A Generalization of Ankeny and Rivlin's Result on the Maximum Modulus of Polynomials not Vanishing in the Interior of the Unit Circle

V. K. Jain

Abstract

For an arbitrary entire function f(z), let

 $M(f,r) = \max_{|z|=r} |f(z)|.$

For a polynomial p(z) of degree n, it is known that

$$M(p,R) \le R^n M(p,1), \quad R > 1.$$

By considering the polynomial p(z) with no zeros in |z| < 1, Ankeny and Rivlin obtained the refinement

$$M(p,R) \le \{(R^n + 1)/2\}M(p,1), R > 1.$$

By considering the polynomial p(z) with no zeros in $|z| < k, (k \ge 1)$ and simultaneously thinking of s^{th} derivative $(0 \le s < n)$ of the polynomial, we have obtained the generalization

$$M(p^{(s)}, R) \leq \begin{cases} (1/2)\{\frac{d^s}{dR^s}(R^n + k^n)\}(2/(1+k))^n M(p, 1), & R \geq k, \\ (1/(R^s + k^s))[\{\frac{d^s}{dx^s}(1+x^n)\}_{x=1}]((R+k)/(1+k))^n M(p, 1), & 1 \leq R \leq k, \end{cases}$$

of Ankeny and Rivlin's result.

Key words and phrases: Polynomial, maximum modulus principle, not vanishing in the interior of unit circle, generalization, s^{th} derivative.

AMS Mathematics Subject Classification: Primary 30 C10, Secondary 30 A10

1. Introduction and statement of results

For an arbitrary entire function f(z), let

$$M(f,r) = \max_{|z|=r} |f(z)|.$$

As a consequence of maximum modulus principle, we have the following result.

Theorem A If p(z) is a polynomial of degree n, then

$$M(p,R) \le R^n M(p,1), \quad R > 1,$$

with equality only for $p(z) = \lambda z^n$.

Ankeny and Rivlin [1] considered polynomials not vanishing in the interior of the unit circle and obtained the following refinement of Theorem A.

Theorem B If p(z) is a polynomial of degree n, having no zeros in |z| < 1, then

$$M(p,R) \le \{(1+R^n)/2\}M(p,1), R > 1,$$

with equality only for $p(z) = \lambda + \mu z^n$, with $|\lambda| = |\mu|$.

In this paper, we have obtained a generalization of Theorem B, by considering polynomials with no zeros in $|z| < k, k \ge 1$ and simultaneously thinking of the s^{th} derivative, $(0 \le s < n)$, of the polynomial, instead of the polynomial itself. More precisely we have proved the following theorem.

Theorem If p(z) is a polynomial of degree n having no zeros in $|z| < k, (k \ge 1)$ then for $0 \le s < n$

$$M(p^{(s)}, R) \leq \begin{cases} (1/2)\{\frac{d^s}{dR^s}(R^n + k^n)\}(2/(1+k))^n M(p, 1), \ R \geq k, \\ (1/(R^s + k^s))[\{\frac{d^s}{dx^s}(1+x^n)\}_{x=1}]((R+k)/(1+k))^n M(p, 1), 1 \leq R \leq k. \end{cases}$$
(1.1)

Equality holds in (1.1) (with k = 1 & s = 0) for $p(z) = z^n + 1$ and equality holds in (1.2) (with s = 1) for $p(z) = (z + k)^n$.

2. Lemmas

For the proof of the theorem we require following lemmas.

Lemma 1 Let P(z) be a polynomial of degree n having all its zeros in $|z| \leq 1$. If p(z) is a polynomial of degree at most n such that

$$|p(z)| \le |P(z)|, \quad |z| = 1,$$
(2.1)

then for $0 \leq s < n$,

$$|p^{(s)}(z)| \le |P^{(s)}(z)|, \quad |z| \ge 1.$$
(2.2)

Proof of Lemma 1 By using (2.1), we can say that an application of maximum modulus principle to the function p(z)/P(z) will yield

$$|p(z)| \le |P(z)|, \quad |z| \ge 1.$$
 (2.3)

Therefore the polynomial

 $p(z) - \lambda P(z)$

will not vanish in |z| > 1 for every λ with $|\lambda| > 1$. Gauss-Lucas theorem will then imply that polynomial

$$p^{(s)}(z) - \lambda P^{(s)}(z), \quad 1 \le s < n$$

will not vanish in |z| > 1 for every λ with $|\lambda| > 1$ and therefore

$$|p^{(s)}(z)| \le |P^{(s)}(z)|, \quad |z| > 1,$$

leading to

$$|p^{(s)}(z)| \le |P^{(s)}(z)|, \quad |z| \ge 1, \& 1 \le s < n,$$

which, on being combined with (2.3), completes the proof of Lemma 1.

Lemma 2 If p(z) is a polynomial of degree at most n then for $0 \le s < n$,

$$|p^{(s)}(z)| + |q^{(s)}(z)| \le \{ |\frac{d^s}{dz^s}(1)| + |\frac{d^s}{dz^s}(z^n)| \} M(p,1), \quad |z| \ge 1,$$
(2.4)

where

$$q(z) = z^n \overline{p(1/\overline{z})}.$$
(2.5)

91

Proof of Lemma 2 We consider the polynomial

$$t(z) = p(z) - \lambda M(p, 1), \quad |\lambda| > 1,$$

of degree at most n. Then the polynomial

$$T(z) = z^n \overline{t(1/\overline{z})} = q(z) - \overline{\lambda} M(p, 1) z^n, \quad (by (2.5)),$$

of degree n, possesses the characteristic

$$|t(z)| \le |T(z)|, \quad |z| = 1$$

and has all its zeros in $|z| \le 1$. Therefore on applying Lemma 1 to polynomials t(z) and T(z) we get for $0 \le s < n$ and $|\lambda| > 1$

$$|p^{(s)}(z) - \lambda M(p,1)\frac{d^s}{dz^s}(1)| \le |q^{(s)}(z) - \overline{\lambda}M(p,1)\frac{d^s}{dz^s}(z^n)|, \quad |z| \ge 1,$$

which, by choosing $\arg \lambda$ suitably, can be rewritten as

$$|p^{(s)}(z)| - |\lambda|M(p,1)|\frac{d^s}{dz^s}(1)| \le ||\lambda|M(p,1)|\frac{d^s}{dz^s}(z^n)| - |q^{(s)}(z)||, \quad |z| \ge 1.$$
(2.6)

We can apply Lemma 1 to polynomials q(z) and

$$z^n M(p,1)$$

also, and obtain for $0 \leq s < n$

$$|q^{(s)}(z)| \le M(p,1) |\frac{d^s}{dz^s}(z^n)|, \quad |z| \ge 1,$$

which helps us to rewrite(2.6) as

$$|p^{(s)}(z)| - |\lambda|M(p,1)|\frac{d^s}{dz^s}(1)| \le |\lambda|M(p,1)|\frac{d^s}{dz^s}(z^n)| - |q^{(s)}(z)|, \quad |z| \ge 1, |\lambda| > 1, 0 \le s < n.$$

Now on letting

$$|\lambda| \rightarrow 1,$$

(2.4) follows.

Lemma 3 If P(z) is a polynomial of degree n, having no zeros in $|z| < k, (k \ge 1)$, with

$$M(P,1) = 1$$

then for $1 \leq R \leq k^2$

$$M(P,R) \le ((R+k)/(1+k))^n$$
.

This lemma is due to Aziz and Mohammad [2].

Lemma 4 Let P(z) be a polynomial of degree n, having no zeros in $|z| < k, (k \ge 1)$. Then

$$|P(z)| \le 1$$
 for $|z| \le 1$

implies

$$|P^{(s)}(z)| \le n(n-1)\dots(n-s+1)/(1+k^s)$$
 for $|z| \le 1$ and $s \ge 1$.

This lemma is due to Govil and Rahman [3]. From Lemma 4 we easily get

Lemma 5 If P(z) is a polynomial of degree n, having no zeros in $|z| < k, (k \ge 1)$ then for $0 \le s < n$

$$M(P^{(s)}, 1) \le (1/(1+k^s))M(P, 1)[\{\frac{d^s}{dx^s}(1+x^n)\}_{x=1}].$$

3. Proof of Theorem 1

We consider the polynomial

$$P(z) = p(kz). \tag{3.1}$$

Then the polynomial

$$Q(z) = z^n \overline{P(1/\overline{z})}$$

possesses the characteristic

$$|P(z)| \le |Q(z)|, \quad |z| = 1$$

and has all its zeros in $|z| \le 1$. Therefore on applying Lemma 1 to the polynomials P(z)and Q(z) we get for $0 \le s < n$ and $t \ge 1$

$$|P^{(s)}(te^{i\theta})| \le |Q^{(s)}(te^{i\theta})|, \quad 0 \le \theta \le 2\pi.$$
(3.2)

Further, by Lemma 2 we have for $t \geq 1$ and $0 \leq s < n$

$$|P^{(s)}(te^{i\theta})| + |Q^{(s)}(te^{i\theta})| \le \{\frac{d^s}{dt^s}(t^n+1)\}M(P,1), \quad 0 \le \theta \le 2\pi,$$

which, by (3.2), implies that

$$|P^{(s)}(te^{i\theta})| \le (1/2)\{\frac{d^s}{dt^s}(1+t^n)\}M(p,1),$$

i.e.

$$\begin{aligned} |p^{(s)}(kte^{i\theta})| &\leq (1/(2k^s))\{\frac{d^s}{dt^s}(1+t^n)\}M(p,k), \text{ (by (3.1))}, \\ &\leq (1/(2k^s))(2k/(1+k))^n M(p,1)\{\frac{d^s}{dt^s}(1+t^n)\}, \text{ (by Lemma 3)}, \end{aligned}$$

thereby leading to inequality (1.1).

Now by applying Lemma 5 to the polynomial $p(Rz), (1 \le R \le k)$, having no zeros in |z| < k/R, we have for $0 \le s < n$

$$M(p^{(s)}, R) \le (1/(R^s + k^s))M(p, R)[\{\frac{d^s}{dx^s}(1+x^n)\}_{x=1}],$$

and the inequality (1.2) follows by using Lemma 3. This completes the proof of Theorem 1. \Box

References

- Ankeny, N. C. and Rivlin, T. J.: On a theorem of S. Bernstein, *Pac. J. Maths.* 5, 849–852 1955.
- [2] Aziz, A. and Mohammad, Q. G.: Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc. 81, 549–553 1981.
- [3] Govil, N. K. and Rahman, Q. I.: Functions of exponential type not vanishing in a half plane and related polynomials, *Trans. Amer. Math. Soc.* 137, 501–517 1969.

Received 26.09.2005

V. K. JAIN Mathematics Department, I.I.T. Kharagpur-721302, INDIA e-mail: vkj@maths.iitkgp.ernet.in