Slant submanifolds of Kaehler Product Manifolds

Bayram Şahin and Sadık Keleş

Abstract

In this paper, we study slant submanifolds of a Kaehler product manifold. We show that an F-invariant slant submanifold of Kaehler product manifold is a product manifold. We also obtain some curvature inequalities in terms of scalar curvature and Ricci tensor.

Key Words: Slant Submanifold, Kaehler Manifold, Ricci tensor.

1. Introduction

Submanifolds of a Kaehler manifold are defined with respect to the behaviour of complex structure J. More precisely, a real submanifold M of a Kaehler manifold is called invariant if $J(T M)=T M$, where $T M$ denotes the tangent bundle of $M . M$ is called totally real if $J(T M) \subset T M^{\perp}$ and M is called CR-submanifold [1] if there are orthogonal complement two distributions D^{\perp}, D such that D is invariant and D^{\perp} is totally real. Recently, B. Y. Chen introduced slant submanifolds as follows: Let M be a submanifold of a Kaehler manifold \bar{M}, for each non zero vector $X \in T_{p} M$, we denote the angle between $J X$ and $T_{p} M$ by $\theta(X)$. Then M is said to be slant ([2]) if the angle $\theta(X)$ is constant, i.e., it is independent of the choice of $p \in M$ and $X \in T_{p} M$. The angle θ of a slant immersion is called the slant angle of the immersion. Invariant and anti-invariant immersions are slant immersions with slant angle $\theta=0$ and $\theta=\frac{\pi}{2}$, respectively. A proper slant immersion is neither invariant nor anti-invariant.

[^0]The geometry of submanifolds of a Kaehler manifold has been investigated by many authors. In [6], K.Yano and M. Kon studied the geometry of F-invariant and F-antiinvariant submanifolds of Kaehler product manifolds and showed that an Finvariant, invariant submanifold of a Kaehler product manifold is also a product manifold.

Same result was obtained for anti-invariant submanifold [6]. On the other hand, CR-submanifolds of Kaehler product manifolds were studied in [5] by M. H. Shahid.

In this paper, we consider slant submanifolds of Kaehler product manifolds. We show that an F-invariant, slant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$ is a product manifold $M_{1} \times M_{2}$ and M_{1} (resp. M_{2}) is also a slant submanifold of \bar{M}^{m} (resp. \bar{M}^{n}). Also we obtain, if $M=M_{1} \times M_{2}$ is a Kaehler slant submanifold of \bar{M}, then M_{1} is a Kaehler slant submanifold of \bar{M}^{m} and M_{2} is a Kaehler slant submanifold of \bar{M}^{n}. In the last section we study scalar curvature and Ricci tensor of various submanifolds of a Kaehler product manifold $\bar{M}=\bar{M}^{m}\left(c_{1}\right) \times \bar{M}^{n}\left(c_{2}\right)$ and obtain several inequalities for slant, invariant and anti-invariant submanifolds of \bar{M}.

2. Preliminaries

Let (\bar{M}, g) be a $2 k$-dimensional Riemannian manifold with Riemannian metric g. An almost complex structure on \bar{M} is a tensor field J of type $(1,1)$ such that at every $p \in \bar{M}$ we have $J^{2}=-I$, where I denotes the identity transformation of $T_{p} \bar{M}$. Then, \bar{M} is called an almost complex manifold. The Nijenhuis torsion tensor N_{J}, of J, is defined by

$$
N_{J}(X, Y)=[J X, J Y]-[X, Y]-J[X, J Y]-J[J X, Y]
$$

$\forall X, Y \in \Gamma(T \bar{M})$, where $\Gamma(T \bar{M})$ is the module of differentiable sections of the tangent bundle $T \bar{M}$. If the torsion tensor N_{J} vanishes identically on \bar{M} then J is complex structure on \bar{M} which becomes a complex manifold. A Hermitian metric on \bar{M} is a Riemannian metric g satisfying

$$
\begin{equation*}
g(X, Y)=g(J X, J Y), \quad \forall X, Y \in \Gamma(T \bar{M}) \tag{2.1}
\end{equation*}
$$

An almost complex manifold endowed with a Hermitian metric is called an almost Hermitian manifold, denoted by (\bar{M}, g, J). Denote the Levi-Civita connection on \bar{M} with respect to g by $\bar{\nabla}$. Then, \bar{M} is called an Kaehler manifold if J is parallel with

ŞAHIN, KELEŞ

respect to $\bar{\nabla}$, i.e.,

$$
\begin{equation*}
\left(\bar{\nabla}_{X} J\right) Y=0, \quad \forall X, Y \in \Gamma(T \bar{M}) \tag{2.2}
\end{equation*}
$$

The Riemann curvature tensor field, denoted by \bar{R}, satisfies

$$
\begin{equation*}
\bar{R}(X, Y) J=J \bar{R}(X, Y) \quad \bar{R}(J X, J Y)=\bar{R}(X, Y) \tag{2.3}
\end{equation*}
$$

A complex space form is a connected Kaehler manifold of constant holomorphic sectional curvature c, denoted by $\bar{M}(c)$. The curvature tensor field of $\bar{M}(c)$ is given by

$$
\begin{align*}
\bar{R}(X, Y) Z & =\frac{c}{4}\{g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y+2 g(X, J Y) J Z\}, \quad \forall X, Y \in \Gamma(T \bar{M}) \tag{2.4}
\end{align*}
$$

We consider a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. We denote by \bar{P} and \bar{Q} the projection operators of the tangent space of \bar{M} to the tangent space of \bar{M}^{m} and \bar{M}^{n}, respectively. Then we have

$$
\bar{P}^{2}=\bar{P}, \bar{Q}^{2}=\bar{Q}, \bar{P} \bar{Q}=\bar{Q} \bar{P}=0
$$

Putting $F=\bar{P}-\bar{Q}$, we have $F^{2}=I$. Thus F is an almost product structure on \bar{M}. Then we can define a Riemannian metric g on \bar{M} by

$$
g(X, Y)=g_{m}(\bar{P} X, \bar{P} Y)+g_{n}(\bar{Q} X, \bar{Q} Y)
$$

for any vector field X, Y on \bar{M}. Thus it follows

$$
g(F X, Y)=g(F Y, X)
$$

Now, consider $J X=J_{m} \bar{P} X+J_{n} \bar{Q} X$ for any vector field X of \bar{M}. Then it can be verified that the following are satisfied:

$$
\begin{array}{ll}
J_{m} \bar{P}=\bar{P} J, J_{n} \bar{Q}=\bar{Q} J, & F J=J F, J^{2}=-I \\
g(J X, J Y)=g(X, Y), & \bar{\nabla}_{X} J=0 \tag{2.6}
\end{array}
$$

where $\bar{\nabla}$ is the metric connection on \bar{M}. Thus \bar{M} is a Kaehler manifold. If $\bar{M}^{m}\left(c_{1}\right)$ and $\bar{M}^{n}\left(c_{2}\right)$ are complex space forms with constant holomorphic sectional curvatures c_{1} and

ŞAHIN, KELEŞ

c_{2}, respectively, then the Riemannian curvature tensor \bar{R} of a Kaehler product manifold \bar{M} is given by [6]

$$
\begin{align*}
g(\bar{R}(X, Y) Z, W) & =\frac{1}{16}\left(c_{1}+c_{2}\right)[g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& +g(J Y, Z) g(J X, W)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)+2 g(F Y, Z) g(F X, W) \\
& -g(F X, Z) g(F Y, W)+g(J Y, F Z) g(J X, F W) \\
& -g(J X, F Z) g(J Y, F W)+2 g(F X, J Y) g(J Z, F W)] \\
& +\frac{1}{16}\left(c_{1}-c_{2}\right)[g(F Y, Z) g(X, W)-g(F X, Z) g(Y, W) \\
& +g(Y, Z) g(F X, W)-g(X, Z) g(F Y, W) \\
& +g(J Y, F Z) g(J X, W)-g(J X, F Z) g(J Y, W) \\
& +g(J Y, Z) g(J X, F W)-g(J X, Z) g(J Y, F W) \\
& +2 g(F X, J Y) g(J Z, W)-2 g(X, J Y) g(F Z, J W) \tag{2.7}
\end{align*}
$$

for any vector fields X, Y, Z and W of \bar{M}.
Let \bar{M} be a Riemannian manifold and M be a Riemannian manifold isometrically immersed in \bar{M}. Then the formulas of Gauss and Weingarten for M in \bar{M} are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.8}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.9}
\end{align*}
$$

for any vector fields X, Y tangent to M and N normal to M, where $\bar{\nabla}$ denotes the Riemannian connection on \bar{M}, h is the second fundamental form, ∇^{\perp} is the normal connection and A is the shape operator of M in \bar{M}. Moreover, the second fundamental form and the shape operator are related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{2.10}
\end{equation*}
$$

where g denotes the Riemannian metric on M as well as on \bar{M}.

ŞAHIN, KELES

The equations of Gauss and Codazzi are given by

$$
\begin{align*}
& \bar{R}(X, Y, Z, W)= R(X, Y, Z, W)+g(h(X, Z), h(Y, W)) \\
&-g(h(X, W), h(Y, Z)) \tag{2.11}\\
&(\bar{R}(X, Y) Z)^{\perp}=\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z) \tag{2.12}
\end{align*}
$$

for any X, Y, Z and W tangent to M, where \bar{R}, R denote the curvature tensors of \bar{M}, M,respectively, and $(\bar{R}(X, Y) Z)^{\perp}$ denotes the normal component of $\bar{R}(X, Y) Z$.

3. Slant Submanifolds of a Kaehler Product Manifold

Let M be an F-invariant submanifold of a Kaehler product manifold $\bar{M}^{m} \times \bar{M}^{n}$. Then, it is known that M is a locally decomposable Riemannian manifold $M=M_{1} \times M_{2}$, where M_{1} is a submanifold of \bar{M}^{m} and M_{2} is a submanifold of \bar{M}^{n}. Moreover, if M is Kaehler submanifold of $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$, then M is a Kaehler product manifold $M=M_{1} \times M_{2}$, ([6]).

Let M be an invariant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. Then, $M=M_{1} \times M_{2}$, where M_{1} is a invariant submanifold of \bar{M}^{m} and M_{2} is an invariant submanifold of \bar{M}^{n}. Then we have

$$
\begin{align*}
T \bar{M} & =T \bar{M}^{m} \oplus T \bar{M}^{n} \tag{3.1}\\
& =\left\{T M_{1} \oplus T M_{2}\right\} \oplus\left\{T M_{1}^{\perp} \oplus T M_{2}^{\perp}\right\} \tag{3.2}
\end{align*}
$$

For any $X \in \Gamma\left(T M_{1}\right)$ and $N_{1} \in \Gamma\left(T M_{1}^{\perp}\right)$, we put

$$
\begin{equation*}
J X=J_{m} X=F_{1} X+\omega_{1} X, J N_{1}=J_{m} N_{1}=B_{1} N_{1}+C_{1} N_{1} \tag{3.3}
\end{equation*}
$$

where $F_{1} X, B_{1} N_{1} \in \Gamma\left(T M_{1}\right)$ and $C_{1} N_{1}, \omega_{1} X \in \Gamma\left(T M_{1}^{\perp}\right)$ Similarly,for any $Y \in \Gamma\left(T M_{2}\right)$ and $N_{2} \in \Gamma\left(T M_{2}^{\perp}\right)$, we put

$$
\begin{equation*}
J Y=J_{n} Y=F_{2} Y+\omega_{2} Y, J N_{2}=J_{n} N_{2}=B_{2} N_{2}+C_{2} N_{2} \tag{3.4}
\end{equation*}
$$

ŞAHIN, KELES

where $F_{2} Y, B_{2} N_{2} \in \Gamma\left(T M_{2}\right)$ and $C_{2} N_{2}, \omega_{2} Y \in \Gamma\left(T M_{2}^{\perp}\right)$.

Theorem 3.1 Let M be an F-invariant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. If M is a slant submanifold of \bar{M}, then M is a slant product manifold $M_{1} \times M_{2}$, where M_{1} is a slant submanifold of \bar{M}^{m} and M_{2} is a slant submanifold of \bar{M}^{n}.

Proof. Let us assume that M is a slant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. Then, the angle $\theta(X)$ between $J X$ and the tangent space $T_{x} M$ at $x \in M$ is constant for $X \in T_{x} M$, i.e, it is independent of the choice $x \in M$ and $X \in T_{x} M$. Then we have

$$
\cos \theta(X)=\frac{\bar{g}(J X, \phi X)}{|X||\phi X|}
$$

where ϕX is the tangential part of $J X$.
Thus for $X_{1} \in \Gamma\left(T M_{1}\right)$, we have

$$
\begin{aligned}
\cos \theta\left(X_{1}\right) & =\frac{\bar{g}\left(J X_{1}, \phi X_{1}\right)}{|X||\phi X|} \\
& =\frac{\bar{g}\left(J_{m} \bar{P} X_{1}+J_{n} \bar{Q} X_{1}, \phi X_{1}\right)}{|X|\left|F_{1} X_{1}\right|} \\
& =\frac{\bar{g}\left(J_{m} X_{1}+\bar{Q} J X, \phi X_{1}\right)}{|X|\left|F_{1} X_{1}\right|}
\end{aligned}
$$

Hence, we have $\cos \theta\left(X_{1}\right)=\frac{\bar{g}\left(J_{m} X_{1}, F_{1} X_{1}\right)}{|X|\left|F_{1} X_{1}\right|}$. This means that the angle $\theta\left(X_{1}\right)$ between $J_{m} X$ and the tangent space $T_{x} M_{1}$ is constant. Since M_{1} is a submanifold in \bar{M}^{m}, we conclude that M_{1} is slant submanifold of \bar{M}^{m}. Similarly M_{2} is slant submanifold of \bar{M}^{n}.

Now, we denote the Weingarten operators of M, M_{1} and M_{2} in \bar{M}, \bar{M}^{m} and \bar{M}^{n} by A, A^{1} and A^{2}, respectively. Also denote the second fundamental forms of M, M_{1} and M_{2} in \bar{M}, \bar{M}^{m} and \bar{M}^{n} by h, h_{1} and h_{2}, respectively. Then we have ([4])

$$
\begin{equation*}
h(X, Y)=h_{1}\left(X_{1}, Y_{1}\right)+h_{2}\left(X_{2}, Y_{2}\right), \tag{3.5}
\end{equation*}
$$

where $X=X_{1}+X_{2}, Y=Y_{1}+Y_{2} \in \Gamma(T M)$. We also note that, since M is a Riemannian product manifold, we have

$$
\begin{equation*}
T M_{1}=\{X \in \Gamma(T M) \mid f X=X\}, T M_{2}=\{X \in \Gamma(T M) \mid f X=-X\} \tag{3.6}
\end{equation*}
$$

SAHIN, KELES

Now, since $h\left(X_{2}, X_{1}\right)=0$, using (2.10) we have $A_{N_{1}} X_{2} \in \Gamma\left(T M_{2}\right)$. On the other hand, from (2.12) we have $g\left(A_{N_{1}} X_{2}, Y_{2}\right)=g\left(h_{2}\left(X_{2}, Y_{2}\right), N_{1}\right)$, thus from (3.1) we get $g\left(A_{N_{1}} X_{2}, Y_{2}\right)=0$, hence $A_{N_{1}} X_{2} \in \Gamma\left(T M_{1}\right)$. Thus we obtain

$$
\begin{equation*}
A_{N_{1}} X_{2}=0 \tag{3.7}
\end{equation*}
$$

In similar way, we have

$$
\begin{equation*}
A_{N_{2}} X_{1}=0 \tag{3.8}
\end{equation*}
$$

Thus from (3.7) and (3.8) we obtain

$$
\begin{equation*}
A_{N} X=A_{N_{1}} X_{1}+A_{N_{2} X_{2}} \tag{3.9}
\end{equation*}
$$

where $X=X_{1}+X_{2} \in \Gamma(T M)$ and $N=N_{1}+N_{2} \in \Gamma\left(T M^{\perp}\right)$. Moreover, using (2.10) we have

$$
\begin{equation*}
A_{N} X=A_{N_{1}}^{1} X_{1}+A_{N_{2}}^{2} X_{2} \tag{3.10}
\end{equation*}
$$

Theorem 3.2 Let M be an F-invariant submanifold of a Kehlerian product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. If M is a Kaehler slant submanifold in \bar{M}, then M_{1} is a Kaehler slant submanifold of \bar{M}^{m} and M_{2} is a Kaehler slant submanifold of \bar{M}^{n}.

Proof. Let M be a Kaehler slant submanifold of \bar{M}. Then using (2.9), (2.8), (3.3), (3.4) and taking into account (3.2), we obtain

$$
\begin{align*}
\left(\nabla_{\bar{P} X} F_{1}\right) \bar{P} Y & =A_{\omega_{1} \bar{P} Y}^{1} \bar{P} X-B_{1} h_{1}(\bar{P} X, \bar{P} Y) \tag{3.11}\\
\left(\nabla_{\bar{Q} X} F_{2}\right) \bar{Q} Y & =A_{\omega_{2} \bar{Q} Y}^{2} \bar{Q} X-B_{2} h_{2}(\bar{Q} X, \bar{Q} Y) \tag{3.12}
\end{align*}
$$

for $X, Y \in \Gamma(T M)$. In similar way,

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=A_{\omega Y} X-B h(X, Y) \tag{3.13}
\end{equation*}
$$

for $X, Y \in \Gamma(T M)$. Let $X_{1}, Y_{1} \in \Gamma\left(T M_{1}\right)$ in (3.13), then if $\left(\nabla_{X} \phi\right)=0$, i.e., M is Kaehler slant submanifold in \bar{M}, from (3.5) and (3.10) we have

$$
A_{\omega_{1} Y_{1}}^{1} X_{1}-B_{1} h_{1}\left(X_{1}, Y_{1}\right)=0
$$

hence $\left(\nabla_{\bar{P} X} F_{1}\right)=0$. Similarly, $\left(\nabla_{\bar{Q} X} F_{2}\right) \bar{Q} Y=0$. Then our assertion follows from Theorem 3.1

ŞAHIN, KELES

4. Curvature Inequalities

In this section, we give some inequalities for invariant, anti-invariant and slant submanifolds of a Kaehler product manifolds in terms of Ricci tensor and scalar curvature. First we need the following.
Lemma 4.1. Let M be a $(k+l)$-dimensional F-invariant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. If M is an invariant submanifold of $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$, then M is an invariant product manifold $M=M_{1} \times M_{2}$, where M_{1} is minimal in \bar{M}^{m} and M_{2} is minimal in \bar{M}^{n}.

Proof, Let M be an F-invariant submanifold of $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$, then we have ([4])

$$
\begin{equation*}
H=\frac{k}{k+l} H_{1}+\frac{l}{k+l} H_{2}, \tag{4.1}
\end{equation*}
$$

where H, H_{1} and H_{2} are mean curvature vector fields of M, M_{1} and M_{2}. On the other hand, it is known that invariant submanifolds of Kaehler manifolds are minimal ([6]); thus, $H=0, H_{1}=0$ and $H_{2}=0$.

Let M be an F-invariant submanifold of Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. Then from (2.10) and (2.11) we obtain

$$
\begin{align*}
g(R(X, Y) Z, W) & =\frac{1}{16}\left(c_{1}+c_{2}\right)[g(Y, Z) g(X, W)-g(X, Z) g(Y, W) \\
& +g(J Y, Z) g(J X, W)-g(J X, Z) g(J Y, W) \\
& +2 g(X, J Y) g(J Z, W)+2 g(F Y, Z) g(F X, W) \\
& -g(F X, Z) g(F Y, W)+g(J Y, F Z) g(J X, F W) \\
& -g(J X, F Z) g(J Y, F W)+2 g(F X, J Y) g(J Z, F W)] \\
& +\frac{1}{16}\left(c_{1}-c_{2}\right)[g(F Y, Z) g(X, W)-g(F X, Z) g(Y, W) \\
& +g(Y, Z) g(F X, W)-g(X, Z) g(F Y, W) \\
& +g(J Y, F Z) g(J X, W)-g(J X, F Z) g(J Y, W) \\
& +g(J Y, Z) g(J X, F W)-g(J X, Z) g(J Y, F W) \\
& +2 g(F X, J Y) g(J Z, W)-2 g(X, J Y) g(F Z, J W) \\
& +g(h(X, W), h(Y, Z))-g(h(Y, Z), h(X, W)) \tag{4.2}
\end{align*}
$$

SAHIN, KELES

Let M be an F-invariant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. Since M is also a product manifold $M=M_{1} \times M_{2}$, we can choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}, \tilde{e}_{1}, \ldots, \tilde{e}_{l}\right\}$ for $T_{p} M$ such that $\left\{e_{1}, \ldots, e_{k}\right\}$ is tangent to M_{1} and $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{l}\right\}$ is tangent to M_{2}. Thus from (4.1) and (4.2), using (3.6) we obtain

$$
\begin{align*}
2 \tau & =\frac{1}{16} c_{1}\left[5 k^{2}-4 k+l^{2}+12\left\|P_{1}\right\|^{2}\right]+\frac{1}{16} c_{2}\left[5 l^{2}-4 l+k^{2}+12\left\|P_{2}\right\|^{2}\right] \\
& +k^{2}\left\|H_{1}\right\|^{2}+l^{2}\left\|H_{2}\right\|^{2}-\|h\|^{2} \tag{4.3}
\end{align*}
$$

where $\|h\|^{2}=\sum_{a, b=1}^{(k+l)} g\left(h\left(e_{a}, e_{b}\right), h\left(e_{a}, e_{b}\right)\right),\left\|P_{1}\right\|^{2}=\sum_{i, j=1}^{k} g\left(e_{i}, F_{1} e_{j}\right)^{2}$ and $\left\|P_{2}\right\|^{2}=$ $\sum_{\alpha, \beta=1}^{l} g\left(\tilde{e}_{\alpha}, F_{2} \tilde{e}_{\beta}\right)^{2}$ and τ is the scalar curvature of M.

Thus (4.3) enables us to state the following theorem:

Theorem 4.1. Let M be an F-invariant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m} \times \bar{M}^{n}$. Then the following statements are true:

1. We have

$$
\begin{align*}
\tau & \leq \frac{1}{32} c_{1}\left[5 k^{2}-4 k+l^{2}+12\left\|P_{1}\right\|^{2}\right]+\frac{1}{32} c_{2}\left[5 l^{2}-4 l+k^{2}+12\left\|P_{1}\right\|^{2}\right] \\
& +\frac{k^{2}}{2}\left\|H_{1}\right\|^{2}+\frac{l^{2}}{2}\left\|H_{2}\right\|^{2} \tag{4.4}
\end{align*}
$$

2. If M is θ slant submanifold, then

$$
\begin{align*}
\tau & \leq \frac{k^{2}}{2}\left\|H_{1}\right\|^{2}+\frac{k^{2}}{2}\left\|H_{2}\right\|^{2}+\frac{1}{32} c_{1}\left[5 k^{2}+l^{2}-4 m\left(1-3 \cos ^{2} \theta\right)\right. \\
& +\frac{1}{32} c_{2}\left[5 l^{2}+k^{2}-4 l\left(1-3 \cos ^{2} \theta\right)\right. \tag{4.5}
\end{align*}
$$

3. If M is an invariant submanifold, then

$$
\begin{equation*}
\tau \leq \frac{1}{32} c_{1}\left[5 k^{2}+8 k+l^{2}\right]+\frac{1}{32} c_{2}\left[5 l^{2}+8 l+k^{2}\right] . \tag{4.6}
\end{equation*}
$$

ŞAHIN, KELEŞ

4. If M is an anti-invariant submanifold, then

$$
\begin{align*}
\tau & \leq \frac{k^{2}}{2}\left\|H_{1}\right\|^{2}+\frac{k^{2}}{2}\left\|H_{2}\right\|^{2}+\frac{1}{32} c_{1}\left[5 k^{2}-4 k+l^{2}\right] \\
& +\frac{1}{32} c_{2}\left[5 l^{2}-4 l+k^{2}\right] \tag{4.7}
\end{align*}
$$

5. Equality cases $1 ., 2 ., 3$, and 4 hold if and only if M is totally geodesic.

Proof. Let M be an F-invariant submanifold of Kaehler product manifold $\bar{M}=$ $\bar{M}^{m} \times \bar{M}^{n}$. Then M is also a product manifold $M=M_{1} \times M_{2}$. Thus (1) follows from (4.2) and (4.3). If M is slant submanifold, then M_{1} and M_{2} are slant submanifolds of \bar{M}^{m} and \bar{M}^{n}. It is known that a slant submanifold of a Kaehler manifold satisfies the following

$$
g(P X, P Y)=\cos ^{2} \theta g(X, Y)
$$

Hence we have

$$
\begin{equation*}
\left\|P_{1}\right\|^{2}=k \cos ^{2} \theta,\left\|P_{2}\right\|^{2}=l \cos ^{2} \theta \tag{4.8}
\end{equation*}
$$

Thus, using (4.8) in (4.4) we obtain (2). Putting $\theta=\frac{\pi}{2}$ in (4.5) we have (3). Since invariant M implies $H=0$, from Lemma 4.1 we get (4). The last statement is clear from (4.3).

Theorem 4.2. Let M be a $(k+l)$-dimensional F-invariant submanifold of a Kaehler product manifold $\bar{M}=\bar{M}^{m}\left(c_{1}\right) \times \bar{M}^{n}\left(c_{2}\right)$. Then the following statements are true:
(1) We have

$$
\begin{align*}
S(X, X) & \leq \frac{1}{16} c_{1}\left[(5 k-4)\left\|X_{1}\right\|^{2}+l\left\|X_{2}\right\|^{2}+12\left\|P X_{1}\right\|^{2}\right] \\
& +\frac{1}{16} c_{2}\left[(5 l-4)\left\|X_{1}\right\|^{2}+k\left\|X_{1}\right\|^{2}+12\left\|P X_{2}\right\|^{2}\right] \\
& +k g\left(H_{1}, h_{1}\left(X_{1}, X_{1}\right)\right)+\lg \left(H_{2}, h_{2}\left(X_{2}, X_{2}\right)\right) \tag{4.9}
\end{align*}
$$

where S is the Ricci tensor, $X=X_{1}+X_{2},\left\|X_{1}\right\|^{2}=\sum_{i=1}^{k} g\left(e_{i}, J X_{1}\right)^{2}$ and $\left\|X_{1}\right\|^{2}=\sum_{\alpha=1}^{l} g\left(\tilde{e}_{\alpha}, J X_{2}\right)^{2}$.

SAHIN, KELES

(2) If M is θ - slant submanifold, then

$$
\begin{align*}
S(X, X) & \leq \frac{1}{16} c_{1}\left[(5 k-4)\left\|X_{1}\right\|^{2}+l\left\|X_{2}\right\|^{2}+12 \cos ^{2} \theta\left\|X_{1}\right\|^{2}\right] \\
& +\frac{1}{16} c_{2}\left[(5 l-4)\left\|X_{1}\right\|^{2}+k\left\|X_{1}\right\|^{2}+12 \cos ^{2} \theta\left\|X_{2}\right\|^{2}\right] \\
& +k g\left(H_{1}, h_{1}\left(X_{1}, X_{1}\right)\right)+l g\left(H_{2}, h_{2}\left(X_{2}, X_{2}\right)\right) \tag{4.10}
\end{align*}
$$

(3) If M is invariant, then

$$
\begin{align*}
S(X, X) & \leq \frac{1}{16} c_{1}\left[(5 k+8)\left\|X_{1}\right\|^{2}+l\left\|X_{2}\right\|^{2}\right] \\
& +\frac{1}{16} c_{2}\left[(5 l+8)\left\|X_{1}\right\|^{2}+k\left\|X_{1}\right\|^{2}\right] \tag{4.11}
\end{align*}
$$

(4) If M is anti-invariant

$$
\begin{align*}
S(X, X) & \leq \frac{1}{16} c_{1}\left[(5 k-4)\left\|X_{1}\right\|^{2}+l\left\|X_{2}\right\|^{2}\right] \\
& +\frac{1}{16} c_{2}\left[(5 l-4)\left\|X_{1}\right\|^{2}+k\left\|X_{1}\right\|^{2}\right] \\
& +k g\left(H_{1}, h_{1}\left(X_{1}, X_{1}\right)\right)+l g\left(H_{2}, h_{2}\left(X_{2}, X_{2}\right)\right) \tag{4.12}
\end{align*}
$$

Proof. Let M be an F-invariant submanifold of a Kaehler product manifold $\bar{M}=$ $\bar{M}^{m} \times \bar{M}^{n}$. Then M is a product manifold $M=M_{1} \times M_{2}$. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}, \tilde{e}_{1}, \ldots, \tilde{e}_{l}\right\}$ for $T_{p} M$ such that $\left\{e_{1}, \ldots, e_{k}\right\}$ is tangent to M_{1} and $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{l}\right\}$ is tangent to M_{2}. Then, from (4.3) and (3.6), we obtain,

$$
\begin{align*}
\left.\sum_{i=1}^{k} g\left(R\left(e_{i}, X_{1}\right) Y_{1}\right), e_{i}\right) & =\frac{1}{16} c_{1}(5 k-4) g\left(X_{1}, Y_{1}\right)+\frac{1}{16} c_{2} k g\left(X_{1}, Y_{1}\right) \\
& +\sum_{i=1}^{k}\left\{12 g\left(e_{i}, J X_{1}\right) g\left(e_{i}, J Y_{1}\right)\right. \\
& \left.-g\left(h_{1}\left(e_{i}, X_{1}\right), h_{1}\left(Y_{1}, e_{i}\right)\right)\right\} \\
& +k g\left(H_{1}, h_{1}\left(X_{1}, Y_{1}\right)\right) \tag{4.13}
\end{align*}
$$

SAHIN, KELES

and

$$
\begin{align*}
\left.\sum_{\alpha=1}^{l} g\left(R\left(\tilde{e}_{\alpha}, X_{2}\right) Y_{2}\right), \tilde{e}_{\alpha}\right) & =\frac{1}{16} c_{2}(5 l-4) g\left(X_{2}, Y_{2}\right)+\frac{1}{16} c_{2} l g\left(X_{2}, Y_{2}\right) \\
& +\sum_{\alpha=1}^{l}\left\{12 g\left(\tilde{e}_{\alpha}, J X_{2}\right) g\left(\tilde{e}_{\alpha}, J Y_{2}\right)\right. \\
& \left.-g\left(h_{2}\left(\tilde{e}_{\alpha}, X_{2}\right), h_{2}\left(Y_{2}, \tilde{e}_{\alpha}\right)\right)\right\} \\
& +l g\left(H_{2}, h_{2}\left(X_{2}, Y_{2}\right)\right) . \tag{4.14}
\end{align*}
$$

Thus, from (4.13) and (4.14), we have

$$
\begin{align*}
S(X, X) & =\frac{1}{16} c_{1}\left[(5 k-4)\left\|X_{1}\right\|^{2}+l\left\|X_{2}\right\|^{2}\right] \\
& +\frac{1}{16} c_{2}\left[(5 l-4)\left\|X_{2}\right\|^{2}+k\left\|X_{1}\right\|^{2}\right] \\
& +\sum_{i=1}^{k} 12 g\left(e_{i}, J X_{1}\right)^{2}-g\left(h_{1}\left(e_{i}, X_{1}\right), h_{1}\left(Y_{1}, e_{i}\right)\right) \\
& +\sum_{\alpha=1}^{l} 12 g\left(\tilde{e}_{\alpha}, J X_{2}\right)^{2}-g\left(h_{2}\left(\tilde{e}_{\alpha}, X_{2}\right), h_{2}\left(Y_{2}, \tilde{e}_{\alpha}\right)\right) \\
& +k g\left(H_{1}, h_{1}\left(X_{1}, Y_{1}\right)\right)+l g\left(H_{2}, h_{2}\left(X_{2}, Y_{2}\right)\right) \tag{4.15}
\end{align*}
$$

Then (1) follows from (4.15). The proof of the other assertions are similar to the assertions of Theorem 4.1.

References

[1] Bejancu, A.: Geometry of CR-Submanifolds, Kluwer, Dortrecht (1986).
[2] Chen, B. Y.: Geometry of slant submanifolds, K.U. Leuven, (1990).
[3] Matsumoto, K. On submanifolds of locally product Riemannian Manifolds, TRU Math. 18 (2), 145-157, (1982).
[4] Senlin, X. and Yilong, N.: Submanifolds of product Riemannian manifold. Acta Math. Sci. Ser. B Engl. Ed. 20, no. 2, 213-218, (2000).
[5] Shahid, M. H.: CR-submanifolds of Kaehlerian product manifold, Indian J. Pure and Appl. Math, 23 (12), 873-879, (1992).
[6] Yano, K. and Kon, M.: Structures on Manifolds, World Scientific (1984).

Bayram ŞAHİN, Sadık KELEŞ
Received 12.07.2005
İnönü University,
Faculty of Science and Art,
Department of Mathematics,
44280, Malatya-TURKEY
e-mail:bsahin@inonu.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 53C15, 53C42
 This study was supported by İnönü University, Project No. 2002/8

