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Slant submanifolds of Kaehler Product Manifolds

Bayram Şahin and Sadık Keleş

Abstract

In this paper, we study slant submanifolds of a Kaehler product manifold. We

show that an F -invariant slant submanifold of Kaehler product manifold is a product

manifold. We also obtain some curvature inequalities in terms of scalar curvature

and Ricci tensor.
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1. Introduction

Submanifolds of a Kaehler manifold are defined with respect to the behaviour of
complex structure J. More precisely, a real submanifold M of a Kaehler manifold is
called invariant if J(TM) = TM , where TM denotes the tangent bundle of M . M is
called totally real if J(TM) ⊂ TM⊥ and M is called CR-submanifold [1] if there are
orthogonal complement two distributions D⊥, D such that D is invariant and D⊥ is
totally real. Recently, B. Y. Chen introduced slant submanifolds as follows: Let M be a
submanifold of a Kaehler manifold M̄ , for each non zero vector X ∈ TpM , we denote the
angle between JX and TpM by θ(X). Then M is said to be slant ([2]) if the angle θ(X)
is constant, i.e., it is independent of the choice of p ∈ M and X ∈ TpM. The angle θ of a
slant immersion is called the slant angle of the immersion. Invariant and anti-invariant
immersions are slant immersions with slant angle θ = 0 and θ = π

2
, respectively. A proper

slant immersion is neither invariant nor anti-invariant.
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The geometry of submanifolds of a Kaehler manifold has been investigated by many
authors. In [6], K.Yano and M. Kon studied the geometry of F -invariant and F -anti-
invariant submanifolds of Kaehler product manifolds and showed that an F invariant,
invariant submanifold of a Kaehler product manifold is also a product manifold.

Same result was obtained for anti-invariant submanifold [6]. On the other hand,
CR-submanifolds of Kaehler product manifolds were studied in [5] by M. H. Shahid.

In this paper, we consider slant submanifolds of Kaehler product manifolds. We show
that an F -invariant, slant submanifold of a Kaehler product manifold M̄ = M̄m × M̄n

is a product manifold M1 × M2 and M1 (resp. M2) is also a slant submanifold of M̄m

(resp. M̄n). Also we obtain, if M = M1 ×M2 is a Kaehler slant submanifold of M̄, then
M1 is a Kaehler slant submanifold of M̄m and M2 is a Kaehler slant submanifold of M̄n.

In the last section we study scalar curvature and Ricci tensor of various submanifolds of
a Kaehler product manifold M̄ = M̄m(c1) × M̄n(c2) and obtain several inequalities for
slant, invariant and anti-invariant submanifolds of M̄.

2. Preliminaries

Let (M̄, g) be a 2k-dimensional Riemannian manifold with Riemannian metric g. An
almost complex structure on M̄ is a tensor field J of type (1,1) such that at every p ∈ M̄

we have J2 = −I, where I denotes the identity transformation of TpM̄ . Then, M̄ is
called an almost complex manifold. The Nijenhuis torsion tensor NJ , of J , is defined by

NJ(X, Y ) = [JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ],

∀X, Y ∈ Γ(TM̄), where Γ(TM̄) is the module of differentiable sections of the tangent
bundle TM̄ . If the torsion tensor NJ vanishes identically on M̄ then J is complex
structure on M̄ which becomes a complex manifold. A Hermitian metric on M̄ is a
Riemannian metric g satisfying

g(X, Y ) = g(JX, JY ), ∀X, Y ∈ Γ(TM̄). (2.1)

An almost complex manifold endowed with a Hermitian metric is called an almost
Hermitian manifold, denoted by (M̄, g, J). Denote the Levi-Civita connection on M̄

with respect to g by ∇̄. Then, M̄ is called an Kaehler manifold if J is parallel with
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respect to ∇̄, i.e.,

(∇̄XJ)Y = 0, ∀X, Y ∈ Γ(TM̄). (2.2)

The Riemann curvature tensor field, denoted by R̄, satisfies

R̄(X, Y )J = JR̄(X, Y ) R̄(JX, JY ) = R̄(X, Y ). (2.3)

A complex space form is a connected Kaehler manifold of constant holomorphic sectional
curvature c, denoted by M̄(c). The curvature tensor field of M̄(c) is given by

R̄(X, Y )Z =
c

4
{g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY + 2g(X, JY )JZ}, ∀X, Y ∈ Γ(TM̄). (2.4)

We consider a Kaehler product manifold M̄ = M̄m × M̄n. We denote by P̄ and Q̄

the projection operators of the tangent space of M̄ to the tangent space of M̄m and M̄n,
respectively. Then we have

P̄ 2 = P̄ , Q̄2 = Q̄, P̄Q̄ = Q̄P̄ = 0.

Putting F = P̄ − Q̄, we have F 2 = I. Thus F is an almost product structure on M̄.

Then we can define a Riemannian metric g on M̄ by

g(X, Y ) = gm(P̄ X, P̄Y ) + gn(Q̄X, Q̄Y )

for any vector field X, Y on M̄. Thus it follows

g(F X, Y ) = g(F Y, X).

Now, consider JX = JmP̄X + JnQ̄X for any vector field X of M̄. Then it can be
verified that the following are satisfied:

JmP̄ = P̄J, JnQ̄ = Q̄J, F J = JF, J2 = −I, (2.5)

g(JX, JY ) = g(X, Y ), ∇̄XJ = 0, (2.6)

where ∇̄ is the metric connection on M̄. Thus M̄ is a Kaehler manifold. If M̄m(c1) and
M̄n(c2) are complex space forms with constant holomorphic sectional curvatures c1 and
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c2, respectively, then the Riemannian curvature tensor R̄ of a Kaehler product manifold
M̄ is given by [6]

g(R̄(X, Y )Z, W ) =
1
16
(c1 + c2)[g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )

+ g(JY, Z)g(JX, W ) − g(JX, Z)g(JY, W )

+ 2g(X, JY )g(JZ, W ) + 2g(F Y, Z)g(F X, W )

− g(F X, Z)g(F Y, W ) + g(JY, F Z)g(JX, F W )

− g(JX, F Z)g(JY, F W ) + 2g(F X, JY )g(JZ, F W )]

+
1
16
(c1 − c2)[g(F Y, Z)g(X, W ) − g(F X, Z)g(Y, W )

+ g(Y, Z)g(F X, W ) − g(X, Z)g(F Y, W )

+ g(JY, F Z)g(JX, W ) − g(JX, F Z)g(JY, W )

+ g(JY, Z)g(JX, F W ) − g(JX, Z)g(JY, F W )

+ 2g(F X, JY )g(JZ, W )− 2g(X, JY )g(F Z, JW ) (2.7)

for any vector fields X, Y, Z and W of M̄. ✷

Let M̄ be a Riemannian manifold and M be a Riemannian manifold isometrically
immersed in M̄. Then the formulas of Gauss and Weingarten for M in M̄ are given by

∇̄XY = ∇XY + h(X, Y ), (2.8)

∇̄XN = −AN X +∇⊥
XN, (2.9)

for any vector fields X, Y tangent to M and N normal to M , where ∇̄ denotes the
Riemannian connection on M̄ , h is the second fundamental form, ∇⊥ is the normal
connection and A is the shape operator of M in M̄ . Moreover, the second fundamental
form and the shape operator are related by

g(AN X, Y ) = g(h (X, Y ) , N), (2.10)

where g denotes the Riemannian metric on M as well as on M̄.
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The equations of Gauss and Codazzi are given by

R̄(X, Y, Z, W ) = R(X, Y, Z, W ) + g(h(X, Z), h(Y, W ))

−g(h(X, W ), h(Y, Z)) (2.11)

(
R̄(X, Y )Z

)⊥ = (∇Xh) (Y, Z)− (∇Y h) (X, Z) (2.12)

for any X, Y, Z and W tangent to M, where R̄, R denote the curvature tensors of M̄ ,

M,respectively, and
(
R̄(X, Y )Z

)⊥ denotes the normal component of R̄(X, Y )Z.

3. Slant Submanifolds of a Kaehler Product Manifold

Let M be an F -invariant submanifold of a Kaehler product manifold M̄m×M̄n. Then,
it is known that M is a locally decomposable Riemannian manifoldM = M1×M2, where
M1 is a submanifold of M̄m and M2 is a submanifold of M̄n. Moreover, if M is Kaehler
submanifold of M̄ = M̄m × M̄n, then M is a Kaehler product manifold M = M1 × M2,
([6]).

Let M be an invariant submanifold of a Kaehler product manifold M̄ = M̄m × M̄n.

Then, M = M1×M2, where M1 is a invariant submanifold of M̄m and M2 is an invariant
submanifold of M̄n. Then we have

TM̄ = TM̄m ⊕ TM̄n (3.1)

= {TM1 ⊕ TM2} ⊕ {TM⊥
1 ⊕ TM⊥

2 }. (3.2)

For any X ∈ Γ(TM1) and N1 ∈ Γ(TM⊥
1 ), we put

JX = JmX = F1X + ω1X, JN1 = JmN1 = B1N1 + C1N1, (3.3)

where F1X, B1N1 ∈ Γ(TM1) and C1N1, ω1X ∈ Γ(TM⊥
1 ) Similarly,for any Y ∈ Γ(TM2)

and N2 ∈ Γ(TM⊥
2 ), we put

JY = JnY = F2Y + ω2Y, JN2 = JnN2 = B2N2 + C2N2, (3.4)
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where F2Y, B2N2 ∈ Γ(TM2) and C2N2, ω2Y ∈ Γ(TM⊥
2 ).

Theorem 3.1 Let M be an F -invariant submanifold of a Kaehler product manifold

M̄ = M̄m × M̄n. If M is a slant submanifold of M̄, then M is a slant product manifold

M1 ×M2, where M1 is a slant submanifold of M̄m and M2 is a slant submanifold of M̄n.

Proof. Let us assume that M is a slant submanifold of a Kaehler product manifold
M̄ = M̄m×M̄n . Then, the angle θ(X) between JX and the tangent space TxM at x ∈ M

is constant for X ∈ TxM, i.e, it is independent of the choice x ∈ M and X ∈ TxM. Then
we have

cosθ(X) =
ḡ(JX, φX)
| X | | φX |

where φX is the tangential part of JX.
Thus for X1 ∈ Γ(TM1), we have

cos θ(X1) =
ḡ(JX1, φX1)
| X | | φX |

=
ḡ(JmP̄X1 + JnQ̄X1, φX1)

| X | | F1X1 |

=
ḡ(JmX1 + Q̄JX, φX1)

| X | | F1X1 | .

Hence, we have cosθ(X1) =
ḡ(JmX1,F1X1)

|X| |F1X1| . This means that the angle θ(X1) between

JmX and the tangent space TxM1 is constant. Since M1 is a submanifold in M̄m, we
conclude that M1 is slant submanifold of M̄m. SimilarlyM2 is slant submanifold of M̄n.✷

Now, we denote the Weingarten operators of M , M1 and M2 in M̄ , M̄m and M̄n by
A, A1 and A2, respectively. Also denote the second fundamental forms of M , M1 and
M2 in M̄ , M̄m and M̄n by h, h1 and h2, respectively. Then we have ([4])

h(X, Y ) = h1(X1, Y1) + h2(X2, Y2), (3.5)

where X = X1+X2, Y = Y1+Y2 ∈ Γ(TM). We also note that, since M is a Riemannian
product manifold, we have

TM1 = {X ∈ Γ(TM) | fX = X}, TM2 = {X ∈ Γ(TM) | fX = −X}. (3.6)
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Now, since h(X2, X1) = 0, using (2.10) we have AN1X2 ∈ Γ(TM2). On the other
hand, from (2.12) we have g(AN1X2, Y2) = g(h2(X2, Y2), N1), thus from (3.1) we get
g(AN1 X2, Y2) = 0, hence AN1X2 ∈ Γ(TM1). Thus we obtain

AN1X2 = 0. (3.7)

In similar way, we have

AN2X1 = 0. (3.8)

Thus from (3.7) and (3.8) we obtain

ANX = AN1X1 + AN2X2, (3.9)

where X = X1 +X2 ∈ Γ(TM) and N = N1 +N2 ∈ Γ(TM⊥). Moreover, using (2.10) we
have

AN X = A1
N1

X1 +A2
N2

X2. (3.10)

Theorem 3.2 Let M be an F -invariant submanifold of a Kehlerian product manifold

M̄ = M̄m × M̄n. If M is a Kaehler slant submanifold in M̄, then M1 is a Kaehler slant

submanifold of M̄m and M2 is a Kaehler slant submanifold of M̄n.

Proof. Let M be a Kaehler slant submanifold of M̄. Then using (2.9), (2.8), (3.3), (3.4)
and taking into account (3.2), we obtain

(∇P̄ XF1)P̄ Y = A1
ω1P̄Y P̄ X − B1h1(P̄X, P̄Y ) (3.11)

(∇Q̄XF2)Q̄Y = A2
ω2Q̄Y Q̄X − B2h2(Q̄X, Q̄Y ) (3.12)

for X, Y ∈ Γ(TM). In similar way,

(∇Xφ)Y = AωY X − Bh(X, Y ) (3.13)

for X, Y ∈ Γ(TM). Let X1, Y1 ∈ Γ(TM1) in (3.13), then if (∇Xφ) = 0, i.e., M is Kaehler
slant submanifold in M̄, from (3.5) and (3.10) we have

A1
ω1Y1

X1 − B1h1(X1, Y1) = 0,

hence (∇P̄XF1) = 0. Similarly,(∇Q̄XF2)Q̄Y = 0. Then our assertion follows from Theo-
rem 3.1 ✷
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4. Curvature Inequalities

In this section, we give some inequalities for invariant, anti-invariant and slant sub-
manifolds of a Kaehler product manifolds in terms of Ricci tensor and scalar curvature.
First we need the following.
Lemma 4.1. Let M be a (k + l) -dimensional F -invariant submanifold of a Kaehler

product manifold M̄ = M̄m × M̄n. If M is an invariant submanifold of M̄ = M̄m × M̄n,

then M is an invariant product manifold M = M1 × M2, where M1 is minimal in M̄m

and M2 is minimal in M̄n.

Proof, Let M be an F -invariant submanifold of M̄ = M̄m × M̄n, then we have ([4])

H =
k

k + l
H1 +

l

k + l
H2, (4.1)

where H , H1 and H2 are mean curvature vector fields of M , M1 and M2. On the other
hand, it is known that invariant submanifolds of Kaehler manifolds are minimal ([6]);
thus, H = 0, H1 = 0 and H2 = 0.

Let M be an F -invariant submanifold of Kaehler product manifold M̄ = M̄m × M̄n.

Then from (2.10) and (2.11) we obtain

g(R(X, Y )Z, W ) =
1
16
(c1 + c2)[g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )

+ g(JY, Z)g(JX, W ) − g(JX, Z)g(JY, W )

+ 2g(X, JY )g(JZ, W ) + 2g(F Y, Z)g(F X, W )

− g(F X, Z)g(F Y, W ) + g(JY, F Z)g(JX, F W )

− g(JX, F Z)g(JY, F W ) + 2g(F X, JY )g(JZ, F W )]

+
1
16
(c1 − c2)[g(F Y, Z)g(X, W ) − g(F X, Z)g(Y, W )

+ g(Y, Z)g(F X, W ) − g(X, Z)g(F Y, W )

+ g(JY, F Z)g(JX, W ) − g(JX, F Z)g(JY, W )

+ g(JY, Z)g(JX, F W ) − g(JX, Z)g(JY, F W )

+ 2g(F X, JY )g(JZ, W )− 2g(X, JY )g(F Z, JW )

+ g(h(X, W ), h(Y, Z))− g(h(Y, Z), h(X, W )). (4.2)

72
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Let M be an F -invariant submanifold of a Kaehler product manifold M̄ = M̄m × M̄n.

Since M is also a product manifold M = M1 × M2, we can choose an orthonormal basis
{e1, ..., ek, ẽ1, ..., ẽl} for TpM such that {e1, ..., ek} is tangent to M1 and {ẽ1, ..., ẽl} is
tangent to M2. Thus from (4.1) and (4.2), using (3.6) we obtain

2τ =
1
16

c1[5k2 − 4k + l2 + 12 ‖ P1 ‖2] +
1
16

c2[5l2 − 4l + k2 + 12 ‖ P2 ‖2]

+ k2 ‖ H1 ‖2 +l2 ‖ H2 ‖2 − ‖ h ‖2, (4.3)

where ‖ h ‖2=
∑(k+l)

a,b=1 g(h(ea, eb), h(ea, eb)), ‖ P1 ‖2=
∑k

i,j=1 g(ei, F1ej)2 and ‖ P2 ‖2=
∑l

α,β=1 g(ẽα, F2ẽβ)2 and τ is the scalar curvature of M. ✷

Thus (4.3) enables us to state the following theorem:

Theorem 4.1. Let M be an F -invariant submanifold of a Kaehler product manifold

M̄ = M̄m × M̄n. Then the following statements are true:

1. We have

τ ≤ 1
32

c1[5k2 − 4k + l2 + 12 ‖ P1 ‖2] +
1
32

c2[5l2 − 4l + k2 + 12 ‖ P1 ‖2]

+
k2

2
‖ H1 ‖2 +

l2

2
‖ H2 ‖2 . (4.4)

2. If M is θ slant submanifold, then

τ ≤ k2

2
‖ H1 ‖2 +

k2

2
‖ H2 ‖2 +

1
32

c1[5k2 + l2 − 4m(1− 3cos2θ)

+
1
32

c2[5l2 + k2 − 4l(1− 3cos2θ). (4.5)

3. If M is an invariant submanifold, then

τ ≤ 1
32

c1[5k2 + 8k+ l2] +
1
32

c2[5l2 + 8l+ k2]. (4.6)

73
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4. If M is an anti-invariant submanifold, then

τ ≤ k2

2
‖ H1 ‖2 +

k2

2
‖ H2 ‖2 +

1
32

c1[5k2 − 4k + l2]

+
1
32

c2[5l2 − 4l+ k2]. (4.7)

5. Equality cases 1.,2.,3, and 4 hold if and only if M is totally geodesic.

Proof. Let M be an F -invariant submanifold of Kaehler product manifold M̄ =
M̄m × M̄n. Then M is also a product manifold M = M1 × M2. Thus (1) follows from
(4.2) and (4.3). If M is slant submanifold, then M1 and M2 are slant submanifolds of
M̄m and M̄n. It is known that a slant submanifold of a Kaehler manifold satisfies the
following

g(P X, P Y ) = cos2θg(X, Y ).

Hence we have

‖ P1 ‖2= kcos2θ, ‖ P2 ‖2= lcos2θ. (4.8)

Thus, using (4.8) in (4.4) we obtain (2). Putting θ = π
2 in (4.5) we have (3). Since invari-

ant M impliesH = 0, from Lemma 4.1 we get (4). The last statement is clear from (4.3).✷

Theorem 4.2. Let M be a (k + l)-dimensional F -invariant submanifold of a Kaehler

product manifold M̄ = M̄m(c1) × M̄n(c2). Then the following statements are true:

(1) We have

S(X, X) ≤ 1
16

c1[(5k − 4) ‖ X1 ‖2 +l ‖ X2 ‖2 +12 ‖ P X1 ‖2]

+
1
16

c2[(5l − 4) ‖ X1 ‖2 +k ‖ X1 ‖2 +12 ‖ P X2 ‖2]

+ kg(H1, h1(X1 , X1)) + lg(H2, h2(X2, X2)), (4.9)

where S is the Ricci tensor, X = X1 + X2, ‖ X1 ‖2=
∑k

i=1 g(ei, JX1)2 and

‖ X1 ‖2=
∑l

α=1 g(ẽα, JX2)2.
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(2) If M is θ− slant submanifold, then

S(X, X) ≤ 1
16

c1[(5k − 4) ‖ X1 ‖2 +l ‖ X2 ‖2 +12cos2θ ‖ X1 ‖2]

+
1
16

c2[(5l − 4) ‖ X1 ‖2 +k ‖ X1 ‖2 +12cos2θ ‖ X2 ‖2]

+ kg(H1, h1(X1 , X1)) + lg(H2, h2(X2, X2)). (4.10)

(3) If M is invariant, then

S(X, X) ≤ 1
16

c1[(5k + 8) ‖ X1 ‖2 +l ‖ X2 ‖2]

+
1
16

c2[(5l+ 8) ‖ X1 ‖2 +k ‖ X1 ‖2]. (4.11)

(4) If M is anti-invariant

S(X, X) ≤ 1
16

c1[(5k − 4) ‖ X1 ‖2 +l ‖ X2 ‖2]

+
1
16

c2[(5l − 4) ‖ X1 ‖2 +k ‖ X1 ‖2]

+ kg(H1, h1(X1 , X1)) + lg(H2, h2(X2, X2)). (4.12)

Proof. Let M be an F -invariant submanifold of a Kaehler product manifold M̄ =
M̄m × M̄n. Then M is a product manifold M = M1 × M2. We choose an orthonormal
basis {e1, ..., ek, ẽ1, ..., ẽl} for TpM such that {e1, ..., ek} is tangent to M1 and {ẽ1, ..., ẽl}
is tangent to M2. Then , from (4.3) and (3.6), we obtain,

k∑

i=1

g(R(ei, X1)Y1), ei) =
1
16

c1(5k − 4)g(X1, Y1) +
1
16

c2kg(X1 , Y1)

+
k∑

i=1

{12g(ei, JX1)g(ei, JY1)

− g(h1(ei, X1), h1(Y1, ei))}
+ kg(H1, h1(X1, Y1)) (4.13)
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and

l∑

α=1

g(R(ẽα, X2)Y2), ẽα) =
1
16

c2(5l − 4)g(X2 , Y2) +
1
16

c2lg(X2 , Y2)

+
l∑

α=1

{12g(ẽα, JX2)g(ẽα, JY2)

− g(h2(ẽα, X2), h2(Y2, ẽα))}
+ lg(H2, h2(X2, Y2)). (4.14)

Thus, from (4.13) and (4.14), we have

S(X, X) =
1
16

c1[(5k − 4) ‖ X1 ‖2 +l ‖ X2 ‖2]

+
1
16

c2[(5l − 4) ‖ X2 ‖2 +k ‖ X1 ‖2]

+
k∑

i=1

12g(ei, JX1)2 − g(h1(ei, X1), h1(Y1, ei))

+
l∑

α=1

12g(ẽα, JX2)2 − g(h2(ẽα, X2), h2(Y2, ẽα))

+ kg(H1, h1(X1, Y1)) + lg(H2, h2(X2, Y2)). (4.15)

Then (1) follows from (4.15). The proof of the other assertions are similar to the assertions
of Theorem 4.1. ✷
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