: 2 \leq i \leq s\right\}=\left\{Q_{j}: 2 \leq j \leq s\right\}$. The result follows.
In view of Theorem 2.13, we call prime ideals $P_{i}(1 \leq i \leq s)$ of R the coassociated prime ideals of M provided there exists a normal coprimary decomposition $M=K_{1}+\cdots+K_{s}$,
where K_{i} is a P_{i}-coprimary submodule of M for each $1 \leq i \leq s$.
Theorem 2.14. Let M have a coprimary decomposition and let $P_{i}(1 \leq i \leq n)$ be the coassociated prime ideals of M, for some positive integer n. Suppose that there exists $1 \leq$ $k \leq n$ such that for all $1 \leq i \leq k$ and all $k+1 \leq j \leq n, P_{j} \nsubseteq P_{i}$. Let $M=M_{1}+\cdots+M_{n}$ and $M=L_{1}+\cdots+L_{n}$ be normal coprimary decompositions of M in terms of P_{i}-coprimary submodules M_{i} and $L_{i}(1 \leq i \leq n)$. Then $M_{1}+\cdots+M_{k}=L_{1}+\cdots+L_{k}$.

Proof. There exists a positive integer s such that $P_{j}^{s} M_{j}=P_{j}^{s} L_{j}=0(k+1 \leq j \leq n)$. Let $A=P_{k+1}^{s} \cdots P_{n}^{s}$. Then for all $1 \leq i \leq k, A \nsubseteq P_{i}$ so that $M_{i}=A M_{i}$ and $L_{i}=A L_{i}$. Now we have

$$
A M=A M_{1}+\cdots+A M_{k}+A M_{k+1}+\cdots+A M_{n}=M_{1}+\cdots+M_{k}
$$

and

$$
A M=A L_{1}+\cdots+A L_{k}+A L_{k+1}+\cdots+A L_{n}=L_{1}+\cdots+L_{k}
$$

Thus $M_{1}+\cdots+M_{k}=L_{1}+\cdots+L_{k}$.
Let P be a prime ideal of $R . M^{P}$ is defined to be the intersection $\cap A M$, where A runs over the ideals of R not contained in P.

Remark 2.15. Let $M=M_{1}+\cdots+M_{n}$ and $M=L_{1}+\cdots+L_{n}$ be normal coprimary decompositions of M where n is a positive integer and, for each $1 \leq i \leq n, M_{i}$ and L_{i} are P_{i}-coprimary submodules of M for some prime ideal P_{i} of R. If P_{j} is minimal in the set $\left\{P_{1}, \ldots, P_{n}\right\}$, then $M_{j}=L_{j}$ by Theorem 2.14. Moreover, we have also $M_{j}=L_{j}=M^{P_{j}}$ (see [5]).

Next, we give a characterization of the coassociated prime ideals of M with coprimary decomposition.

Theorem 2.16. Let P be a prime ideal of R and let M have a coprimary decomposition. Then P is a coassociated prime ideal of M if and only if $P=(K: M)$ for some proper submodule K of M.

Proof. Let $M=M_{1}+\cdots+M_{n}$ be a normal coprimary decomposition of M where n is a positive integer and, for each $1 \leq i \leq n, M_{i}$ is a P_{i}-coprimary submodule of M for some prime ideal P_{i} of R. Let P be a coassociated prime ideal of M. Without loss of generality, we can suppose that $P=P_{1}$. There exists a positive integer k such that $P^{k} M_{1}=0$. Thus
$M=M_{1}+M_{2}+\cdots+M_{n}$ but $M \neq P^{k} M_{1}+M_{2}+\cdots+M_{n}$. There exists $1 \leq j \leq k$ such that $M=P^{j-1} M_{1}+M_{2}+\cdots+M_{n}$ but $M \neq P^{j} M_{1}+M_{2}+\cdots+M_{n}$. Let K denote the proper submodule $P^{j} M_{1}+M_{2}+\cdots+M_{n}$.

Let $A=(K: M)$. Clearly $P M \subseteq K$ gives $P \subseteq A$. If $P \neq A$, then $M_{1}=A M_{1}$ and hence $M_{1} \subseteq A M \subseteq K$ so that $K=M$, a contradiction. Thus $P=A$.

Conversely, let Q be a prime ideal of R such that $Q=(N: M)$ for some proper submodule N of M. There exists $1 \leq i \leq n$ such that $M_{i} \nsubseteq N$. Without loss of generality, we can suppose that there exists $1 \leq t \leq n$ such that $M_{i} \nsubseteq N$ for all $1 \leq i \leq t$ but $M_{i} \subseteq N$ for all $t+1 \leq i \leq n$. For each $1 \leq i \leq t, M_{i} \cap N$ is a proper submodule of M_{i} and $Q M_{i} \subseteq M_{i} \cap N$ so that $Q \subseteq P_{i}$. There exists a positive integer s such that $P_{i}^{s} M_{i}=0(1 \leq i \leq t)$. Now $M=M_{1}+\cdots+M_{n}=M_{1}+\cdots+M_{t}+N$ and hence $\left(P_{1}^{s} \cdots P_{t}^{s}\right) M \subseteq N$ so that $P_{1}^{s} \cdots P_{t}^{s} \subseteq Q$. It follows that there exists $1 \leq j \leq t$ such that $P_{j} \subseteq Q$ and hence $P_{j}=Q$. Therefore Q is a coassociated prime ideal of R.

Lemma 2.17. If M has a coprimary decomposition, then every minimal prime ideal over $A=(0: M)$ is a coassociated prime ideal of M.

Proof. Let $M=M_{1}+\cdots+M_{n}$ be a normal coprimary decomposition of M where n is a positive integer and, for each $1 \leq i \leq n, M_{i}$ is a P_{i}-coprimary submodule of M for some prime ideal P_{i} of R. Then $A=\bigcap_{i=1}^{n}\left(0: M_{i}\right)$. Suppose Q is a minimal prime ideal of A. There exists $1 \leq i \leq n$ such that $A \subseteq\left(0: M_{i}\right) \subseteq Q$. So $Q=P_{i}$.

Lemma 2.18. Let R be a prime left or right Noetherian ring and let $M=P M$ for all non-zero prime ideals P of left R-module. Then M is 0 -coprimary.

Proof. Let A be a non-zero ideal of R. There exist a positive integer n, prime ideals $P_{i}(1 \leq i \leq n)$ of R such that $P_{1} \cdots P_{n} \subseteq A \subseteq P_{1} \cap \cdots \cap P_{n}$. But $M=P_{i} M$ for all $1 \leq i \leq n$. So $M=P_{n} M=\cdots=P_{1} \cdots P_{n} M \subseteq A M$ and hence $M=A M$. Lemma 2.8 yields that M is 0 -coprimary.

Remark 2.19. Let R be left or right Noetherian. Then there exists a prime ideal P of R such that $P M \neq M$. For, suppose that $Q M=M$ for all prime ideals Q of R. There exist a positive integer n and prime ideals $P_{i}(1 \leq i \leq n)$ of R such that $0=P_{1} \cdots P_{n}$.

MAANI SHIRAZI, SMITH

Then we have $M=P_{n} M=\cdots=P_{1} \cdots P_{n} M=0$, a contradiction.
Corollary 2.20. Let R be left or right Noetherian. Then M has a coprimary quotient R-module.

Proof. Since R is left or right Noetherian and by Remark 2.19, there exists a prime ideal P of R such that $P M \neq M$ but $Q M=M$ for all prime ideals Q of R properly containing P. Then $M / P M$ is a 0 -coprimary (R / P)-module by Lemma 2.18 which implies that $M / P M$ is a P-coprimary R-module.

For any non-empty set $I, M^{(I)}$ is the direct sum $\bigoplus_{i \in I} M_{i}$, where $M_{i}=M(i \in I)$.
The prime radical, \sqrt{A}, of an ideal A of R is defined to be the intersection of all prime ideals which contain A.

Lemma 2.21. Let P be a prime ideal of R and let M be P-coprimary. Then $M^{(I)}$ is a P-coprimary R-module for every non-empty set I.

Proof. We have $\sqrt{\left(0: M^{(I)}\right)}=\sqrt{(0: M)}=P$. There exists a positive integer n such that $P^{n} M=0$. Let A be an ideal of R. If $A \subseteq P$ then $A^{n} M^{(I)}=\left(A^{n} M\right)^{(I)} \subseteq$ $\left(P^{n} M\right)^{(I)}=0$. Now suppose that $A \nsubseteq P$. Then $A M=M$ and so $A M^{(I)}=(A M)^{(I)}=$ $M^{(I)}$. By Lemma 2.8, $M^{(I)}$ is P-coprimary.

Recall that any left R-module is M-generated if it is a quotient module of $M^{(I)}$ for some non-empty set I.

Corollary 2.22. If M has a coprimary decomposition, then any non-zero M-generated R-module has a coprimary decomposition.

Proof. Let $M=M_{1}+\cdots+M_{n}$ be a coprimary decomposition of M where n is a positive integer and, for each $1 \leq i \leq n, M_{i}$ is a P_{i}-coprimary submodule of M for some prime ideal P_{i} of R. Let I be a non-empty set. Then we have $M^{(I)}=M_{1}^{(I)}+\cdots+M_{n}^{(I)}$. Lemma 2.21 yields that $M_{i}^{(I)}$ is P_{i}-coprimary for each $1 \leq i \leq n$. Hence $M^{(I)}$ has a coprimary decomposition. Corollary 2.2 completes the proof.

Remark 2.23. Let P be a maximal ideal of R. Then M is P-coprimary if and only if $P^{n} M=0$ for some positive integer n. In this case, every non-zero submodule of M is

MAANI SHIRAZI, SMITH

also P-coprimary.
Theorem 2.24. The following statements are equivalent.
(i) Every non-zero left R-module has a coprimary decomposition.
(ii) The left R-module R has a coprimary decomposition.
(iii) There exist positive integers n, h and maximal ideals $P_{i}(1 \leq i \leq n)$ of R such that $P_{1}^{h} \cap \cdots \cap P_{n}^{h}=0$.

Proof. $(i) \Rightarrow(i i)$ This is clear.
(ii) \Rightarrow (i) This follows from Corollary 2.22.
(ii) \Rightarrow (iii) Let $R=A_{1}+\cdots+A_{n}$ be a coprimary decomposition of the left R-module R where n is a positive integer and, for each $1 \leq i \leq n, A_{i}$ is a P_{i}-coprimary submodule of the left R-module R for some prime ideal P_{i} of R. There exists a positive integer h such that $P_{i}^{h} A_{i}=0$ for each $1 \leq i \leq n$ and so $P_{1}^{h} \cap \cdots \cap P_{n}^{h}=0$. Note that any prime ring which has a coprimary decomposition as a left module over itself has only two ideals. Let P be a prime ideal of R. Then the ring R / P is prime with coprimary decomposition as a module over itself. So R / P has only two ideals, i.e., P is maximal. We have shown that every prime ideal of R is maximal. The result follows.
(iii) \Rightarrow (ii) We have $R \cong R / P_{1}^{h} \bigoplus \cdots \bigoplus R / P_{n}^{h}$ as left R-modules. It follows that R has a coprimary decomposition as a left R-module by Remark 2.23.

There are modules in which every non-zero submodule has a coprimary decomposition (see [5]). In certain situations it is possible to write down explicitly a normal coprimary decomposition for a non-zero module once its coassociated prime ideals are known, as we show next.

Theorem 2.25. Suppose that every non-zero submodule of M has a coprimary decomposition. Let N be a non-zero submodule of M and let $P_{i}(1 \leq i \leq k)$ be the coassociated prime ideals of N. Then there exists a positive integer h such that $N=\left(0:_{N}\right.$ $\left.P_{1}^{h}\right)^{P_{1}}+\cdots+\left(0:_{N} P_{k}^{h}\right)^{P_{k}}$ is a normal coprimary decomposition of N.

Proof. Let $N=N_{1}+\cdots+N_{k}$ be a normal coprimary decomposition of N where k is a positive integer and, for each $1 \leq i \leq k, N_{i}$ is a P_{i}-coprimary submodule of N for some prime ideal P_{i} of $R(1 \leq i \leq k)$. There exists a positive integer h such that $P_{i}^{h} N_{i}=0(1 \leq i \leq k)$. Then, for each $1 \leq i \leq k$, we have

$$
N_{i}=N_{i}^{P_{i}} \subseteq\left(0:_{N} P_{i}^{h}\right)^{P_{i}} \subseteq\left(0:_{N} P_{i}^{h}\right) \subseteq N
$$

and so

$$
P_{i}^{h} \subseteq\left(0:\left(0:_{N} P_{i}^{h}\right)\right) \subseteq\left(0:\left(0:_{N} P_{i}^{h}\right)^{P_{i}}\right) \subseteq\left(0: N_{i}\right) \subseteq P_{i}
$$

For each $1 \leq i \leq k, \sqrt{\left(0:\left(0:_{N} P_{i}^{h}\right)^{P_{i}}\right)}=\sqrt{\left(0:\left(0:_{N} P_{i}^{h}\right)\right)}=P_{i}$ and by the hypothesis ($0:_{N} P_{i}^{h}$) has a coprimary decomposition so that P_{i} is the only minimal member in the set of coassociated prime ideals of $\left(0:_{N} P_{i}^{h}\right)$. Hence by Remark 2.15, $\left(0:_{N} P_{i}^{h}\right)^{P_{i}}$ is P_{i}-coprimary for each $1 \leq i \leq n$ so that $N=\left(0:_{N} P_{1}^{h}\right)^{P_{1}}+\cdots+\left(0:_{N} P_{k}^{h}\right)^{P_{k}}$ is a normal coprimary decomposition of N.

Let A be an ideal of R. Then A is said to be left primary if, given any two ideals B and C of R such that $B C \subseteq A$, then either $C \subseteq A$ or $B^{n} \subseteq A$ for some positive integer n. In a similar way we can define right primary. A is said to be primary if it is both left and right primary. If R is left and right Noetherian and if A is a proper ideal of R, which is primary, then $P=\sqrt{A}$ is prime such that $P^{n} \subseteq A$ for some positive integer n. In this case, A is called P-primary. If A is a proper ideal of R, then $C(A)$ will denote the set of elements c in R such that $c+A$ is a non-zero-divisor in R / A. Clearly, $c \in C(A)$ if and only if, for any $r \in R, c r \in A$ or $r c \in A$ implies $r \in A$. The ideal A of R is said to be strongly primary if A is primary and $C(A)=C(\sqrt{A})$.

In [6], it is proved that every non-zero injective module over a commutative Noetherian ring has a secondary representation. By a similar method, we prove Theorem 2.28.

Lemma 2.26. Let R be left and right Noetherian, let A be a strongly P-primary ideal of R, and let M be an injective R-module. Then $N=\left(0:_{M} A\right)$ is zero or coprimary.

Proof. Suppose N is a non-zero submodule of M. Let B be an ideal of R. If $B \subseteq P$, then $B^{h} N \subseteq P^{h} N \subseteq A N=0$ for some positive integer h. Now suppose $B \nsubseteq P$. Clearly $B N \subseteq N$. Let $n \in N$. There is a left R-module homomorphism $\varphi: R / A \rightarrow M$ for which $\varphi(r+A)=r n$ for all $r \in R$. Since $B \nsubseteq P,(B+P) / P$ is a non-zero ideal of the prime left and right Noetherian ring R / P. By Goldie's Theorem, there exists an element $b \in B \cap C(P)$. Define a mapping $\theta: R / A \rightarrow R / A$ by $\theta(r+A)=r b+A$ for all $r \in R$. Since $b \in B \cap C(P)$ and A is strongly P-primary, θ is a left R-module monomorphism. As the diagram

$$
\begin{aligned}
0 \rightarrow & R / A \xrightarrow{\theta} R / A \\
& \varphi \downarrow \\
& M
\end{aligned}
$$

has exact row, it can be completed with a left R-module homomorphism $\psi: R / A \rightarrow M$ which makes the extended diagram commute. Thus $n=\varphi(1+A)=\psi \theta(1+A)=$ $\psi(b+A)=b \psi(1+A)$. Since $\psi(1+A) \in N, n \in b N \subseteq B N$. We have shown that $N \subseteq B N$. The result follows.

For the proof of the next result see [6, Lemma 2.2].
Lemma 2.27. Let M be injective, let n be a positive integer, and let $A_{i}(1 \leq i \leq n)$ be ideals of R. Then $\sum_{i=1}^{n}\left(0:_{M} A_{i}\right)=\left(0:_{M} \bigcap_{i=1}^{n} A_{i}\right)$.

Theorem 2.28. Let R be left and right Noetherian such that the zero ideal of R is a finite intersection of strongly primary ideals. Then every non-zero injective R-module has a coprimary decomposition.

Proof. Let n be a positive integer and let $A_{i}(1 \leq i \leq n)$ be strongly primary ideals of R such that $0=\bigcap_{i=1}^{n} A_{i}$. Let M be a non-zero injective R-module. Then $M=\left(0:_{M} 0\right)=$ $\left(0:_{M} \bigcap_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n}\left(0:_{M} A_{i}\right)$, where $\left(0:_{M} A_{i}\right)$ is zero or coprimary for all $1 \leq i \leq n$.

Note that the condition on R in Theorem 2.28 is satisfied if R is the universal enveloping algebra of a finite-dimensional nilpotent Lie algebra (see [1, p.78] and [4]).

References

[1] Chatters, A. W. and Hajarnavis, C. R.: Non-commutative rings with primary decomposition, Quart. J. Math. Oxford (2) 22, 73-83 (1971).
[2] Hungerford, T. W.: Algebra, Springer-Verlag, New York, 1974.
[3] Krause, G.: On fully left bounded left Noetherian rings, J. Algebra 23 (1), 88-99 (1972).
[4] McConnell, J. C.: The intersection theorem for a class of non-commutative rings, Proc. London Math. Soc. 17 (3), 487-498 (1967).
[5] Mogami, I. and Tominaga, H.: On coprimary decomposition theory for modules, Math. J. Okayama Univ. 17 (2), 125-130 (1975).
[6] Sharp, R. Y.: Secondary representations for injective modules over commutative Noetherian rings, Proc. Edinburgh Math. Soc. (2) 20 (2), 143-151 (1976).
[7] Smith, P. F.: Uniqueness of primary decompositions, Turkish J. Math. 27 (3), 425-434 (2003).
M. MAANI-SHIRAZI

Received 07.07.2005
Department of Mathematics,
College of Sciences, Shiraz University,
Shiraz 71454, IRAN
e-mail: liliumsor7@yahoo.com
P. F. SMITH

Department of Mathematics, University of Glasgow,
Glasgow, G12 8QW, Scotland, UK
e-mail: pfs@maths.gla.ac.uk

