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Abstract

Let K be one of the fields Ror C , A a topological associative algebra over K with

separately continuous multiplication, B a subalgebra of A and M a closed maximal

regular left (right or two-sided) ideal of A such that the trace M∩B of M is a proper

subset of B. In cases, when B is a Gelfand-Mazur subalgebra of A or a subalgebra

of the centre Z(A) of A, such classes of topological algebras in which M ∩B (in the

subset topology) is a closed maximal regular left (respectively, right or two-sided)

ideal of B, are described.
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1. Introduction

Let K be one of the fields R of real numbers or C of complex numbers, A a topological
associative algebra over K with separately continuous multiplication (in short, a topologi-
cal algebra), B a subalgebra of A andM a closed maximal regular left (right or two-sided)
ideal of A such that the trace M ∩ B of M in B is a proper subset of B. Then M ∩ B
(in the subset topology) is a closed regular left (respectively, right or two-sided) ideal of
B, but not necessarily a closed maximal ideal of B, as it is shown below. Therefore, it is
interesting to know for which subalgebra B of a topological algebra A the trace M ∩B
of every closed maximal regular left (right or two-sided) ideal M of A is a maximal ideal
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in B This problem has arisen very often for several problems of topological algebras. An
answer to this question, in case B is a Gelfand-Mazur subalgebra of A or a subalgebra of
the centre Z(A) of A, is given.

1. A topological algebra A is locally pseudoconvex if it has a base {Uα : α ∈ A}
of neighbourhoods of zero which consists of balanced (that is, µa ∈ Uα if a ∈ Uα and

|µ| � 1) and pseudoconvex (that is, Uα +Uα ⊂ 2
1

kα Uα for some kα ∈ (0, 1]) sets Uα. It is
well known (see [24], p. 4, or [15], p. 189) that we can give the topology of A by a family
{pα : α ∈ A} of kα-homogeneous seminorms. In particular, when A is a locally pseudo-
convex algebra, in which for each a ∈ A and α ∈ A there are positive numbersM(a, α) and
N(a, α) such that pα(ab) � M(a, α)pα(b) and pα(ba) � N(a, α)pα(b) for all b ∈ A, then A
is a locally absorbingly pseudoconvex or locally A-pseudoconvex algebra. Furthermore, if all
seminorms pα satisfy the condition pα(ab) � pα(a)pα(b) for all a, b ∈ A, then A is a locally
multiplicatively pseudoconvex or locally m-pseudoconvex algebra. In the case when kα = 1
for each α ∈ A, then A is a locally convex (respectively, locally A-convex or locally
m-convex) algebra, and when the topology of A is given by only one k-homogeneous
seminorm for some k ∈ (0, 1], then A is a locally bounded algebra. Hence, the class of
locally pseudoconvex algebras contains all locally convex algebras and all locally bounded
algebras (thus, it contains all p-Banach (in particular, all Banach) algebras studied by

W. Żelazko in [25] and in [26]).
2. Let l0 denote the set of sequences (αn) in K which have a finite number of nonzero

elements αn, l1 the set of sequences (αn) in K such that
∑∞

k=0 |αn| converges, and let
l = l1 \ l0. A topological algebra A is a galbed algebra (see [5], [6] and [12]) if there is
a sequence (αn) ∈ l such that for each neighbourhood O of zero in A there is another
neighbourhood U of zero such that

{ n∑
k=0

αkak : a0, . . . , an ∈ U
}
⊂ O

for each n ∈ N. In particular, when α0 	= 0 and infn>0 |αn| 1
n > 0, then (see [5]) A is called

a strongly galbed algebra, and when αn = 2−n for each n ∈ N, then (see, for example,
[3], [7], [8] and [23]) is called an exponentially galbed algebra. It is easy to see that every
locally pseudoconvex algebra is an exponentially galbed algebra and every exponentially
galbed algebra is a strongly galbed algebra, but there are topological algebras which are
not galbed (see [6], Proposition 5).

3. Let A be a topological algebra, m(A) the set of all closed regular two-sided ideals
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of A, maximal as left or right ideals and let homA be the set of all nontrivial continuous
linear multiplicative maps from A onto K.

A topological algebra over K is called a Gelfand-Mazur algebra (see, for example, [3],
[8], [10] and [13]) if A/M is topologically isomorphic to K for eachM ∈ m(A). One speaks
about real Gelfand-Mazur algebras if K = R and about complex Gelfand-Mazur algebras
if K = C. It is easy to see that a Gelfand-Mazur algebra A is exactly a topological
algebra for which there is a bijection between m(A) and homA. Therefore, only in
case of Gelfand-Mazur algebras it is possible to use the Gelfand theory, well-known for
commutative complex Banach algebras.

The class of Gelfand-Mazur algebras is quite large. In addition to complex normed,
locally m-convex and locally bounded algebras, the class of Gelfand-Mazur algebras
contains all complex locally pseudoconvex Fréchet algebras, all complex locally pseu-
doconvex Waelbroeck algebras1, all complex locally A-pseudoconvex (in particular, lo-
cally m-pseudoconvex) algebras, all complex strongly galbed algebras with bounded el-
ements2(see, for example, [3], [8] and [10]) and similar classes of commutative strongly
real topological algebras (see [21]).

4. Let A be a topological algebra. A net (aλ)λ∈Λ of elements of A is (a) advertibly
convergent in A (see [9]) if there is an element a ∈ A such that both3 (a ◦ aλ)λ∈Λ and
(aλ ◦ a)λ∈Λ converge to the zero element θA of A; (b) Mackey convergent (see [18], pp.
25–26) to an element a0 ∈ A if there exists a bounded set B ⊂ A and for every ε > 0
an index λ0 ∈ Λ such that aλ − a0 ∈ εB whenever λ > λ0; and (c) Mackey advertibly
convergent (see [5]) if there is an element a ∈ A such that both (a◦aλ)λ∈Λ and (aλ ◦a)λ∈Λ

are Mackey convergent to θA.
A topological algebra A is (see [20] and [5]) advertibly complete (Mackey advertibly

complete) if every advertibly convergent (respectively, Mackey advertibly convergent)
Cauchy net in A converges in A. In particular, when only every advertibly convergent
(Mackey advertibly convergent) Cauchy sequence converges in A, then one speeks about
advertibly σ-complete (respectively, Mackey advertibly σ-complete) topological algebras.
It is easy to see that every complete topological algebra is advertibly complete and every
advertibly complete topological algebra is Mackey advertibly complete. Moreover, the
class of advertibly complete topological algebras contains all Q-algebras4 (see [20], p.

1The definition of Waelbroeck algebra can be found in [20], p. 54.
2An element a ∈ A is bounded if there is a number λ ∈ K \ {0} such that the set {

�
a
λ

�n
: n ∈ N} is

bounded in A.
3Here and later on a ◦ b = a + b − ab for each a, b ∈ A.
4A topological algebra A is a Q-algebra if the set of all advertive (if A has the unit element, then
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45).

5. Let A = Lω be the set of all measurable functions (classes of equivalence) f on the
unit interval (0, 1) such that

pn(f) =
( ∫ 1

0

|f(t)|ndt
) 1

n

<∞

for each n ∈ N. Then (see [26], Example 10.5) A is a unital commutative locally convex
Fréchet algebra with respect to the point-wise algebra operations and the topology defined
on A by the countable family {pn : n ∈ N} of seminorms. It is known (see [26], p. 125,
or [17], Example 4.10.31) that A has closed ideals but no closed maximal ideals (which
means that every maximal ideal of A is dense).

Let now B be a metrizable locally convex algebra, {qn : n ∈ N} a countable family
of seminorms on B which defines the topology of B and let C = A × B. If we define all
algebraic operations in C coordinate-wise and seminorms rn on C by

rn((a, b)) = max{pn(a), qn(b)}

for each (a, b) ∈ C, then C is a metrizable locally convex algeba in the topology defined
by the countable family {rn : n ∈ N}. Since rn((a, θB)) = pn(a) for each a ∈ A, then the
map µ : A → C defined by µ(a) = (a, θB) for each a ∈ A, is a topological isomorphism.
Hence, µ(A) is a unital commutative subalgebra of C for which the trace M ∩ µ(A) of
every closed maximal ideal M of C is a closed ideal in µ(A) but not a closed maximal
ideal.

2. Maximality of traces of ideals in subalgebras

1. Let A be a topological algebra. The next result characterizes these subalgebras B
of A in which all traces of closed regular ideals of A are closed maximal ideals.

Proposition 1 Let A be a topological algebra, I a closed regular left (right or two-sided)
ideal of A, u a right (respectively, left or two-sided) unit for I. If B is a subalgebra of A
such that u ∈ B and

(a) for each b ∈ B there is a λ ∈ K such that b− λu ∈ I,
invertive) elements of A is open.
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then the trace I ∩ B of I (in the subspace topology) is a closed maximal regular left
(respectively, right or two-sided) ideal of B.

In particular, when B is a commutative Gelfand-Mazur subalgebra of A and u ∈ B,
then I ∩B ∈ m(B) if and only if B satisfies the condition (a).

Proof. Let I be a closed regular left ideal5 of A and B a subalgebra of A. Then the
trace I ∩B of I in B is a closed regular left ideal. If I ∩B is not maximal, then there is
a left ideal J in B such that I ∩B ⊂ J and there is an element b0 ∈ J \ (I ∩B). Because
B and I satisfy the condition (a), then there is a number λ0 ∈ K such that b0 − λ0u ∈ I.
Since b0 	∈ I, then λ0 	= 0. Therefore

u =
1
λ0

[b0 − (b0 − λ0u)] ∈ J ;

but this is impossible. Hence I ∩B is a closed maximal regular left ideal of B.
Let now B be a commutative Gelfand-Mazur subalgebra of A and u ∈ B. If B satisfies

the condition (a), then I ∩B ∈ m(B); and if I ∩ B ∈ m(B), then there is a ϕ ∈ homB
such that I ∩B = kerϕ. Since u 	∈ kerϕ, then ϕ(u) 	= 0. Hence

b− ϕ(b)
ϕ(u)

u ∈ I

for each b ∈ B. It means that B satisfies condition (a). ✷

Corollary 1 Let A be a topological algebra with the unit element eA and I a closed left
(right or two-sided) ideal of A. If B is a subalgebra of A with the same unit element and

(α) for each b ∈ B there is a λ ∈ K such that b− λeA ∈ I,
then the trace I ∩ B of I is a closed maximal left (respectively, right or two-sided) ideal
of B.

In particular, when B is a commutative Gelfand-Mazur subalgebra of A such that
eA ∈ B, then I ∩B ∈ m(B) if and only if B satisfies the condition (α).

Corollary 2 Let A be a topological algebra such that homA is not empty and B a
subalgebra of A. If ψ ∈ homA and a unit u for kerψ belongs to B, then kerψ∩B ∈ m(B).

5For right and two-sided ideals the proof is similar.
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Proof. Since kerψ is a closed maximal regular two-sided ideal of A, u 	∈ kerψ and

b− ψ(b)
ψ(u)

u ∈ kerψ

for each b ∈ B, then kerψ ∩B ∈ m(B) by Proposition 1. ✷

Corollary 3 Let A be a topological algebra with the unit element eA such that homA is
not empty and B a subalgebra of A with the same unit element. Then kerψ ∩B ∈ m(B)
for each ψ ∈ homA.

2. Let A be a topological algebra with the unit element eA, M a closed maximal left
(right or two-sided) ideal of A, A −M the quotient space of A defined by M , πM the
canonical map from A onto A−M and L(A−M) the algebra of all linear maps fromA−M
into A −M . Then A −M is a left (right) A-module if we define the left (respectively,
right) multiplication on A−M by a · πM(b) = πM(ab) (respectively, πM(b) · a = πM (ba)
for each a, b ∈ A. Moreover, L(A−M) is an algebra over K if we define the addition and
the multiplication over K in L(A −M) pointwise and the multiplication of elements in
L(A −M) by the composition.

For each element a ∈ A let LM
a be a map from A−M into A−M defined by

LM
a (x) = a ·x (LM

a (x) = x ·a) for each x ∈ A−M ifM is a maximal left (respectively,
right) ideal in A and L(A−M) defined by LM (a) = LM

a for each a ∈ A. Then LM is a
representation of A on A−M with

kerLM = {a ∈ A : aA ⊂M}

if M is a maximal left ideal and

kerLM = {a ∈ A : Aa ⊂M}

if M is a maximal right ideal of A. In both cases kerLM ⊂ M is called a primitive ideal
of A. Let

DM
A = {T ∈ L(A−M) : a · (T (x)) = T (a · x) for each a ∈ A and x ∈ A−M}

and
BA

M = {a ∈ A : (ba − ab)A ⊂M for each b ∈ A}
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for a closed maximal left ideal M of A. Then DM
A is a division subalgebra of L(A−M)

(see [16], p.127), BA
M is a subalgebra of A, eA ∈ BA

M and

LM (BA
M ) = LM (A) ∩ DM

A ,

because (ab) ·x = LM (ab)(x) = LM (a)[LM (b)(x)] = a · (b ·x) for each a, b ∈ A and and for
each x ∈ A −M . It is known (see [11], Theorem 1) that DM

A is topologically isomorphic
to C (we denote this isomorphism by µ) for any closed maximal left (right) ideal M of
A if A is a unital locally m-pseudoconvex Hausdorff algebra over C or a unital locally
pseudoconvex Fréchet algebra over C.

Proposition 2 Let A be a locally m-pseudoconvex Hausdorff algebra over C or a locally
pseudoconvex Fréchet algebra over C, eA the unit element of A and M a closed maximal
left (right) ideal of A. Then for every a ∈ BA

M there is a number λ ∈ C such that
a − λeA ∈M .

Proof. Let a ∈ BA
M . Then LM (a) ∈ DM

A . Therefore there is a λ ∈ C such that
µ(LM (a)) = λ = µ(LM (λeA)). Hence a− λeA ∈ kerLM ⊂M . ✷

By Corollary 1 and Proposition 2 we have the following theorem.

Theorem 1 Let A be a unital locally m-pseudoconvex Hausdorff algebra over C or a
unital locally pseudoconvex Fréchet algebra over C, M a closed maximal left (right or
two-sided) ideal of A and B a subalgebra of A with the same unit as A. If B ⊂ BA

M , then
M ∩B is a closed maximal left (respectively, right or two-sided) ideal in B.

3. Maximality of traces of maximal ideals in the center

Now we consider the case when a subalgbera B of A belongs to the center Z(A) of A.
It is well-known (see [14], Theorem 2.3) that if A is a complex Banach algebra with the
unit element eA and M is a maximal left (right or two-sided) ideal of A, then for each
z ∈ Z(A), there is some λ ∈ C such that z − λeA ∈ M . Next we prove the following
generalization of this result.

Proposition 3 Let A be one of the following unital complex topological algebras:

a) a locally A-pseudoconvex algebra;
b) a locally pseudoconvex Fréchet algebra;
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c) a strongly galbed Fréchet algebra with bounded elements;
or

d) a Mackey advertibly σ-complete topologically primitive6 strongly galbed Hausdorff
algebra with bounded elements.

Then for each closed maximal left (right or two-sided) ideal M of A and each z ∈ Z(A)
there is some λ ∈ C such that z − λeA ∈M .

Proof. Cases (a) and (b) have been proved in [1], Theorem 3 (see also [2], Corollary
1, or [3], Corollary 3.2). To prove the cases (c) and (d), let M be a closed maximal
left7 ideal of A, PM the primitive ideal of A defined8 by M and let πM : A → A/PM

be the canonical homomorphism. Then PM is a closed primitive ideal in A. Hence, in
case (c), Z(A/PM ) is a strongly galbed (by Proposition 2.1 in [4]) Fréchet algebra (by
Theorem 2 in [19], p. 138) with bounded elements (see the proof of Theorem 2.1 in [3]).
Moreover, A/PM is topologically primitive by Proposition 9, p. 136, from [16]. Hence, in
case (c), Z(A/PM ) is topologically isomorphic (this isomorphism we denote by µ) to C

by Theorem 3.1 from [4] (or by Corollary 7 from [5]). Since πM (Z(A)) ⊂ Z(A/PM ), then
for each z ∈ Z(A) we can find a number λ ∈ C such that µ(πM (b)) = λ = µ(πM(λeA)).
Therefore from πM(z) = πM (λeA) follows that z − λeA ∈ PM ⊂M .

In case (d) Z(A) = CeA by Corollary 9 from [5]. Consequently, for each z ∈ Z(A)
there is some λ ∈ C such that z − λeA = θA ∈M . ✷

Theorem 2 Let A be one of the following unital topological algebras:

a) a (real commutative) locally A-pseudoconvex algebra;
b) a (real commutative) locally pseudoconvex Fréchet algebra;
c) a complex strongly galbed Fréchet algebra with bounded elements

or
d) a complex Mackey advertibly σ-complete topologically primitive strongly galbed

Hausdorff algebra with bounded elements;

Moreover, let M be a closed maximal left (right or two-sided) ideal 9 of A and B a
subalgebra of Z(A) with the same unit as A. Then the trace M ∩ B of M is a closed
maximal ideal in B.

6A topological algebra A is a topologically primitive algebra if there is a closed maximal regular left

(right) ideal M of A such that {a ∈ A : aA ⊂ M} = {θA} (respectively, {a ∈ A : Aa ⊂ M} = {θA}).
7The proof for closed maximal right ideal is similar.
8If M is a closed maximal two-sided ideal in A, then PM = M (see [22], Theorem 2.2.9(ii)).
9In real case we assume that M satisfies the condition: if a2 + b2 ∈ M , then a ∈ M and b ∈ M .
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Proof. Since every b ∈ B defines some λ ∈ K such that z − λeA ∈ M by Proposition
3 (in complex case) from the present paper and Corollary 4 from [21] (in real case), then
Theorem 2 holds by Corollary 1. ✷
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