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Slant submanifolds of Kaehler Product Manifolds

Bayram Sahin and Sadik Keles

Abstract

In this paper, we study slant submanifolds of a Kaehler product manifold. We
show that an F-invariant slant submanifold of Kaehler product manifold is a product
manifold. We also obtain some curvature inequalities in terms of scalar curvature

and Ricci tensor.
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1. Introduction

Submanifolds of a Kaehler manifold are defined with respect to the behaviour of
complex structure J. More precisely, a real submanifold M of a Kaehler manifold is
called invariant if J(TM) = TM, where TM denotes the tangent bundle of M. M is
called totally real if J(TM) C TM~* and M is called CR-submanifold [1] if there are
orthogonal complement two distributions D+, D such that D is invariant and D+ is
totally real. Recently, B. Y. Chen introduced slant submanifolds as follows: Let M be a
submanifold of a Kaehler manifold M, for each non zero vector X € T, M, we denote the
angle between JX and T, M by 6(X). Then M is said to be slant ([2]) if the angle 6(X)
is constant, i.e., it is independent of the choice of p € M and X € T, M. The angle 6 of a
slant immersion is called the slant angle of the immersion. Invariant and anti-invariant
immersions are slant immersions with slant angle # = 0 and 6 = 7, respectively. A proper

slant immersion is neither invariant nor anti-invariant.
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The geometry of submanifolds of a Kaehler manifold has been investigated by many
authors. In [6], K.Yano and M. Kon studied the geometry of F-invariant and F-anti-
invariant submanifolds of Kaehler product manifolds and showed that an Finvariant,
invariant submanifold of a Kaehler product manifold is also a product manifold.

Same result was obtained for anti-invariant submanifold [6]. On the other hand,
CR-submanifolds of Kaehler product manifolds were studied in [5] by M. H. Shahid.

In this paper, we consider slant submanifolds of Kaehler product manifolds. We show
that an F-invariant, slant submanifold of a Kaehler product manifold M = M™ x M"
is a product manifold M; x My and M (resp. Ms) is also a slant submanifold of M™
(resp. M™). Also we obtain, if M = M; x Ms is a Kaehler slant submanifold of M, then
M is a Kaehler slant submanifold of M™ and M, is a Kaehler slant submanifold of M™.
In the last section we study scalar curvature and Ricci tensor of various submanifolds of
a Kaehler product manifold M = M™(c;) x M™(cz) and obtain several inequalities for

slant, invariant and anti-invariant submanifolds of M.
2. Preliminaries

Let (M, g) be a 2k-dimensional Riemannian manifold with Riemannian metric g. An
almost complex structure on M is a tensor field J of type (1,1) such that at every p € M
we have J2 = —I, where I denotes the identity transformation of TpM . Then, M is

called an almost complex manifold. The Nijenhuis torsion tensor Ny, of J, is defined by

N, (X,Y)=[JX,JY] - [X,Y] - J[X,JY] - J[JX,Y],

VX,Y € I(TM), where I'(TM) is the module of differentiable sections of the tangent
bundle TM. If the torsion tensor N; vanishes identically on M then J is complex
structure on M which becomes a complex manifold. A Hermitian metric on M is a

Riemannian metric g satisfying
9(X,Y)=g(JX,JY), VX,Y €T(TM). (2.1)

An almost complex manifold endowed with a Hermitian metric is called an almost
Hermitian manifold, denoted by (M ,g,J). Denote the Levi-Civita connection on M
with respect to ¢ by V. Then, M is called an Kaehler manifold if J is parallel with
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respect to vV, ie.,

(VxJ)Y =0, VX,Y eT(TM). (2.2)

The Riemann curvature tensor field, denoted by R, satisfies
R(X,Y)J=JR(X,Y) R(JX,JY)=R(X,Y). (2.3)

A complex space form is a connected Kaehler manifold of constant holomorphic sectional

curvature ¢, denoted by M(c). The curvature tensor field of M(c) is given by

R(X,Y)Z

TV 2)X —g(X, 2)Y +9(JY.2)JX
— g(JX,2)JY +2¢(X,JY)JZ}, VX,Y €T (TM). (2.4)

We consider a Kaehler product manifold M = M™ x M"™. We denote by P and Q
the projection operators of the tangent space of M to the tangent space of M™ and M™,

respectively. Then we have
P=P.Q'=Q.PQ=QP=0.

Putting F = P — Q, we have F? = I. Thus F is an almost product structure on M.

Then we can define a Riemannian metric g on M by
9(X,Y) = gm(PX, PY) + gn(QX, QY)
for any vector field X,Y on M. Thus it follows
9(FX,Y) = g(FY, X).

Now, consider JX = J,,PX + J,QX for any vector field X of M. Then it can be
verified that the following are satisfied:

JnP=PJ, J,Q=QJ, FJ=JFJ?>=-I, (2.5)
g(JX,JY)=g(X,Y), VxJ=0, (2.6)

where V is the metric connection on M. Thus M is a Kaehler manifold. If M™(c;) and

M"(c3) are complex space forms with constant holomorphic sectional curvatures ¢; and
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c2, respectively, then the Riemannian curvature tensor R of a Kaehler product manifold

M is given by [6]

e+ @)lg(Y, 2)g(X, W) — g(X, Z2)g(¥, W)

+ g(JY, 2)g(JX, W) — g(JX, Z)g(JY, W)

+ 29(X,JY)g(JZ, W) + 29(FY, Z)g(FX, W)

— 9(FX,Z)9(FY, W)+ g(JY,FZ)g(JX,FW)

— g(JX,FZ)g(JY,FW) + 29(FX, JY)g(J Z, FW)

g(R(X,Y)Z,W)

1
+ E(Cl — )[g(FY, Z)g(X, W) — g(F X, Z)g(Y, V)
+ (JY FZ) (JX, W) —g(JX,FZ)g(JY,W)
+ 9(JY, Z2)g(JX, FW) — g(JX, Z)g(JY, FW)
+ 29(FX,IV)g(JZ,W)—29(X,JY)g(FZ,JW) (2.7)
for any vector fields X, Y, Z and W of M. O

Let M be a Riemannian manifold and M be a Riemannian manifold isometrically

immersed in M. Then the formulas of Gauss and Weingarten for M in M are given by

?XY = ny-i-h(X, Y), (2.8)

VxN = —-AxX + V%N, (2.9)

for any vector fields X,Y tangent to M and N normal to M, where V denotes the
Riemannian connection on M, h is the second fundamental form, V' is the normal
connection and A is the shape operator of M in M. Moreover, the second fundamental

form and the shape operator are related by

where g denotes the Riemannian metric on M as well as on M.
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The equations of Gauss and Codazzi are given by

R(X,Y,Z,W) = R(X,Y,Z, W)+ g(h(X,Z),h(Y,WV))
—g(h(X,W),h(Y, Z)) (2'11)
(R(X,Y)Z)" = (Vxh) (Y, Z) = (Vyh) (X, 2) (2.12)

for any X,Y,Z and W tangent to M, where R, R denote the curvature tensors of M,
M respectively, and (R(X , Y)Z)J' denotes the normal component of R(X Y)Z.

3. Slant Submanifolds of a Kaehler Product Manifold

Let M be an F-invariant submanifold of a Kaehler product manifold M™ x M™. Then,
it is known that M is a locally decomposable Riemannian manifold M = My x Ms, where
M is a submanifold of M™ and M, is a submanifold of M™. Moreover, if M is Kaehler
submanifold of M = M™ x M™, then M is a Kaehler product manifold M = M; x M,

([6])-

Let M be an invariant submanifold of a Kaehler product manifold M = M™ x M™.
Then, M = My x My, where M is a invariant submanifold of M™ and M, is an invariant

submanifold of M™. Then we have

M TM™ & TM™ (3.1)

{TM;y & TM>} & {TMi- & TMj}. (3.2)

For any X € I'(TM;) and N; € I'(TMi-), we put

JX=J,X=FX+wX,JN, =J,Ny = BiN, + C1 Ny, (33)

where F1 X, BNy € T'(TM;) and C1 Ny, w1 X € I(TMji-) Similarly,for any Y € T'(T' M)
and No € T'(TM3-), we put

JY =J,Y = F5Y 4+ wsY, JNy = J, Ny = By Ny + C5No, (34)
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where FyY, BoNs € F(TMQ) and CQNQ,LUQY S F(TM2J‘)

Theorem 3.1 Let M be an F-invariant submanifold of a Kaehler product manifold
M = M™ x M™. If M is a slant submanifold of M, then M is a slant product manifold
M x My, where M, is a slant submanifold of M™ and M, is a slant submanifold of M™.

Proof. Let us assume that M is a slant submanifold of a Kaehler product manifold
M = M™ x M™. Then, the angle #(X) between JX and the tangent space T, M at z € M
is constant for X € T, M, i.e, it is independent of the choice x € M and X € T,, M. Then

we have
g(J X, pX)

0sbX) = X Tox |

where ¢X is the tangential part of JX.
Thus for X; € I'(T'M;), we have

9(J X1, 9X1)

| X [ X |

g(JmPXl +JnQX17¢X1)
| X || FiXa |

g(Jm X1 + QJX, 6 X1)
| X || FiXy |

cosf(X;) =

Hence, we have cosf(X;) = % This means that the angle 6(X;) between

JnX and the tangent space T, M7 is constant. Since M; is a submanifold in M . we
conclude that M; is slant submanifold of M™. Similarly M is slant submanifold of M™.0

Now, we denote the Weingarten operators of M, M; and My in M, M™ and M™ by
A, A' and A2, respectively. Also denote the second fundamental forms of M, M; and
My in M, M™ and M™ by h, h; and hs, respectively. Then we have ([4])

h(X,Y) :hl(Xl,}/i) +h2(X2,Y§), (35)

where X = X7+ X5, Y =Y; +Y; € I'(TM). We also note that, since M is a Riemannian

product manifold, we have

TM; ={X e (TM) | fX = X}, TM, = {X e T(TM) | fX = —X}. (3.6)
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Now, since h(Xs3,X1) = 0, using (2.10) we have An, Xo € T'(T'M3). On the other
hand, from (2.12) we have g(An, X2,Y2) = g(ha(Xa2,Y3), N7), thus from (3.1) we get
9(An, X2,Y5) =0, hence Ay, Xo € T'(T'M7). Thus we obtain

Ay, Xo = 0. (3.7)
In similar way, we have
Ay, X1 = 0. (3.8)
Thus from (3.7) and (3.8) we obtain
AnX = AN, X1 + AN, X2, (3.9)

where X = X; + X2 € I(TM) and N = Ny + Ny € (T M+). Moreover, using (2.10) we

have
ANX = Ay, X1 + AR, Xo. (3.10)

Theorem 3.2 Let M be an F-invariant submanifold of a Kehlerian product manifold
M = M™ x M™. If M is a Kaehler slant submanifold in M, then M, is a Kaehler slant
submanifold of M™ and My is a Kaehler slant submanifold of M™.

Proof. Let M be a Kaehler slant submanifold of M. Then using (2.9), (2.8), (3.3), (3.4)

and taking into account (3.2), we obtain
(VexF1)PY = Al 5 PX—Bih(PX,PY) (3.11)
(VoxF2)QY = 45,4y QX - Boha(QX, QY) (3.12)
for X, Y € T(TM). In similar way,
(Vx¢)Y = A,y X — Bh(X,Y) (3.13)

for X, Y e T(TM). Let X;,Y; € T(T'M;) in (3.13), then if (Vx¢) =0, i.e., M is Kaehler
slant submanifold in M, from (3.5) and (3.10) we have

Al v X1 — Bih(X1,Y1) =0,

w1 Y7

hence (VpxFy) = 0. Similarly,(Vgx F2)QY = 0. Then our assertion follows from Theo-
rem 3.1 O
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4. Curvature Inequalities

In this section, we give some inequalities for invariant, anti-invariant and slant sub-
manifolds of a Kaehler product manifolds in terms of Ricci tensor and scalar curvature.
First we need the following.

Lemma 4.1. Let M be a (k + 1) -dimensional F-invariant submanifold of a Kaehler
product manifold M = M™ x M™. If M is an invariant submanifold of M = M™ x M™,
then M is an invariant product manifold M = My x M, where M is minimal in Mm™

and My is minimal in M™.

Proof, Let M be an F-invariant submanifold of M = M™ x M™, then we have ([4])

k l
_ 41
H = s Hit = Ha, (4.1)

where H, Hy and H> are mean curvature vector fields of M, M; and M>. On the other
hand, it is known that invariant submanifolds of Kaehler manifolds are minimal ([6]);
thus, H =0, H, =0 and H, = 0.

Let M be an F-invariant submanifold of Kaehler product manifold M = M™ x M™.
Then from (2.10) and (2.11) we obtain

1
16

+ (Y, Z)g(JX, W) — g(JX, Z)g(JY, W)

+ 29(X, JY)g(JZ, W) + 29(FY, Z)g(FX, W)
o(FX, 2)g(FY, W) + g(JY, FZ)g(JX,FW)

— g(JX,FZ)g(JY,FW) +29(FX, JY)g(J Z, FW)]

1
16

9(Y, Z)g(FX, W) — g(X, Z)g(FY, W)

g(JY, FZ)g(JX, W) = g(JX, FZ)g(JY,W)

9(JY, Z)g(JX, FW) — g(J X, Z)g(JY, FW)
20(FX,JY)g(JZ, W) —29(X, JY )g(F Z, JW)

g(W(X, W), WY, Z)) — g(h(Y, Z), (X, W)). (4.2)

g(R(X, Y)Z, W)

—(c1+e2)[g(V; 2)g(X, W) — g(X, Z)g(Y, W)

—(c1 — ) [g(FY, 2)g(X, W) — g(F X, Z)g(Y, W)

+ o+ o+ o+ o+
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Let M be an F-invariant submanifold of a Kaehler product manifold M = M™ x M™.
Since M is also a product manifold M = M; x M, we can choose an orthonormal basis
{e1,...,ex, €1,...,¢} for T,M such that {e1,...,ex} is tangent to My and {éi,...,&} is
tangent to My. Thus from (4.1) and (4.2), using (3.6) we obtain

1 1
2r = 1—6c1[5k2—4k+12+12|\ P |\2]+EC2[512—41+/<2+12|\ P ||

+ K HP AP H P = P (4.3)

k41
where || 7o [|12= S0 g(h(ea, ev), hea, &), || Pu 7= S5, g(es, Fie;)? and | Py ||*=

Zixﬁ:l 9(éa, F2ég)? and 7 is the scalar curvature of M. O
Thus (4.3) enables us to state the following theorem:

Theorem 4.1. Let M be an F-invariant submanifold of a Kaehler product manifold
M = M™ x M™. Then the following statements are true:

1. We have

1 1
T < §c1[5k2—4k+12+12 | P, |\2]+EC2[512—41+/~:2+12 | P |12

k? , 12 9
+ S I H P+ T H 7. (4.4)
2 2
2. If M is 0 slant submanifold, then

k? ) K 2 1 2 g2 2
T < 5 || Hy | +? || Hs || +§cl[5k + 1% — 4m(1 — 3cos“0)

1
+ 502[512 + k% — 41(1 — 3cos*6). (4.5)

3. If M is an invariant submanifold, then

1 1
7 < goer[5k? 4 8k + ] + o eaf5l® + 8L+ k7). (4.6)
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4. If M is an anti-invariant submanifold, then

< K | Hy | +k2 | Hy || + 1 c1[5k? — 4k + 17
- i i i _
D) ! 2 2 327!

1
+ EC2[5l2 — 41+ k). (4.7)

5. Equality cases 1.,2.,3, and 4 hold if and only if M is totally geodesic.

Proof. Let M be an F-invariant submanifold of Kaehler product manifold M =
M™ x M™. Then M is also a product manifold M = M; x Ms. Thus (1) follows from
(4.2) and (4.3). If M is slant submanifold, then M; and M, are slant submanifolds of
M™ and M™. It is known that a slant submanifold of a Kaehler manifold satisfies the

following
g(PX,PY) = cos®0g(X,Y).

Hence we have

| P1 ||?= kcos?6, || Py ||?= lcos®. (4.8)

Thus, using (4.8) in (4.4) we obtain (2). Putting § = % in (4.5) we have (3). Since invari-
ant M implies H = 0, from Lemma 4.1 we get (4). The last statement is clear from (4.3).0

Theorem 4.2. Let M be a (k + l)-dimensional F-invariant submanifold of a Kaehler
product manifold M = M™(c;) x M"(cg). Then the following statements are true:

(1) We have
1
S(X,X) < Ecl[(% —4) | Xy P+ X2 [P 412 PXy |7
1
+ ggeel3l=4) | Xy I +k || X1 > +12 || PX2 |?)
+  kg(H1, hi(X1,X1)) + lg(Hz, ha(X2, X2)), (4.9)

where S is the Ricci tensor, X = X3 + Xo, | X1 ||?= Zle glei, JX1)? and
| X1 7= Yo 9(a, JX2)%,
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(2) If M is — slant submanifold, then

1
S(X,X) < peal(Gk —4) | Xu [P+ || Xz ||* +12c08%0 || Xy [|7]

1
+ el —=4) | Xu |7 +k | Xy || +12c05%0 || X ||7]

+  kg(Hi, hi(X1, X1)) +lg(Ha, ha(X2, X2)). (4.10)

(3) If M is invariant, then

1
S X) < peal(Gk+8) | X |I* +1 ]| Xz |17

1
+ ggeel(5i+8) | Xy 12 +k 1 X3 [17). (4.11)

(4) If M is anti-invariant

1
S, X) < gparlGh—4) | Xu |* 41 ]| Xo |7

1
+ ggeel(Bl =) [| Xu [+ [ X ]

+  kg(Hi, hi(X1, X1)) +lg(Ha, ha(X2, X2)). (4.12)

Proof. Let M be an F-invariant submanifold of a Kaehler product manifold M =
M™ x M™. Then M is a product manifold M = M; x M,. We choose an orthonormal
basis {e1, ..., €k, €1, ..., &} for T, M such that {ei, ..., ex} is tangent to M7 and {é1,...,&}
is tangent to My. Then , from (4.3) and (3.6), we obtain,

k

1 1
> a(Blen, X)) e)) = geei(5k = 4)g(X1, Y1) + geeako(X1, Y1)
i=1

k
+ > {12g(ei, JX1)g(ei, JY1)
i=1

— g(hi(es, X1), ha (Y1, €:))}
+ kg(Hl,hl(Xl,}/i)) (413)
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- - 1 1
g(R(e(X7X2)}/2)7e(¥) = _62(51_4)9()(27}/2) + Ec2lg(X27}/2)

16

l
+ Y {129(Ca, JXa)g(Ea, JY2)

a=1

- g(ha(a, X2), ho(Y2,€4))}
+ lg(Hg,hg(Xg,Yé)). (414)

Thus, from (4.13) and (4.14), we have

S(X, X)

+

+

1
—ai[(5k —4) || Xy [I* +1 ]| X2 7]

16

1

56l = 4) || Xa |7+ || X1 1)

k
> 12g(ei, JX1)? = g (es, X1), (Y1, 1))
=1

l
> " 129(fa, JX2)? = g(ha(Ea, X2), ha(Ya, é))
a=1

kg(Hl,hl(Xl,}/i))+lg(H2,h2(X2,}/é)). (415)

Then (1) follows from (4.15). The proof of the other assertions are similar to the assertions

of Theorem 4.1.
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