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Uniqueness of Coprimary Decompositions
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Abstract

Uniqueness properties of coprimary decompositions of modules over non-commutative

rings are presented.

Key Words: Coprimary, decomposition, normal decomposition, prime ideal, left
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1. Introduction

Throughout this paper, R is a ring (not necessarily commutative) with an identity
element 1 # 0 and M is a non-zero unital left R-module. For any submodules N, L of
M, we define (N : L) = {r € R:rL C N}. Note that (N : L) is an ideal of R. Moreover,
(N :L)=Rifand only if L C N. Let N be a submodule of M and let A be an ideal of
R; we set (N :pp A) ={m € M : Am C N}. Note that (N :ps A) is a submodule of M.

In this paper, by making use of the technique employed in [7], we shall prove unique-

ness properties of coprimary decompositions.

Note that, when R is a commutative Noetherian ring, M is coprimary if and only if M
is secondary. It is well known that every non-zero injective module over a commutative
Noetherian ring has a secondary representation (see [6]). By a similar method to that used
in [6], we obtain the following result. For R non-commutative left and right Noetherian
we show that if M is injective and if the zero ideal of R is a finite intersection of strongly

primary ideals, then M has a coprimary decomposition.
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2. Coprimary Decompositions

Definition. Given a prime ideal P of R, a non-zero module M is called P-coprimary if

(i) (N : M) C P for every proper submodule N of M, and

(ii) P" C (0 : M) for some positive integer h.

Note that if M is P-coprimary, then PP C (0: M) C P for some positive integer h.
M s called coprimary if it is P-coprimary for some prime ideal P of R.

A non-zero module M has a coprimary decomposition if there exist a positive integer
n and submodules M;(1 < i <mn) of M such that

(i) M =My +---+ M,, and

(i) M; is coprimary for each 1 < i < mn.

If M has a coprimary decomposition, then we say that M has a normal coprimary
decomposition if there exist a positive integer n, distinct prime ideals P;(1 <1i <n) of R,
and P;-coprimary submodules M;(1 <i < n) of M such that

(i) M =My +---+ M,, and

(i5) M £ My + -+ M1+ M1+ + M, foralll1 <i<n.

Lemma 2.1. Let P be a prime ideal of R and let M be a P-coprimary module. Then
M/K is a P-coprimary R-module for each proper submodule K of M.

Proof. This is clear. O

Corollary 2.2. If M has a coprimary decomposition, then M/K has a coprimary

decomposition for every proper submodule K of M.

Proof. There exist a positive integer n and coprimary submodules M;(1 < i < n) of M
such that M = My +---4+ M,,. Then M/K = (M1 + K)/K)+---+ (M, + K)/K).
Then, for each 1 < i < n, (M; + K)/K = M;/(M; N K) so that (M; + K)/K = 0 or
(M; + K)/K is coprimary by Lemma 2.1. O

Lemma 2.3. Let P be a prime ideal of R, let n be a positive integer, and let M;(1 < i <n)
be non-zero left R-modules. Then the R-module My & --- & M, is P-coprimary if and
only if M; is P-coprimary for each 1 < i <mn.

Proof.(=) This follows from Lemma 2.1.
(<) Let N be a proper submodule of the module M = M; & - - - @ M,,. There exists
1 <i < nsuch that M; € N. Then (M; + N)/N = M;/(M; N N) and M; NN is a proper
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submodule of M; so that (N : M) C (N : M; + N) C P. There exists a positive integer
h such that P" C (0 : M;) for each 1 <i <n. Then P* C (" (0: M;) = (0: M). Thus
i=1

M is P-coprimary. O

Corollary 2.4. Let P be a prime ideal of R, let n be a positive integer, and let
M;(1 < i <n) be P-coprimary submodules of M. Then the submodule My + - - -+ M,, of

M is a P-coprimary R-module.
Proof. This follows from Lemmas 2.1 and 2.3. a

Corollary 2.5. If M has a coprimary decomposition, then M has a normal coprimary

decomposition.

Proof. This follows from Corollary 2.4. O

One can easily prove the following result.

Lemma 2.6. Let P be a prime ideal of R and let M be a semisimple module. Then the

following statements are equivalent.
(i) M is P-coprimary.
(ii) Every non-zero submodule of M is P-coprimary.

(i4i) Every simple submodule of M is P-coprimary.

Corollary 2.7. Let M be a semisimple module. Then M has a coprimary decomposition
if and only if the set {(0: N): N is a simple submodule of M} is finite.

Proof. This follows from Lemma 2.6. O

Lemma 2.8. Let P be a prime ideal of R. Then M is P-coprimary if and only if, for
every ideal A of R,M = AM if A € P and there exists a positive integer h such that
APM =0 if AC P.

Proof. This is straightforward. O

Lemma 2.9. If M has a coprimary decomposition, then for each ideal A of R there
exists a positive integer h such that M = AM + (0 :py A").

Proof. There exist a positive integer n, prime ideals P;(1 < ¢ < n) of R, and P;-
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coprimary submodules M;(1 <4 < n) of M such that M = My 4+ ---+ M,. Let A be an
ideal of R. For each 1 <4 < n, Lemma 2.8 gives M; = AM; or M; C (0 :p; A’“) for some
positive integer h;. Let h = max h;. Then M; C AM + (0 :p; Ah) foralll <i<n. It

follows that M = AM + (0 :py A"). O

We shall be interested in the following property of a ring R.
(P) For every proper ideal A of R there exists a positive integer n such that B™ C A
for every ideal B of R with B" C A for some positive integer h.

Note that any ring which has the ascending chain condition on two-sided ideals or any
ring in which prime ideals are finitely generated left ideals satisfies the property (P) (see
[3, Lemma 3.1]).

Lemma 2.10. R satisfies (P) if and only if for every proper ideal A of R, the sum of all
nilpotent ideals of the ring R/A is also a nilpotent ideal of R/A.

Proof. (<) This is clear.

(=) Let C be the ideal of R containing A such that C'/A is the sum of all nilpotent
ideals of the ring R/A. Let n be the positive integer in the property (P). Let ¢; €
C(1 < i < n). There exist a positive integer h and ideals B;(1 < j < h) of R such
that B} C A C B;j(1 < j<h)and ¢ € By +---+ Bp(l < i < n). Note that
(By + -+ By)"™ C A and hence (By + - -+ Bj,)" C A. This implies that ¢; - - -¢, € A.
Thus C™ C A. O

Lemma 2.11. Let R satisfy the property (P). Then M is coprimary if and only if for
every ideal A of R either M = AM or A"M =0 for some positive integer h.

Proof. (=) This follows from Lemma 2.8.

(<) Let P be the ideal of R containing A = (0 : M) such that P/A is the sum of
all nilpotent ideals of the ring R/A. By Lemma 2.10, there exists a positive integer n
such that P™ C A. Let B,C be ideals of R such that BC C P. If M = BM and
M = CM, then M = BM = BOM C PM so that M = PM = P?M = ---= P"M =0,
a contradiction. Thus M # BM or M # CM. By the hypothesis, BC P or C C P. It
follows that P is a prime ideal of R and hence M is P-coprimary by Lemma 2.8.

Next we give an example to show that in Lemma 2.11 the condition on R is necessary.
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Example 2.12. Let p be any prime number, let F' be a field of characteristic p, let
G be the Priifer p-group, and let R be the group algebra F[G]. (See [2, p.37] for the
definition of Priifer groups). Then R is a commutative ring with unique mazimal ideal

J= 3 R(g—1) and J is a nil ideal of R such that J = J*. If A is any ideal of R then
geG

A is nilpotent unless A = J or A = R. Now let M denote the R-module J. Then, for
any ideal A of R, M = AM or A¥M = 0 for some positive integer k. However, M is not

coprimary because J is the only prime ideal of R and M = JM .

Theorem 2.13. Let M have a coprimary decomposition. Let M = Ky + --- + K
and M = Ly + --- 4+ Ly be normal coprimary decompositions of M where K; is P;-
coprimary for some prime ideal P;(1 < i < s) and L; is Q;j-coprimary for some prime
ideal Q;(1 <j<t). Then s =t and {Py, ..., Ps} = {Q1, ..., Q¢}.

Proof. Without loss of generality, we can suppose that P; is maximal in the set
{P1,...; P} U{Q1,...,Q:}. There exists a positive integer n such that P/*K; = 0. Thus

PI'M = PI'Ky+ -+ P'K, C Ky + -+ K,
also
P'M =P'Li+---+ P{"L;.

Because M # P['M, there exists a positive integer j such that 1 < j <t and L; # P{"L;
and hence P;* C @); by Lemma 2.8. This implies that P; C );. Without loss of generality,
we can suppose that j = 1 and hence P; = Q1. We can suppose that P"K; = Q}L, = 0.

Then Lemma 2.8 gives
P’M =P'K,+-- -+ PPKs =Ko+ -+ K,

and

P'M =P{'L1+---+ P'Ly = Lo+ -+ Ly.
By induction, s =¢ and {P; : 2 <i < s} ={Q; : 2 < j < s}. The result follows. O

In view of Theorem 2.13, we call prime ideals P;(1 < i < s) of R the coassociated prime

ideals of M provided there exists a normal coprimary decomposition M = K1 +-- -+ K,
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where K; is a P;-coprimary submodule of M for each 1 <i < s.

Theorem 2.14. Let M have a coprimary decomposition and let P;(1 < i < n) be the
coassociated prime ideals of M, for some positive integer n. Suppose that there exists 1 <
k <n such that foralll1 <i <k andallk+1<j<n, P; € FP;. Let M = My +---+ M,
and M = L1+ - -+ L, be normal coprimary decompositions of M in terms of P;-coprimary
submodules M; and L;(1 <i<mn). Then My +---+ My =Ly +---+ L.

Proof. There exists a positive integer s such that P°M; = P7L; = 0k+1<j<n).
Let A= P;,,---P;. Then forall1 <i <k, AZ P; so that M; = AM; and L; = AL;.

Now we have
AM =AMy + -+ AMy + AMy4q1 + -+ -+ AM,, = My + - - - + My,

and
AM = ALy 4 -+ ALy + ALjy + -+ ALy = Ly + -+ L.

Let P be a prime ideal of R. M?¥ is defined to be the intersection NAM, where A

runs over the ideals of R not contained in P.

Remark 2.15. Let M = My +---+ M,, and M = Ly + - - -+ Ly, be normal coprimary
decompositions of M where n is a positive integer and, for each 1 <i <n,M; and L; are
P;-coprimary submodules of M for some prime ideal P; of R. If P; is minimal in the set

{P1, ..., P,}, then M; = L; by Theorem 2.1j. Moreover, we have also M; = L; = M*i
(see [5]).

Next, we give a characterization of the coassociated prime ideals of M with coprimary

decomposition.

Theorem 2.16. Let P be a prime ideal of R and let M have a coprimary decomposition.
Then P is a coassociated prime ideal of M if and only if P = (K : M) for some proper
submodule K of M.

Proof. Let M = My +---+ M, be a normal coprimary decomposition of M where n is a
positive integer and, for each 1 < ¢ < n, M; is a P;-coprimary submodule of M for some
prime ideal P; of R. Let P be a coassociated prime ideal of M. Without loss of generality,
we can suppose that P = P;. There exists a positive integer k such that P*M; = 0. Thus
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M = My + Mz +---+ M, bUtM?éPkM1+M2+---+Mn. There exists 1 < j < k such
that M = P/~"My + My +- - -+ M,, but M # P/My + Ms +---+ M,. Let K denote the
proper submodule P/ M + My + - - -+ M,,.

Let A= (K : M). Clearly PM C K gives P C A. If P # A, then My = AM; and
hence My C AM C K so that K = M, a contradiction. Thus P = A.

Conversely, let @ be a prime ideal of R such that Q@ = (N : M) for some proper
submodule N of M. There exists 1 < i < n such that M; € N. Without loss of
generality, we can suppose that there exists 1 < ¢ < n such that M; € N forall 1 <i <t
but M; C N forallt+1<i<n. Foreach 1 <i <t M,; NN is a proper submodule
of M; and QM; C M; N N so that Q C P;. There exists a positive integer s such that
P:M; =01 <i<t). NowM=M+---+M, =M +---+ M, + N and hence
(Pf---P?)M C N so that Py ---Pf C Q. Tt follows that there exists 1 < j <t such that
P; C @ and hence P; = Q. Therefore () is a coassociated prime ideal of R. O

Lemma 2.17. If M has a coprimary decomposition, then every minimal prime ideal

over A =(0: M) is a coassociated prime ideal of M.

Proof. Let M = My + -+ M, be a normal coprimary decomposition of M where

n is a positive integer and, for each 1 <i < n, M; is a P;-coprimary submodule of M for

some prime ideal P; of R. Then A = () (0: M;). Suppose @ is a minimal prime ideal of
i=1

A. There exists 1 <¢ < n such that A C (0: M;) CQ. So Q = P;. O

Lemma 2.18. Let R be a prime left or right Noetherian ring and let M = PM for

all non-zero prime ideals P of left R-module. Then M is 0-coprimary.

Proof. Let A be a non-zero ideal of R. There exist a positive integer n, prime ideals
Pi(1 <i < n)of Rsuch that P,---P, CAC P N---NPF, But M = P,M for all
1<i<n.SoM=PM-=---=P;---P,M C AM and hence M = AM. Lemma 2.8
yields that M is O-coprimary. O

Remark 2.19. Let R be left or right Noetherian. Then there exists a prime ideal P
of R such that PM # M. For, suppose that QM = M for all prime ideals Q of R. There
exist a positive integer n and prime ideals P;y(1 < i < n) of R such that 0 = Py--- P,.
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Then we have M = P,M = ---= Py --- P,M =0, a contradiction.

Corollary 2.20. Let R be left or right Noetherian. Then M has a coprimary quotient
R-module.

Proof. Since R is left or right Noetherian and by Remark 2.19, there exists a prime ideal
P of R such that PM # M but QM = M for all prime ideals @) of R properly containing
P. Then M/PM is a 0O-coprimary (R/P)-module by Lemma 2.18 which implies that
M/PM is a P-coprimary R-module. O

For any non-empty set I, M) is the direct sum @ M;, where M; = M@ el).
i€l

The prime radical, v/A, of an ideal A of R is defined to be the intersection of all prime

ideals which contain A.

Lemma 2.21. Let P be a prime ideal of R and let M be P-coprimary. Then M1 is a

P-coprimary R-module for every non-empty set I.

Proof. We have \/(0: M) = /(0: M) = P. There exists a positive integer n such
that P"M = 0. Let A be an ideal of R. If A C P then A"MW) = (A"M)() C
(P"M)) = 0. Now suppose that A € P. Then AM = M and so AM) = (AM)) =
MU, By Lemma 2.8, M) is P-coprimary. O

Recall that any left R-module is M-generated if it is a quotient module of M) for

some non-empty set I.

Corollary 2.22. If M has a coprimary decomposition, then any non-zero M -generated

R-module has a coprimary decomposition.

Proof. Let M = M;+---+ M, be a coprimary decomposition of M where n is a positive

integer and, for each 1 < i < n, M; is a P;-coprimary submodule of M for some prime
ideal P; of R. Let I be a non-empty set. Then we have M) = Ml(l) +-- -+M7(ll). Lemma
2.21 yields that Mi(l) is P;-coprimary for each 1 < i < n. Hence M) has a coprimary

decomposition. Corollary 2.2 completes the proof. O

Remark 2.23. Let P be a maximal ideal of R. Then M is P-coprimary if and only if

P"M = 0 for some positive integer n. In this case, every non-zero submodule of M is
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also P-coprimary.

Theorem 2.24. The following statements are equivalent.

(i) Every non-zero left R-module has a coprimary decomposition.

(ii) The left R-module R has a coprimary decomposition.

(i4i) There exist positive integers n,h and mazimal ideals P;(1 < i < n) of R such
that P n---N Ph =0.

Proof. (i) = (i¢) This is clear.

(#4) = (i) This follows from Corollary 2.22.

(i4) = (i4i) Let R = A1 +---+ A, be a coprimary decomposition of the left R-module
R where n is a positive integer and, for each 1 <1i < n, A; is a P;-coprimary submodule
of the left R-module R for some prime ideal P; of R. There exists a positive integer h
such that PihAi =0 for each 1 <7 < n and so Plh Nn---N P,’l’ = 0. Note that any prime
ring which has a coprimary decomposition as a left module over itself has only two ideals.
Let P be a prime ideal of R. Then the ring R/ P is prime with coprimary decomposition
as a module over itself. So R/P has only two ideals, i.e., P is maximal. We have shown
that every prime ideal of R is maximal. The result follows.

(iii) = (ii) We have R = R/P} @ ---@ R/P! as left R-modules. It follows that R

has a coprimary decomposition as a left R-module by Remark 2.23. O

There are modules in which every non-zero submodule has a coprimary decomposition
(see [5]). In certain situations it is possible to write down explicitly a normal coprimary
decomposition for a non-zero module once its coassociated prime ideals are known, as we

show next.

Theorem 2.25. Suppose that every non-zero submodule of M has a coprimary decom-
position. Let N be a non-zero submodule of M and let P;(1 < i < k) be the coasso-
ciated prime ideals of N. Then there exists a positive integer h such that N = (0 :y
PP 4 (0:n PP is a mormal coprimary decomposition of N.

Proof. Let N = Ny + .-+ N be a normal coprimary decomposition of N where k
is a positive integer and, for each 1 < ¢ < k, N; is a P;-coprimary submodule of N
for some prime ideal P; of R(1 < ¢ < k). There exists a positive integer h such that
PihNi =0(1 <i < k). Then, for each 1 < i < k, we have

Ni=N"C(:y PV C(0:xy PI)CN

(2
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and so
PrC(0:(0:xy PM)C(0:(0:x PHP)YC(0:N;)C Py

(2 (2

For each 1 <i < k,/(0: (0:x P/)P1) =+/(0:(0:5 PJ)) = P; and by the hypothesis
(0:n Pih) has a coprimary decomposition so that P; is the only minimal member in the
set of coassociated prime ideals of (0 :y P!). Hence by Remark 2.15, (0 :xy P/)% is

P;-coprimary for each 1 <i < nsothat N = (0:xy P)7 +---+(0:n P,?)P’C is a normal

coprimary decomposition of N. O

Let A be an ideal of R. Then A is said to be left primary if, given any two ideals B
and C' of R such that BC' C A, then either C' C A or B™ C A for some positive integer
n. In a similar way we can define right primary. A is said to be primary if it is both left
and right primary. If R is left and right Noetherian and if A is a proper ideal of R, which
is primary, then P = /A is prime such that P C A for some positive integer n. In this
case, A is called P-primary. If A is a proper ideal of R, then C'(A) will denote the set of
elements ¢ in R such that ¢+ A is a non-zero-divisor in R/A. Clearly, ¢ € C(A) if and
only if, for any r € R,cr € A or rc € A implies r € A. The ideal A of R is said to be
strongly primary if A is primary and C(4) = C(V/A).

In [6], it is proved that every non-zero injective module over a commutative Noetherian

ring has a secondary representation. By a similar method, we prove Theorem 2.28.

Lemma 2.26. Let R be left and right Noetherian, let A be a strongly P-primary ideal of
R, and let M be an injective R-module. Then N = (0 :pr A) is zero or coprimary.

Proof. Suppose N is a non-zero submodule of M. Let B be an ideal of R. If B C P,
then BN C P"N C AN = 0 for some positive integer h. Now suppose B € P. Clearly
BN C N. Let n € N. There is a left R-module homomorphism ¢ : R/A — M for
which ¢(r + A) = rn for all € R. Since B € P, (B + P)/P is a non-zero ideal of the
prime left and right Noetherian ring R/P. By Goldie’s Theorem, there exists an element
b € BN C(P). Define a mapping 6 : R/A — R/A by 0(r + A) = rb+ A for all » € R.
Since b € BN C(P) and A is strongly P-primary, 6 is a left R-module monomorphism.
As the diagram

0— R/ASR/A

vl
M
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has exact row, it can be completed with a left R-module homomorphism v : R/A — M
which makes the extended diagram commute. Thus n = (1 4+ A) = ¥6(1 + A) =
b+ A) = byp(l + A). Since (1 + A) € N,n € bN C BN. We have shown that
N C BN. The result follows. O

For the proof of the next result see [6, Lemma 2.2].

Lemma 2.27. Let M be injective, let n be a positive integer, and let A;(1 < i <n) be

ideals of R. Then Y (0:p A;) = (0:7 () 4As).
=1

=1 1=

Theorem 2.28. Let R be left and right Noetherian such that the zero ideal of R is a
finite intersection of strongly primary ideals. Then every non-zero injective R-module has

a coprimary decomposition.

Proof. Let n be a positive integer and let A;(1 < i < n) be strongly primary ideals of

R such that 0 = [ A;. Let M be a non-zero injective R-module. Then M = (0 :ps 0) =
=1

(0:ar ) A:) = >_(0:p A;), where (0 :pr A;) is zero or coprimary for all 1 <i<n. O

N
Il
o
o
Il
o

Note that the condition on R in Theorem 2.28 is satisfied if R is the universal

enveloping algebra of a finite-dimensional nilpotent Lie algebra (see [1, p.78] and [4]).
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