
Turk J Math

31 (2007) , 53 – 64.

c© TÜBİTAK
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Abstract

Uniqueness properties of coprimary decompositions of modules over non-commutative

rings are presented.
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1. Introduction

Throughout this paper, R is a ring (not necessarily commutative) with an identity
element 1 �= 0 and M is a non-zero unital left R-module. For any submodules N,L of
M , we define (N : L) = {r ∈ R : rL ⊆ N}. Note that (N : L) is an ideal of R. Moreover,
(N : L) = R if and only if L ⊆ N . Let N be a submodule of M and let A be an ideal of
R; we set (N :M A) = {m ∈ M : Am ⊆ N}. Note that (N :M A) is a submodule of M .

In this paper, by making use of the technique employed in [7], we shall prove unique-
ness properties of coprimary decompositions.

Note that, when R is a commutative Noetherian ring, M is coprimary if and only ifM
is secondary. It is well known that every non-zero injective module over a commutative
Noetherian ring has a secondary representation (see [6]). By a similarmethod to that used
in [6], we obtain the following result. For R non-commutative left and right Noetherian
we show that if M is injective and if the zero ideal of R is a finite intersection of strongly
primary ideals, then M has a coprimary decomposition.
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2. Coprimary Decompositions

Definition. Given a prime ideal P of R, a non-zero module M is called P -coprimary if
(i) (N : M) ⊆ P for every proper submodule N of M , and
(ii) P h ⊆ (0 : M) for some positive integer h.

Note that if M is P -coprimary, then P h ⊆ (0 : M) ⊆ P for some positive integer h.
M is called coprimary if it is P -coprimary for some prime ideal P of R.

A non-zero module M has a coprimary decomposition if there exist a positive integer
n and submodules Mi(1 ≤ i ≤ n) of M such that

(i) M = M1 + · · ·+Mn, and

(ii) Mi is coprimary for each 1 ≤ i ≤ n.
If M has a coprimary decomposition, then we say that M has a normal coprimary

decomposition if there exist a positive integer n, distinct prime ideals Pi(1 ≤ i ≤ n) of R,
and Pi-coprimary submodules Mi(1 ≤ i ≤ n) of M such that

(i) M = M1 + · · ·+Mn, and

(ii) M �= M1 + · · ·+Mi−1 +Mi+1 + · · ·+Mn for all 1 ≤ i ≤ n.

Lemma 2.1. Let P be a prime ideal of R and let M be a P -coprimary module. Then
M/K is a P -coprimary R-module for each proper submodule K of M .

Proof. This is clear. ✷

Corollary 2.2. If M has a coprimary decomposition, then M/K has a coprimary
decomposition for every proper submodule K of M .

Proof. There exist a positive integer n and coprimary submodules Mi(1 ≤ i ≤ n) of M
such that M = M1 + · · ·+ Mn. Then M/K = ((M1 + K)/K) + · · ·+ ((Mn + K)/K).
Then, for each 1 ≤ i ≤ n, (Mi + K)/K ∼= Mi/(Mi ∩ K) so that (Mi + K)/K = 0 or
(Mi +K)/K is coprimary by Lemma 2.1. ✷

Lemma 2.3. Let P be a prime ideal of R, let n be a positive integer, and letMi(1 ≤ i ≤ n)
be non-zero left R-modules. Then the R-module M1 ⊕ · · · ⊕ Mn is P -coprimary if and
only if Mi is P -coprimary for each 1 ≤ i ≤ n.

Proof.(⇒) This follows from Lemma 2.1.
(⇐) Let N be a proper submodule of the module M = M1 ⊕ · · · ⊕ Mn. There exists

1 ≤ i ≤ n such that Mi �⊆ N . Then (Mi +N)/N ∼= Mi/(Mi ∩N) and Mi ∩N is a proper
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submodule of Mi so that (N : M) ⊆ (N : Mi +N) ⊆ P . There exists a positive integer

h such that P h ⊆ (0 : Mi) for each 1 ≤ i ≤ n. Then P h ⊆
n⋂

i=1

(0 : Mi) = (0 : M). Thus

M is P -coprimary. ✷

Corollary 2.4. Let P be a prime ideal of R, let n be a positive integer, and let
Mi(1 ≤ i ≤ n) be P -coprimary submodules of M . Then the submodule M1 + · · ·+Mn of
M is a P -coprimary R-module.

Proof. This follows from Lemmas 2.1 and 2.3. ✷

Corollary 2.5. If M has a coprimary decomposition, then M has a normal coprimary
decomposition.

Proof. This follows from Corollary 2.4. ✷

One can easily prove the following result.

Lemma 2.6. Let P be a prime ideal of R and let M be a semisimple module. Then the
following statements are equivalent.

(i) M is P -coprimary.

(ii) Every non-zero submodule of M is P -coprimary.

(iii) Every simple submodule of M is P -coprimary.

Corollary 2.7. Let M be a semisimple module. Then M has a coprimary decomposition
if and only if the set {(0 : N) : N is a simple submodule of M} is finite.

Proof. This follows from Lemma 2.6. ✷

Lemma 2.8. Let P be a prime ideal of R. Then M is P -coprimary if and only if, for
every ideal A of R,M = AM if A �⊆ P and there exists a positive integer h such that
AhM = 0 if A ⊆ P .

Proof. This is straightforward. ✷

Lemma 2.9. If M has a coprimary decomposition, then for each ideal A of R there
exists a positive integer h such that M = AM + (0 :M Ah).

Proof. There exist a positive integer n, prime ideals Pi(1 ≤ i ≤ n) of R, and Pi-
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coprimary submodules Mi(1 ≤ i ≤ n) of M such that M = M1 + · · ·+Mn. Let A be an
ideal of R. For each 1 ≤ i ≤ n, Lemma 2.8 gives Mi = AMi or Mi ⊆ (0 :M Ahi) for some
positive integer hi. Let h = max

1≤i≤n
hi. Then Mi ⊆ AM + (0 :M Ah) for all 1 ≤ i ≤ n. It

follows that M = AM + (0 :M Ah). ✷

We shall be interested in the following property of a ring R.

(P ) For every proper ideal A of R there exists a positive integer n such that Bn ⊆ A

for every ideal B of R with Bh ⊆ A for some positive integer h.

Note that any ring which has the ascending chain condition on two-sided ideals or any
ring in which prime ideals are finitely generated left ideals satisfies the property (P) (see
[3, Lemma 3.1]).

Lemma 2.10. R satisfies (P) if and only if for every proper ideal A of R, the sum of all
nilpotent ideals of the ring R/A is also a nilpotent ideal of R/A.

Proof. (⇐) This is clear.

(⇒) Let C be the ideal of R containing A such that C/A is the sum of all nilpotent
ideals of the ring R/A. Let n be the positive integer in the property (P). Let ci ∈
C(1 ≤ i ≤ n). There exist a positive integer h and ideals Bj(1 ≤ j ≤ h) of R such
that Bn

j ⊆ A ⊆ Bj(1 ≤ j ≤ h) and ci ∈ B1 + · · · + Bh(1 ≤ i ≤ n). Note that

(B1 + · · ·+Bh)hn ⊆ A and hence (B1 + · · ·+Bh)n ⊆ A. This implies that c1 · · · cn ∈ A.
Thus Cn ⊆ A. ✷

Lemma 2.11. Let R satisfy the property (P). Then M is coprimary if and only if for
every ideal A of R either M = AM or AhM = 0 for some positive integer h.

Proof. (⇒) This follows from Lemma 2.8.

(⇐) Let P be the ideal of R containing A = (0 : M) such that P/A is the sum of
all nilpotent ideals of the ring R/A. By Lemma 2.10, there exists a positive integer n

such that P n ⊆ A. Let B,C be ideals of R such that BC ⊆ P . If M = BM and
M = CM , then M = BM = BCM ⊆ PM so that M = PM = P 2M = · · · = P nM = 0,
a contradiction. Thus M �= BM or M �= CM . By the hypothesis, B ⊆ P or C ⊆ P . It
follows that P is a prime ideal of R and hence M is P -coprimary by Lemma 2.8.

Next we give an example to show that in Lemma 2.11 the condition on R is necessary.
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Example 2.12. Let p be any prime number, let F be a field of characteristic p, let
G be the Prüfer p-group, and let R be the group algebra F [G]. (See [2, p.37] for the
definition of Prüfer groups). Then R is a commutative ring with unique maximal ideal
J =

∑

g∈G

R(g − 1) and J is a nil ideal of R such that J = J2. If A is any ideal of R then

A is nilpotent unless A = J or A = R. Now let M denote the R-module J . Then, for
any ideal A of R, M = AM or AkM = 0 for some positive integer k. However, M is not
coprimary because J is the only prime ideal of R and M = JM .

Theorem 2.13. Let M have a coprimary decomposition. Let M = K1 + · · · + Ks

and M = L1 + · · · + Lt be normal coprimary decompositions of M where Ki is Pi-
coprimary for some prime ideal Pi(1 ≤ i ≤ s) and Lj is Qj-coprimary for some prime
ideal Qj(1 ≤ j ≤ t). Then s = t and {P1, ..., Ps} = {Q1, ..., Qt}.

Proof. Without loss of generality, we can suppose that P1 is maximal in the set
{P1, ..., Ps} ∪ {Q1, ..., Qt}. There exists a positive integer n such that P n

1 K1 = 0. Thus

P n
1 M = P n

1 K1 + · · ·+ P n
1 Ks ⊆ K2 + · · ·+Ks,

also

P n
1 M = P n

1 L1 + · · ·+ P n
1 Lt.

Because M �= P n
1 M , there exists a positive integer j such that 1 ≤ j ≤ t and Lj �= P n

1 Lj

and hence P n
1 ⊆ Qj by Lemma 2.8. This implies that P1 ⊆ Qj. Without loss of generality,

we can suppose that j = 1 and hence P1 = Q1. We can suppose that P n
1 K1 = Qn

1L1 = 0.
Then Lemma 2.8 gives

P n
1 M = P n

1 K1 + · · ·+ P n
1 Ks = K2 + · · ·+Ks,

and

P n
1 M = P n

1 L1 + · · ·+ P n
1 Lt = L2 + · · ·+ Lt.

By induction, s = t and {Pi : 2 ≤ i ≤ s} = {Qj : 2 ≤ j ≤ s}. The result follows. ✷

In view of Theorem 2.13, we call prime ideals Pi(1 ≤ i ≤ s) ofR the coassociated prime
ideals of M provided there exists a normal coprimary decomposition M = K1+ · · ·+Ks,
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where Ki is a Pi-coprimary submodule of M for each 1 ≤ i ≤ s.

Theorem 2.14. Let M have a coprimary decomposition and let Pi(1 ≤ i ≤ n) be the
coassociated prime ideals of M , for some positive integer n. Suppose that there exists 1 ≤
k ≤ n such that for all 1 ≤ i ≤ k and all k+1 ≤ j ≤ n, Pj �⊆ Pi. Let M = M1+ · · ·+Mn

andM = L1+· · ·+Ln be normal coprimary decompositions ofM in terms of Pi-coprimary
submodules Mi and Li(1 ≤ i ≤ n). Then M1 + · · ·+Mk = L1 + · · ·+ Lk.

Proof. There exists a positive integer s such that P s
j Mj = P s

j Lj = 0(k + 1 ≤ j ≤ n).
Let A = P s

k+1 · · ·P s
n. Then for all 1 ≤ i ≤ k, A �⊆ Pi so that Mi = AMi and Li = ALi.

Now we have

AM = AM1 + · · ·+ AMk +AMk+1 + · · ·+AMn = M1 + · · ·+Mk,

and
AM = AL1 + · · ·+ ALk +ALk+1 + · · ·+ALn = L1 + · · ·+ Lk.

Thus M1 + · · ·+Mk = L1 + · · ·+ Lk. ✷

Let P be a prime ideal of R. MP is defined to be the intersection ∩AM , where A

runs over the ideals of R not contained in P .

Remark 2.15. Let M = M1 + · · ·+ Mn and M = L1 + · · ·+ Ln be normal coprimary
decompositions of M where n is a positive integer and, for each 1 ≤ i ≤ n,Mi and Li are
Pi-coprimary submodules of M for some prime ideal Pi of R. If Pj is minimal in the set
{P1, ..., Pn}, then Mj = Lj by Theorem 2.14. Moreover, we have also Mj = Lj = MPj

(see [5]).

Next, we give a characterization of the coassociated prime ideals of M with coprimary
decomposition.

Theorem 2.16. Let P be a prime ideal of R and let M have a coprimary decomposition.
Then P is a coassociated prime ideal of M if and only if P = (K : M) for some proper
submodule K of M .

Proof. Let M = M1+ · · ·+Mn be a normal coprimary decomposition of M where n is a
positive integer and, for each 1 ≤ i ≤ n,Mi is a Pi-coprimary submodule of M for some
prime ideal Pi of R. Let P be a coassociated prime ideal of M . Without loss of generality,
we can suppose that P = P1. There exists a positive integer k such that P kM1 = 0. Thus
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M = M1+M2 + · · ·+Mn but M �= P kM1 +M2+ · · ·+Mn. There exists 1 ≤ j ≤ k such
that M = P j−1M1 +M2 + · · ·+Mn but M �= P jM1 +M2 + · · ·+Mn. Let K denote the
proper submodule P jM1 +M2 + · · ·+Mn.

Let A = (K : M). Clearly PM ⊆ K gives P ⊆ A. If P �= A, then M1 = AM1 and
hence M1 ⊆ AM ⊆ K so that K = M , a contradiction. Thus P = A.

Conversely, let Q be a prime ideal of R such that Q = (N : M) for some proper
submodule N of M . There exists 1 ≤ i ≤ n such that Mi �⊆ N . Without loss of
generality, we can suppose that there exists 1 ≤ t ≤ n such that Mi �⊆ N for all 1 ≤ i ≤ t

but Mi ⊆ N for all t + 1 ≤ i ≤ n. For each 1 ≤ i ≤ t, Mi ∩ N is a proper submodule
of Mi and QMi ⊆ Mi ∩ N so that Q ⊆ Pi. There exists a positive integer s such that
P s

i Mi = 0(1 ≤ i ≤ t). Now M = M1 + · · · + Mn = M1 + · · · + Mt + N and hence
(P s

1 · · ·P s
t )M ⊆ N so that P s

1 · · ·P s
t ⊆ Q. It follows that there exists 1 ≤ j ≤ t such that

Pj ⊆ Q and hence Pj = Q. Therefore Q is a coassociated prime ideal of R. ✷

Lemma 2.17. If M has a coprimary decomposition, then every minimal prime ideal
over A = (0 : M) is a coassociated prime ideal of M .

Proof. Let M = M1 + · · ·+Mn be a normal coprimary decomposition of M where
n is a positive integer and, for each 1 ≤ i ≤ n,Mi is a Pi-coprimary submodule of M for

some prime ideal Pi of R. Then A =
n⋂

i=1
(0 : Mi). Suppose Q is a minimal prime ideal of

A. There exists 1 ≤ i ≤ n such that A ⊆ (0 : Mi) ⊆ Q. So Q = Pi. ✷

Lemma 2.18. Let R be a prime left or right Noetherian ring and let M = PM for
all non-zero prime ideals P of left R-module. Then M is 0-coprimary.

Proof. Let A be a non-zero ideal of R. There exist a positive integer n, prime ideals
Pi(1 ≤ i ≤ n) of R such that P1 · · ·Pn ⊆ A ⊆ P1 ∩ · · · ∩ Pn. But M = PiM for all
1 ≤ i ≤ n. So M = PnM = · · · = P1 · · ·PnM ⊆ AM and hence M = AM . Lemma 2.8
yields that M is 0-coprimary. ✷

Remark 2.19. Let R be left or right Noetherian. Then there exists a prime ideal P
of R such that PM �= M . For, suppose that QM = M for all prime ideals Q of R. There
exist a positive integer n and prime ideals Pi(1 ≤ i ≤ n) of R such that 0 = P1 · · ·Pn.
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Then we have M = PnM = · · · = P1 · · ·PnM = 0, a contradiction.

Corollary 2.20. Let R be left or right Noetherian. Then M has a coprimary quotient
R-module.

Proof. Since R is left or right Noetherian and by Remark 2.19, there exists a prime ideal
P of R such that PM �= M but QM = M for all prime ideals Q of R properly containing
P . Then M/PM is a 0-coprimary (R/P )-module by Lemma 2.18 which implies that
M/PM is a P -coprimary R-module. ✷

For any non-empty set I,M (I) is the direct sum
⊕

i∈I

Mi, where Mi = M(i ∈ I).

The prime radical,
√
A, of an ideal A of R is defined to be the intersection of all prime

ideals which contain A.

Lemma 2.21. Let P be a prime ideal of R and let M be P -coprimary. Then M (I) is a
P -coprimary R-module for every non-empty set I.

Proof. We have
√
(0 : M (I)) =

√
(0 : M) = P . There exists a positive integer n such

that P nM = 0. Let A be an ideal of R. If A ⊆ P then AnM (I) = (AnM)(I) ⊆
(P nM)(I) = 0. Now suppose that A �⊆ P . Then AM = M and so AM (I) = (AM)(I) =
M (I). By Lemma 2.8, M (I) is P -coprimary. ✷

Recall that any left R-module is M -generated if it is a quotient module of M (I) for
some non-empty set I.

Corollary 2.22. If M has a coprimary decomposition, then any non-zero M -generated
R-module has a coprimary decomposition.

Proof. Let M = M1+ · · ·+Mn be a coprimary decomposition of M where n is a positive
integer and, for each 1 ≤ i ≤ n,Mi is a Pi-coprimary submodule of M for some prime

ideal Pi of R. Let I be a non-empty set. Then we have M (I) = M
(I)
1 + · · ·+M

(I)
n . Lemma

2.21 yields that M
(I)
i is Pi-coprimary for each 1 ≤ i ≤ n. Hence M (I) has a coprimary

decomposition. Corollary 2.2 completes the proof. ✷

Remark 2.23. Let P be a maximal ideal of R. Then M is P -coprimary if and only if
P nM = 0 for some positive integer n. In this case, every non-zero submodule of M is
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also P -coprimary.

Theorem 2.24. The following statements are equivalent.
(i) Every non-zero left R-module has a coprimary decomposition.
(ii) The left R-module R has a coprimary decomposition.
(iii) There exist positive integers n, h and maximal ideals Pi(1 ≤ i ≤ n) of R such

that P h
1 ∩ · · · ∩ P h

n = 0.

Proof. (i) ⇒ (ii) This is clear.
(ii) ⇒ (i) This follows from Corollary 2.22.
(ii) ⇒ (iii) Let R = A1+ · · ·+An be a coprimary decomposition of the left R-module

R where n is a positive integer and, for each 1 ≤ i ≤ n, Ai is a Pi-coprimary submodule
of the left R-module R for some prime ideal Pi of R. There exists a positive integer h

such that P h
i Ai = 0 for each 1 ≤ i ≤ n and so P h

1 ∩ · · · ∩ P h
n = 0. Note that any prime

ring which has a coprimary decomposition as a left module over itself has only two ideals.
Let P be a prime ideal of R. Then the ring R/P is prime with coprimary decomposition
as a module over itself. So R/P has only two ideals, i.e., P is maximal. We have shown
that every prime ideal of R is maximal. The result follows.

(iii) ⇒ (ii) We have R ∼= R/P h
1

⊕ · · ·⊕R/P h
n as left R-modules. It follows that R

has a coprimary decomposition as a left R-module by Remark 2.23. ✷

There are modules in which every non-zero submodule has a coprimary decomposition
(see [5]). In certain situations it is possible to write down explicitly a normal coprimary
decomposition for a non-zero module once its coassociated prime ideals are known, as we
show next.

Theorem 2.25. Suppose that every non-zero submodule of M has a coprimary decom-
position. Let N be a non-zero submodule of M and let Pi(1 ≤ i ≤ k) be the coasso-
ciated prime ideals of N . Then there exists a positive integer h such that N = (0 :N
P h

1 )
P1 + · · ·+ (0 :N P h

k )
Pk is a normal coprimary decomposition of N .

Proof. Let N = N1 + · · · + Nk be a normal coprimary decomposition of N where k

is a positive integer and, for each 1 ≤ i ≤ k, Ni is a Pi-coprimary submodule of N

for some prime ideal Pi of R(1 ≤ i ≤ k). There exists a positive integer h such that
P h

i Ni = 0(1 ≤ i ≤ k). Then, for each 1 ≤ i ≤ k, we have

Ni = NPi

i ⊆ (0 :N P h
i )

Pi ⊆ (0 :N P h
i ) ⊆ N

61



MAANI SHIRAZI, SMITH

and so

P h
i ⊆ (0 : (0 :N P h

i )) ⊆ (0 : (0 :N P h
i )

Pi) ⊆ (0 : Ni) ⊆ Pi.

For each 1 ≤ i ≤ k,
√
(0 : (0 :N P h

i )Pi) =
√
(0 : (0 :N P h

i )) = Pi and by the hypothesis
(0 :N P h

i ) has a coprimary decomposition so that Pi is the only minimal member in the
set of coassociated prime ideals of (0 :N P h

i ). Hence by Remark 2.15, (0 :N P h
i )

Pi is
Pi-coprimary for each 1 ≤ i ≤ n so that N = (0 :N P h

1 )P1 + · · ·+ (0 :N P h
k )

Pk is a normal
coprimary decomposition of N . ✷

Let A be an ideal of R. Then A is said to be left primary if, given any two ideals B

and C of R such that BC ⊆ A, then either C ⊆ A or Bn ⊆ A for some positive integer
n. In a similar way we can define right primary. A is said to be primary if it is both left
and right primary. If R is left and right Noetherian and if A is a proper ideal of R, which
is primary, then P =

√
A is prime such that P n ⊆ A for some positive integer n. In this

case, A is called P -primary. If A is a proper ideal of R, then C(A) will denote the set of
elements c in R such that c + A is a non-zero-divisor in R/A. Clearly, c ∈ C(A) if and
only if, for any r ∈ R, cr ∈ A or rc ∈ A implies r ∈ A. The ideal A of R is said to be
strongly primary if A is primary and C(A) = C(

√
A).

In [6], it is proved that every non-zero injective module over a commutative Noetherian
ring has a secondary representation. By a similar method, we prove Theorem 2.28.

Lemma 2.26. Let R be left and right Noetherian, let A be a strongly P -primary ideal of
R, and let M be an injective R-module. Then N = (0 :M A) is zero or coprimary.

Proof. Suppose N is a non-zero submodule of M . Let B be an ideal of R. If B ⊆ P ,
then BhN ⊆ P hN ⊆ AN = 0 for some positive integer h. Now suppose B �⊆ P . Clearly
BN ⊆ N . Let n ∈ N . There is a left R-module homomorphism ϕ : R/A → M for
which ϕ(r + A) = rn for all r ∈ R. Since B �⊆ P, (B + P )/P is a non-zero ideal of the
prime left and right Noetherian ring R/P . By Goldie’s Theorem, there exists an element
b ∈ B ∩ C(P ). Define a mapping θ : R/A → R/A by θ(r + A) = rb + A for all r ∈ R.
Since b ∈ B ∩ C(P ) and A is strongly P -primary, θ is a left R-module monomorphism.
As the diagram

0 → R/A
θ→ R/A

ϕ ↓
M
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has exact row, it can be completed with a left R-module homomorphism ψ : R/A → M

which makes the extended diagram commute. Thus n = ϕ(1 + A) = ψθ(1 + A) =
ψ(b + A) = bψ(1 + A). Since ψ(1 + A) ∈ N, n ∈ bN ⊆ BN . We have shown that
N ⊆ BN . The result follows. ✷

For the proof of the next result see [6, Lemma 2.2].

Lemma 2.27. Let M be injective, let n be a positive integer, and let Ai(1 ≤ i ≤ n) be

ideals of R. Then
n∑

i=1
(0 :M Ai) = (0 :M

n⋂

i=1
Ai).

Theorem 2.28. Let R be left and right Noetherian such that the zero ideal of R is a
finite intersection of strongly primary ideals. Then every non-zero injective R-module has
a coprimary decomposition.

Proof. Let n be a positive integer and let Ai(1 ≤ i ≤ n) be strongly primary ideals of

R such that 0 =
n⋂

i=1
Ai. Let M be a non-zero injective R-module. Then M = (0 :M 0) =

(0 :M
n⋂

i=1

Ai) =
n∑

i=1

(0 :M Ai), where (0 :M Ai) is zero or coprimary for all 1 ≤ i ≤ n. ✷

Note that the condition on R in Theorem 2.28 is satisfied if R is the universal
enveloping algebra of a finite-dimensional nilpotent Lie algebra (see [1, p.78] and [4]).
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