A Generalization of Ankeny and Rivlin's Result on the Maximum Modulus of Polynomials not Vanishing in the Interior of the Unit Circle

V. K. Jain

Abstract

For an arbitrary entire function $f(z)$, let $$
M(f, r)=\max _{|z|=r}|f(z)| .
$$

For a polynomial $p(z)$ of degree n, it is known that

$$
M(p, R) \leq R^{n} M(p, 1), \quad R>1 .
$$

By considering the polynomial $p(z)$ with no zeros in $|z|<1$, Ankeny and Rivlin obtained the refinement

$$
M(p, R) \leq\left\{\left(R^{n}+1\right) / 2\right\} M(p, 1), \quad R>1 .
$$

By considering the polynomial $p(z)$ with no zeros in $|z|<k,(k \geq 1)$ and simultaneously thinking of $s^{\text {th }}$ derivative $(0 \leq s<n)$ of the polynomial, we have obtained the generalization
$M\left(p^{(s)}, R\right) \leq\left\{\begin{array}{l}(1 / 2)\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\}(2 /(1+k))^{n} M(p, 1), \quad R \geq k, \\ \left(1 /\left(R^{s}+k^{s}\right)\right)\left[\left\{\frac{d^{s}}{d x^{s}}\left(1+x^{n}\right)\right\}_{x=1}\right]((R+k) /(1+k))^{n} M(p, 1), \quad 1 \leq R \leq k,\end{array}\right.$
of Ankeny and Rivlin's result.

Key words and phrases: Polynomial, maximum modulus principle, not vanishing in the interior of unit circle, generalization, $s^{\text {th }}$ derivative.

[^0]
1. Introduction and statement of results

For an arbitrary entire function $f(z)$, let

$$
M(f, r)=\max _{|z|=r}|f(z)|
$$

As a consequence of maximum modulus principle, we have the following result.
Theorem A If $p(z)$ is a polynomial of degree n, then

$$
M(p, R) \leq R^{n} M(p, 1), \quad R>1
$$

with equality only for $p(z)=\lambda z^{n}$.
Ankeny and Rivlin [1] considered polynomials not vanishing in the interior of the unit circle and obtained the following refinement of Theorem A.

Theorem B If $p(z)$ is a polynomial of degree n, having no zeros in $|z|<1$, then

$$
M(p, R) \leq\left\{\left(1+R^{n}\right) / 2\right\} M(p, 1), \quad R>1,
$$

with equality only for $p(z)=\lambda+\mu z^{n}$, with $|\lambda|=|\mu|$.
In this paper, we have obtained a generalization of Theorem B, by considering polynomials with no zeros in $|z|<k, k \geq 1$ and simultaneously thinking of the $s^{\text {th }}$ derivative, $(0 \leq s<n)$, of the polynomial, instead of the polynomial itself. More precisely we have proved the following theorem.

Theorem If $p(z)$ is a polynomial of degree n having no zeros in $|z|<k,(k \geq 1)$ then for $0 \leq s<n$
$M\left(p^{(s)}, R\right) \leq\left\{\begin{array}{l}(1 / 2)\left\{\frac{d^{s}}{d R^{s}}\left(R^{n}+k^{n}\right)\right\}(2 /(1+k))^{n} M(p, 1), R \geq k, \\ \left(1 /\left(R^{s}+k^{s}\right)\right)\left[\left\{\frac{d^{s}}{d x^{s}}\left(1+x^{n}\right)\right\}_{x=1}\right]((R+k) /(1+k))^{n} M(p, 1), 1 \leq R \leq k .\end{array}\right.$

Equality holds in (1.1) (with $k=1 \& s=0$) for $p(z)=z^{n}+1$ and equality holds in (1.2) (with $s=1$) for $p(z)=(z+k)^{n}$.

2. Lemmas

For the proof of the theorem we require following lemmas.

Lemma 1 Let $P(z)$ be a polynomial of degree n having all its zeros in $|z| \leq 1$. If $p(z)$ is a polynomial of degree at most n such that

$$
\begin{equation*}
|p(z)| \leq|P(z)|, \quad|z|=1 \tag{2.1}
\end{equation*}
$$

then for $0 \leq s<n$,

$$
\begin{equation*}
\left|p^{(s)}(z)\right| \leq\left|P^{(s)}(z)\right|, \quad|z| \geq 1 \tag{2.2}
\end{equation*}
$$

Proof of Lemma 1 By using (2.1), we can say that an application of maximum modulus principle to the function $p(z) / P(z)$ will yield

$$
\begin{equation*}
|p(z)| \leq|P(z)|, \quad|z| \geq 1 \tag{2.3}
\end{equation*}
$$

Therefore the polynomial

$$
p(z)-\lambda P(z)
$$

will not vanish in $|z|>1$ for every λ with $|\lambda|>1$. Gauss-Lucas theorem will then imply that polynomial

$$
p^{(s)}(z)-\lambda P^{(s)}(z), \quad 1 \leq s<n
$$

will not vanish in $|z|>1$ for every λ with $|\lambda|>1$ and therefore

$$
\left|p^{(s)}(z)\right| \leq\left|P^{(s)}(z)\right|, \quad|z|>1
$$

leading to

$$
\left|p^{(s)}(z)\right| \leq\left|P^{(s)}(z)\right|, \quad|z| \geq 1, \& 1 \leq s<n
$$

which, on being combined with(2.3), completes the proof of Lemma 1.
Lemma 2 If $p(z)$ is a polynomial of degree at most n then for $0 \leq s<n$,

$$
\begin{equation*}
\left|p^{(s)}(z)\right|+\left|q^{(s)}(z)\right| \leq\left\{\left|\frac{d^{s}}{d z^{s}}(1)\right|+\left|\frac{d^{s}}{d z^{s}}\left(z^{n}\right)\right|\right\} M(p, 1), \quad|z| \geq 1 \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=z^{n} \overline{p(1 / \bar{z})} \tag{2.5}
\end{equation*}
$$

Proof of Lemma 2 We consider the polynomial

$$
t(z)=p(z)-\lambda M(p, 1), \quad|\lambda|>1
$$

of degree at most n. Then the polynomial

$$
T(z)=z^{n} \overline{t(1 / \bar{z})}=q(z)-\bar{\lambda} M(p, 1) z^{n}, \quad(\text { by }(2.5))
$$

of degree n, possesses the characteristic

$$
|t(z)| \leq|T(z)|, \quad|z|=1
$$

and has all its zeros in $|z| \leq 1$. Therefore on applying Lemma 1 to polynomials $t(z)$ and $T(z)$ we get for $0 \leq s<n$ and $|\lambda|>1$

$$
\left|p^{(s)}(z)-\lambda M(p, 1) \frac{d^{s}}{d z^{s}}(1)\right| \leq\left|q^{(s)}(z)-\bar{\lambda} M(p, 1) \frac{d^{s}}{d z^{s}}\left(z^{n}\right)\right|, \quad|z| \geq 1
$$

which, by choosing $\arg \lambda$ suitably, can be rewritten as

$$
\begin{equation*}
\left|p^{(s)}(z)\right|-|\lambda| M(p, 1)\left|\frac{d^{s}}{d z^{s}}(1)\right| \leq\left\|\lambda|M(p, 1)| \frac{d^{s}}{d z^{s}}\left(z^{n}\right)\left|-\left|q^{(s)}(z) \|, \quad\right| z\right| \geq 1\right. \tag{2.6}
\end{equation*}
$$

We can apply Lemma 1 to polynomials $q(z)$ and

$$
z^{n} M(p, 1)
$$

also, and obtain for $0 \leq s<n$

$$
\left|q^{(s)}(z)\right| \leq M(p, 1)\left|\frac{d^{s}}{d z^{s}}\left(z^{n}\right)\right|, \quad|z| \geq 1
$$

which helps us to rewrite(2.6) as
$\left|p^{(s)}(z)\right|-|\lambda| M(p, 1)\left|\frac{d^{s}}{d z^{s}}(1)\right| \leq|\lambda| M(p, 1)\left|\frac{d^{s}}{d z^{s}}\left(z^{n}\right)\right|-\left|q^{(s)}(z)\right|, \quad|z| \geq 1,|\lambda|>1,0 \leq s<n$.
Now on letting

$$
|\lambda| \rightarrow 1
$$

(2.4) follows.

Lemma 3 If $P(z)$ is a polynomial of degree n, having no zeros in $|z|<k,(k \geq 1)$, with

$$
M(P, 1)=1
$$

then for $1 \leq R \leq k^{2}$

$$
M(P, R) \leq((R+k) /(1+k))^{n}
$$

This lemma is due to Aziz and Mohammad [2].
Lemma 4 Let $P(z)$ be a polynomial of degree n, having no zeros in $|z|<k,(k \geq 1)$. Then

$$
|P(z)| \leq 1 \text { for }|z| \leq 1
$$

implies

$$
\left|P^{(s)}(z)\right| \leq n(n-1) \ldots(n-s+1) /\left(1+k^{s}\right) \text { for }|z| \leq 1 \text { and } s \geq 1
$$

This lemma is due to Govil and Rahman [3].
From Lemma 4 we easily get
Lemma 5 If $P(z)$ is a polynomial of degree n, having no zeros in $|z|<k,(k \geq 1)$ then for $0 \leq s<n$

$$
M\left(P^{(s)}, 1\right) \leq\left(1 /\left(1+k^{s}\right)\right) M(P, 1)\left[\left\{\frac{d^{s}}{d x^{s}}\left(1+x^{n}\right)\right\}_{x=1}\right]
$$

3. Proof of Theorem 1

We consider the polynomial

$$
\begin{equation*}
P(z)=p(k z) \tag{3.1}
\end{equation*}
$$

Then the polynomial

$$
Q(z)=z^{n} \overline{P(1 / \bar{z})}
$$

possesses the characteristic

$$
|P(z)| \leq|Q(z)|, \quad|z|=1
$$

and has all its zeros in $|z| \leq 1$. Therefore on applying Lemma 1 to the polynomials $P(z)$ and $Q(z)$ we get for $0 \leq s<n$ and $t \geq 1$

$$
\begin{equation*}
\left|P^{(s)}\left(t e^{i \theta}\right)\right| \leq\left|Q^{(s)}\left(t e^{i \theta}\right)\right|, \quad 0 \leq \theta \leq 2 \pi \tag{3.2}
\end{equation*}
$$

Further, by Lemma 2 we have for $t \geq 1$ and $0 \leq s<n$

$$
\left|P^{(s)}\left(t e^{i \theta}\right)\right|+\left|Q^{(s)}\left(t e^{i \theta}\right)\right| \leq\left\{\frac{d^{s}}{d t^{s}}\left(t^{n}+1\right)\right\} M(P, 1), \quad 0 \leq \theta \leq 2 \pi
$$

which, by (3.2), implies that

$$
\left|P^{(s)}\left(t e^{i \theta}\right)\right| \leq(1 / 2)\left\{\frac{d^{s}}{d t^{s}}\left(1+t^{n}\right)\right\} M(p, 1)
$$

i.e.

$$
\begin{aligned}
\left|p^{(s)}\left(k t e^{i \theta}\right)\right| & \leq\left(1 /\left(2 k^{s}\right)\right)\left\{\frac{d^{s}}{d t^{s}}\left(1+t^{n}\right)\right\} M(p, k),,(\text { by }(3.1)) \\
& \leq\left(1 /\left(2 k^{s}\right)\right)(2 k /(1+k))^{n} M(p, 1)\left\{\frac{d^{s}}{d t^{s}}\left(1+t^{n}\right)\right\},(\text { by Lemma } 3)
\end{aligned}
$$

thereby leading to inequality (1.1).
Now by applying Lemma 5 to the polynomial $p(R z),(1 \leq R \leq k)$, having no zeros in $|z|<k / R$, we have for $0 \leq s<n$

$$
M\left(p^{(s)}, R\right) \leq\left(1 /\left(R^{s}+k^{s}\right)\right) M(p, R)\left[\left\{\frac{d^{s}}{d x^{s}}\left(1+x^{n}\right)\right\}_{x=1}\right]
$$

and the inequality (1.2) follows by using Lemma 3. This completes the proof of Theorem 1.

References

[1] Ankeny, N. C. and Rivlin, T. J.: On a theorem of S. Bernstein, Pac. J. Maths. 5, 849-852 1955.
[2] Aziz, A. and Mohammad, Q. G.: Growth of polynomials with zeros outside a circle, Proc. Amer. Math. Soc. 81, 549-553 1981.
[3] Govil, N. K. and Rahman, Q. I.: Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137, 501-517 1969.
V. K. JAIN

Received 26.09.2005
Mathematics Department,
I.I.T. Kharagpur-721302, INDIA
e-mail: vkj@maths.iitkgp.ernet.in

[^0]: AMS Mathematics Subject Classification: Primary 30 C10, Secondary 30 A10

