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On Dimension of Modules

S. Karimzadeh, R. Nekooei

Abstract

In this paper we prove the lying over and going down theorems for modules.

Finally, we apply the above theorems and prove some results on the dimension of a

module and its submodule.
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Introduction

Throughout this note, all rings are commutative with identity and all modules are
unital. For R-modules M and M ′, we denote all R-module homomorphisms of M into
M ′ by HomR(M,M ′). For any submodule N of an R-module M , we define

(N :M) = {r ∈ R : rM ⊆ N}

and denote (O : M) by AnnR(M).

A submodule P of M is called prime if P �= M , and whenever r ∈ R, m ∈ M

and rm ∈ P , then m ∈ P or r ∈ (P : M) [see 8]. It is easy to show that, if P is a
prime submodule of an R-module M , then (P : M) is a prime ideal of R. The sets of
all prime submodules and proper maximal submodules of M are respectively denoted by
Spec(M) andMax(M). Following [4], we denote the intersection of all prime submodules
of an R-moduleM by radM (0) and the intersections of all proper maximal submodules by
Rad(M). The radicals of R and an ideal I of R are denoted by N(R) and

√
I , respectively.

2000 Mathematics Subject Classification: 13C13, 13C99.
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An R-moduleM is called a multiplication module if for any submodule N ofM there
exists an ideal I of R such that N = IM . It is easy to check that M is a multiplication
module if and only if N = (N :M)M for every submodule N of M (See [7]).

Let R be a principal ideal domain (PID) and m and n be positive integers. Let
A = (aij) ∈ Mm×n(R) and F be the free R-module R(n). We shall use the notation 〈A〉
for the submodule N of F generated by the rows of A, and the notation (r1, . . . , rm)A,
ri ∈ R, for an element of N .

In this paper we shall first prove the lying-over and going-down theorem for modules,
and then prove results on the dimension of a module and its submodule.

1. Lying over Theorem for Modules

The following Proposition is used widely in the sequel.

Proposition 1.1 Let ϕ ∈ HomR(M,M ′), N and N ′ be submodules of M and M ′

respectively. Then we have:

(i) If ϕ−1(N ′) ⊆ N then there exists a submodule P ′ of M ′ containing N ′ which is
maximal with respect to ϕ−1(P ′) ⊆ N . Furthermore, ϕ−1(P ′) = N ;

(ii) If N ∈ Spec(M) and rm′ ∈ P ′, for r ∈ R and m′ ∈ M ′, then m′ ∈ P ′ or
r ∈ (N :M).

Proof. (i) Put T = {L′ ≤ M ′|N ′ ⊆ L′ and ϕ−1(L′) ⊆ N}. Since N ′ ∈ T , T �= ∅. By
Zorn’s Lemma, T has a maximal element P ′. Suppose that ϕ−1(P ′) ⊂ N . Then there
exists n ∈ N such that ϕ(n) �∈ P ′. Hence P ′ ⊂ P ′ + 〈ϕ(n)〉 �∈ T and so there exists
m ∈ ϕ−1(P ′ + 〈ϕ(n)〉) such that m �∈ N . Therefore ϕ(m− rn) ∈ P ′ for some r ∈ R, and
hence m ∈ N , which is a contradiction. Thus ϕ−1(P ′) = N .

(ii) Let rm′ ∈ P ′ and m′ �∈ P ′. Hence P ′ ⊂ P ′ + Rm′ �∈ T and so there exists
m ∈ ϕ−1(P ′ + Rm′) such that m �∈ N . Therefore rϕ(m) ∈ P ′ and so rm ∈ N . Since
N ∈ Spec(M) and m �∈ N , hence r ∈ (N :M). ✷

Lemma 1.2 Let ϕ ∈ HomR(M,M ′). If N ′ ∈ Spec(M ′) and ϕ(M) �⊆ N ′, then

(i) ϕ−1(N ′) ∈ Spec(M);

(ii) (ϕ−1(N ′) :M) = (N ′ :M ′).
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Proof. (i) By [6, Proposition 1.2].

(ii) Suppose that r ∈ (N ′ : M ′) and m ∈ M . Hence rϕ(m) ∈ N ′ and so
rm ∈ ϕ−1(N ′). Therefore (N ′ : M ′) ⊆ (ϕ−1(N ′) : M). Now let r ∈ (ϕ−1(N ′) : M)
and m ∈ M\ϕ−1(N ′). Since N ′ ∈ Spec(M ′) and ϕ(m) �∈ N ′, r ∈ (N ′ : M ′), hence
(ϕ−1(N ′) :M) ⊆ (N ′ :M ′) and the proof is complete. ✷

Definition. Let M and M ′ be R-modules. We said to be lying over (or simply, LO)
holds for (M,M ′) if M ⊆ M ′ and for any P ∈ Spec(M) there exists P ′ ∈ Spec(M ′) with
P ′ ∩M = P .

Example. Let V be a vector space over a field F with dimF V ≥ 2. Let W be a proper
subspace of V . Since every proper subspace of a vector space is prime, hence LO holds
for (V,W ).

Proposition 1.3 Let ϕ ∈ HomR(M,M ′). Suppose that, for every m′ ∈ M ′ and
P ∈ Spec(M), there exists s ∈ R\(P :M) such that sm′ ∈ ϕ(M).
If Kerϕ ⊆ radM(0), then for any P ∈ Spec(M) there exists P ′ ∈ Spec(M ′) with
ϕ−1(P ′) = P .

Proof. Suppose that P ∈ Spec(M). Since ϕ−1({0}) = Kerϕ ⊆ P , by Proposition 1.1
(i), there exists a submodule P ′ of M ′ which is maximal with respect to ϕ−1(P ′) = P .
Now we show that P ′ ∈ Spec(M ′). It is clear that P ′ is a proper submodule of M ′.
Suppose that r ∈ R, m′ ∈ M ′ and rm′ ∈ P ′. If m′ �∈ P ′, then by Proposition 1.1 (ii),
r ∈ (P : M). Assume that rM ′ �⊆ P ′, hence there exists m′

1 ∈ M ′ such that rm′
1 �∈ P ′.

By assumption, there exists s ∈ R\(P : M) such that rsm′
1 ∈ ϕ((P : M)M). Hence

srm′
1 ∈ P ′. Again by Proposition 1.1 (ii), s ∈ (P :M), which is a contradiction. There-

fore rM ′ ⊆ P ′ and P ′ ∈ Spec(M ′). ✷

Example. Let R be a commutative ring with identity . Let M be a flat R-module which
is not faithfully flat ( for example, Q as Z-module).
By [9, Proposition 2.11.24] ,mM = M for some maximal ideal m of R. Define the
monomorphism ϕ ∈ HomR(M,M ⊕ R/m) by ϕ(x) = (x, 0), x ∈ M . Let P be a prime
submodule of M . Since mM = M and P �= M , hence (P : M) �= m. Therefore
there exists s ∈ (R\(P :M)) ∩m. Now for any (x, r + m) ∈ (M ⊕ R/m), we have
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s(x, r+m) = (sx, 0) ∈ ϕ(M). By Proposition 1.3, we conclude that for any P ∈ Spec(M)
there exists P ′ ∈ Spec(M ⊕ R/m) with ϕ−1(P ′) = P .

Theorem 1.4 (Lying Over) Let M ⊆ M ′ be R-modules.
If for each m′ ∈ M ′, P ∈ Spec(M) , there exists s ∈ R\(P :M) such that sm′ ∈ M ,

then LO holds for (M,M ′).

Proof. This follows by Proposition 1.3. ✷

A ring R is called Von Neumann regular ring if for every a ∈ R there exists an element
b ∈ R such that a = aba.

Theorem 1.5 Let M ⊆ M ′ be R-modules and P ∈ Spec(M). Then there exists P ′ ∈
Spec(M ′) with P ′ ∩M = P , if one of the following conditions hold.

(i) For each m′ ∈ M ′ and r ∈ (P :M) there exists s ∈ R\(P :M) such that rsm′ ∈ P ;
(ii) R is Von Neumann regular ring and (P :M) ⊆

√
P :M ′.

Proof. By Proposition 1.1, there exists a submodule P ′ of M ′ that is maximal with
respect to P ′ ∩ M = P . Now we show that P ′ ∈ Spec(M ′). Let re ∈ P ′ and e �∈ P ′,
where r ∈ R and e ∈ M ′. By Proposition 1.1 (ii), r ∈ (P : M). Suppose that (i)
holds. If rM ′ �⊆ P ′ then there exists m′ ∈ M ′ such that rm′ �∈ P ′. By assumption there
is s ∈ R\(P : M) such that rsm′ ∈ P . Thus rsm′ ∈ P ′ and so by Proposition 1.1,
s ∈ (P : M), which is a contradiction. Now suppose that (ii) holds. Since r ∈ (P : M),
hence there is n ∈ IN such that rn ∈ (P : M ′) ⊆ (P ′ : M ′). Therefore P ′ is a primary
submodule of M ′ and so P ′ ∈ Spec(M ′). ✷

Proposition 1.6 Let ϕ ∈ HomR(M,M ′) and M ′ be a multiplication module. If
Kerϕ ⊆ radM(0), then for every P ∈ Spec(M), there exists P ′ ∈ Spec(M ′) with
ϕ−1(P ′) = P if and only if (ϕ(M) :M ′) �⊆ (P :M).

Proof. Suppose that there exists P ′ ∈ Spec(M ′) such that ϕ−1(P ′) = P . By Lemma
1.2, (P ′ : M ′) = (P : M). If (ϕ(M) : M ′) ⊆ (P : M) then ϕ(M) ⊆ P ′, because M ′ is
a multiplication module. Hence P = M , which is a contradiction. Conversely, suppose
that (ϕ(M) :M ′) �⊆ (P :M). Then there exists s ∈ (ϕ(M) : M ′)\(P :M). Let m′ ∈ M ′

and r ∈ (P : M). Hence rsm′ ∈ ϕ((P : M)M) and so by Proposition 1.3, there exists
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P ′ ∈ Spec(M ′) such that ϕ−1(P ′) = P . ✷

Corollary 1.7 Let M ⊆ M ′ be R-modules. If
√
(M :M ′) + AnnR(M) = R then LO

holds for (M,M ′).

Proof. Suppose that P ∈ Spec(M). We have AnnR(M) ⊆ (P : M). Since√
(M : M ′) + AnnR(M) = R, hence (M : M ′) �⊆ (P :M).Therefore LO holds. ✷

Corollary 1.8 Let M ⊆ M ′ be R-modules and M ′ be a multiplication module. LO holds
for (M,M ′) if and only if for every P ∈ Spec(M), (M :M ′) �⊆ (P :M).

Definition. (See [2]) Let R be a principal ideal domain (PID). Let J = {j1, . . . , jα} be
a subset of the integer between 1 and n and let p ∈ R be a prime element. A matrix
A ∈ Mn(R), A = (aij), is said to be a prime matrix (or simply prime), if A satisfies the
following conditions:

(i) A is a upper triangular;

(ii) For all i, 1 ≤ i ≤ n, aii = p if i ∈ J and aii = 1 if i �∈ J ;

(iii) For all i, 1 ≤ i ≤ j ≤ n, aij = 0 except possibly when i �∈ J and j ∈ J .

Sometimes we call J the set of integers associated with A and denote it by JA.

By (i) and (ii) it’s clear that det(A) = pα.

Theorem 1.9 Let R be a PID.

(i) Let M be a free R-module of rank m such that M = 〈Am×n〉 (m ≤ n) and
N = 〈CA〉 for some C ∈ M
×m(R). Then N is a prime submodule of M if and only if
〈C〉 is a prime submodule of Rm.

(ii) Let M be a free R-module such that M = 〈An×n〉 (detA �= 0) and N = 〈CA〉 for
some C ∈ Mn(R) then detC ∈ (N :M).

(iii) Let M be a free R-module such that M = 〈An×n〉 (detA �= 0). If N is a prime
submodule of M and rankN = n, then there exists a prime matrix Cn×n such that
N = 〈CA〉.
Proof. (i) Suppose that N ∈ Spec(M). If r(x1, . . . , xm) ∈ 〈C〉 for r, xi ∈ R,
1 ≤ i ≤ n, then there exists (d1, . . . , d
) ∈ R
 such that r(x1, . . . , xm) = (d1, . . . , d
)C and

99



KARIMZADEH, NEKOOEI

so r(x1, . . . , xm)A = (d1, . . . , d
)CA. Since r((x1, . . . , xm)A) ∈ N , hence r ∈ (N : M) or
(x1, . . . , xm)A ∈ N .

Case 1. Let (x1, . . . , xm)A ∈ N . There exists (b1, . . . , b
) ∈ R
 such that (x1, . . . , xm)A
= (b1, . . . , b
)CA. Put (c1, . . . , cm) = (b1, . . . , b
)C. Suppose that a1, . . . , am are rows
of A, then x1a1 + · · · + xmam = c1a1 + · · · + cmam. Since rankM = m, we have
(x1, . . . , xm) = (c1, . . . , cm). This implies that (x1, . . . , xm) = (b1, . . . , b
)C and therefore
(x1, . . . , xm) ∈ 〈C〉.

Case 2. Now let r ∈ (N : M). Suppose that j, 1 ≤ j ≤ n, is fixed. Since
(0, . . . , 0, r, 0, . . . , 0)A ∈ N, there exists (d1, . . . , d
) ∈ R
 such that (0, . . . , 0, r, 0, . . . , 0)A =
(d1, . . . , d
)CA. Put (c1, . . . , cm) = (d1, . . . , d
)C. Suppose that a1, . . . , am are rows of A.
We have (0, . . . , 0, r, 0, . . . , 0)A = (c1, . . . , cm)A and so raj = c1a1 + · · ·+ cmam. There-
fore cj = r, ci = 0 (i �= j). Then (c1, . . . , cm) = (0, . . . , 0, r, 0, . . . , 0) = (d1, . . . , d
)C and
hence r ∈ (〈C〉 : Rm).

Conversely, suppose that 〈C〉 ∈ Spec(Rm). If r(x1, . . . , xn) ∈ N , for r ∈ R and
(x1, . . . , xn) ∈ M , there exist (y1, . . . , ym) ∈ Rm and (d1, . . . , d
) ∈ R
 such that
r(x1, . . . , xn) = (d1, . . . , d
)CA and (x1, . . . , xn) = (y1, . . . , ym)A. Suppose that (b1, . . . , bm)
= (d1, . . . , d
)C such that (b1, . . . , bm) ∈ Rm and a1, . . . , am are rows of A. Then
ry1a1 + · · · + rymam = b1a1 + · · · + bmam and therefore r(y1, . . . , ym) = (b1, . . . , bm).
We have r(y1, . . . , ym) = (b1, . . . , bm) = (d1, . . . , d
)C. Hence r(y1, . . . , ym) ∈ 〈C〉 and
〈C〉 ∈ Spec(Rm), and this implies that r ∈ (〈C〉 : Rm) or (y1, . . . , ym) ∈ 〈C〉.

Case 1. Suppose that r ∈ (〈C〉 : Rm) and j, 1 ≤ j ≤ m. We have (0, . . . , 0, r, 0, . . . , 0) ∈
〈C〉. There exists (d1, . . . , d
) ∈ R
 such that (0, . . . , 0, r, 0, . . . , 0) = (d1, . . . , d
)C. Also
(0, . . . , 0, r, 0, . . . , 0)A = (d1, . . . , d
)CA; hence r ∈ (N :M).

Case 2. Suppose that (y1, . . . , ym) ∈ 〈C〉. There exists (d1, . . . , d
) ∈ R
 such
that (y1, . . . , ym) = (d1, . . . , d
)C. Hence (x1, . . . , xn) = (y1, . . . , ym)A = (d1, . . . , d
)CA,
therefore (x1, . . . , xn) ∈ N .

(ii) Suppose that detC �= 0 and A′ = (a′ij), C
′ = (c′ij) are the adjoint matrices of

A and C respectively. If (x1, . . . , xn) ∈ M , then by [2, Lemma 1.2] detA|
n∑

i=1

xia
′
ij, for

every j, 1 ≤ j ≤ n. But (detC)(detA) = det(CA)|
n∑

i=1

(detC)xi(
n∑

k=1

a′ikc
′
kj), hence by [2,

Lemma 1.2] we have ((detC)x1, . . . , (detC)xn) ∈ N .
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(iii) By (i), we have 〈C〉 ∈ Spec(Rn). Now there exists a prime matrix Bn×n such
that 〈C〉 = 〈B〉 and by [2, Theorem 2.5], we have 〈CA〉 = 〈BA〉. ✷

Theorem 1.10 Let R be a PID and M be a free R-module such that M = 〈A〉, A ∈
Mn(R) (detA �= 0).

(i) Let N ∈ Spec(M), N = 〈BA〉 for some B ∈ Mn(R). If (detB, detA) = 1 then
there exists N ′ ∈ Spec(Rn) such that N ′ ∩M = N .

(ii) Let N ∈ Spec(M) and N = 〈BA〉 such that A is a diagonal matrix and B is a
prime matrix. If there exists a prime element p ∈ R such that p|(detB, detA) then there
exists N ′ ∈ Spec(Rn) such that N ′ ∩M = N if and only if for
I = {i : p|aii, 1 ≤ i ≤ n}, A = (aij) and B = (bij) we have (1) for all i ∈ I, bii = 1 and
(2) if i0 = min I, j > i0, bjj = p then p|bij, ∀i ∈ I.

(iii) If N ∈ Spec(M) and rankN < rankM then there exists N ′ ∈ Spec(Rn) such
that N ′ ∩M = N .

Proof. (i) Suppose that N ∈ Spec(M). By [2], detB = upα (α ≥ 1) such that p is
prime and u is a unit element of R. By theorem 1.9(ii), upα ∈ (N : M) and therefore
p ∈ (N : M). Also, detA ∈ (M : Rn). Since (detB, detA) = 1, detA �∈ (N : M). By
theorem 1.4, there exists N ′ ∈ Spec(Rn) such that N ′ ∩M = N .

(ii) Let P = (pij) be a diagonal matrix such that pii = p, 1 ≤ i ≤ n. We show that
〈P 〉 ∩M ⊆ N .

If m ∈ 〈P 〉 ∩ M then m = (d1a11, . . . , dnann) such that dj ∈ R and p|djajj for all
j, 1 ≤ j ≤ n . Let i be the smallest integer such that p � |di and therefore p|aii and i ∈ I.
Now (d1a11, . . . , di−1ai−1i−1, 0, . . . , 0) ∈ N , since by Theorem 1.9.(ii), detB ∈ (N : M).
But,

BA =




b11a11 . . . . . . b1nann

0 b22a22 . . . b2nann

...
...

...
...

0 . . . . . . bnnann




.

It is enough to show that (0, . . . , 0, diaii, . . . , dnann) = (r1, . . . , rn)BA, for some rj ∈ R.
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Put r1 = · · · = ri−1 = 0, thus diaii = ribiiaii, hence di = ribii. By (1), bii = 1.
So ri = di. We will show that the equation dibi i+1ai+1 i+1 + ri+1bi+1 i+1ai+1 i+1 =
di+1ai+1 i+1 or equivalently, dibi i+1 + ri+1bi+1 i+1 = di+1 has a solution.

Case 1: If bi+1 i+1 = 1 then ri+1 = di+1 − dibii+1.
Case 2: If bi+1 i+1 = p then i+ 1 �∈ I.
Since i+ 1 �∈ I by hypothesis p/ai+1 i+1, which implies that p|di+1.

Now di+1 = pd′i+1 and by(2), bii+1 = pb′ii+1 and hence ri+1 = d′i+1 − dib
′
i+1.

Suppose that for every j < k the equation dibij+ri+1bi+1j+· · ·+rj−1bj−1j+rjbjj = dj

has a solution, we shall find rk ∈ R such that dibik + ri+1bi+1k + · · ·+ rkbkk = dk.
For bkk = 1,

rk = dk − (dibik + · · ·+ rk−1bk−1k).

If bkk = p then k �∈ I. Hence p/akk and therefore p|dk, by (2). If 1 ≤ j < k and j ∈ I by
hypothesis we have p|bjk. It follows that p|rjbjk.
If j �∈ I we have two cases for bjj:
If bjj = p, since B is a prime matrix, bjk = 0 (k < j), which implies that p|rjbjk(j < k).
If bjj = 1, since B is a prime matrix, b
j = 0 for 1 ≤ , < j and so rj = dj, p|dj since
j �∈ I. Hence in any case we have p|rjbjk, 1 ≤ j < k, and so the equation has a solution.
Therefore 〈P 〉 ∩M ⊆ N . Put T = {L ≤ Rn|〈P 〉 ⊆ L and L ∩M ⊆ N}. Since 〈P 〉 ∈ T ,
T �= ∅. By Zorn’s Lemma T has a maximal element N ′. It is clear that N ′ ∩ M = N .
Since 〈p〉 = (〈P 〉 : Rn) ⊆ (N ′ : Rn) ⊆ (N : M) = 〈p〉, we have (N ′ : Rn) = (N : M).
Therefore N ′ ∈ Spec(Rn).

Conversely, let there exist N ′ ∈ Spec(Rn) such that N ′ ∩ M = N . By Lemma 1.2,
〈p〉 = (N :M) = (N ′ : Rn). Let P be as above. Since 〈P 〉 ⊆ N ′, hence 〈P 〉 ∩M ⊆ N . If
i ∈ I then p|aii and hence (0, . . . , 0, aii, 0, . . . , 0) ∈ 〈P 〉. But (0, . . . , 0, aii, 0, . . . , 0) ∈ M ,
implies that (0, . . . , 0, aii, 0, . . . , 0) ∈ N . Thus (0, . . . , 0, aii, 0, . . . , 0) = (r1, . . . , rn)BA,
for some rj ∈ R. Hence r1 = · · · = ri−1 = 0 and therefore ribiiaii = aii. So ribii = 1
and hence bii = 1. Suppose that k > i0 and bkk = p, so p/akk. If k − 1 ∈ I we have
p|ak−1k−1. But

(0, . . . , 0, ak−1k−1, pakk, 0, . . . , 0) ∈ 〈P 〉 ∩M

and hence bk−1 k + rkp = p, for some rk ∈ R, so p|bk−1 k. In general, if i ∈ I then p|aii

and

(0, . . . , 0, aii, 0, . . . , 0, pakk, 0, . . . , 0) ∈ 〈P 〉 ∩M.
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Thus

(0, . . . , 0, aii, 0, . . . , 0, pakk, 0, . . . , 0) = (r1, . . . , rn)BA

for some rj ∈ R. Hence r1 = r2 = · · · = ri−1 = 0. Now ribiiaii = aii, i ∈ I. It follows
that bii = 1, which implies that ri = 1. Since (bik + ri+1bi+1 k + · · ·+ rkbkk)akk = pakk,
so bik + ri+1bi+1 k + · · ·+ rkbkk = p. We now show that rjbjk = 0, i+ 1 ≤ j < k.
If bjj = p ,since B is a prime matrix, hence bjk = 0.
If bjj = 1. Since bij + ri+1bi+1 j + · · ·+ rjbjj = 0, and B is a prime matrix, hence b
j = 0
for every i ≤ , ≤ j − 1. It follows that rj = 0. Hence rjbjk = 0. We have bik + rp = p

,for some r ∈ R. Thus p|bik.
(iii) Put T = {N ′ ≤ Rn|N ′ ∩ M = N}. Since N ∈ T , T �= ∅. By Zorn’s Lemma

T has a maximal element N ′. Hence N ′ ∩ M = N and (N ′ : Rn) = (N : M), we have
N ′ ∈ Spec(Rn).✷

2. Going down and incomparability theorems for modules

Definition. Let M and M ′ be R-modules.
(i) We say to be going down (or simply GD) holds for (M,M ′), if M ⊆ M ′, and given

any P ′
1 ∈ Spec(M ′) and P0 ⊆ P1 in Spec(M) with P ′

1 ∩M = P1, we have P ′
0 ∈ Spec(M ′)

such that P ′
0 ⊆ P ′

1 and P ′
0 ∩M = P0.

(ii) INC=“Incomparability” means that, ifM ⊆ M ′ and given P ′
1 and P ′

2 in Spec(M ′)
with P ′

1 ∩M = P ′
2 ∩M �=M , we have P ′

1 = P ′
2.

Examples. Let M = 2Z and M ′ = Z be Z-modules. Let p1 and p′1 be prime
numbers. Put P ′

1 = p′1Z ∈ Spec(M ′) and P0 = {0} ⊆ P1 = 2p1Z ∈ Spec(M). Since
p′1Z ∩ 2Z = 2p1Z, hence 2 �= p′1 = p1. We choose P ′

0 = {0} ∈ Spec(M ′). Thus we have
P ′

0 ∩ 2Z = P0 and therefore GD holds for (M,M ′). It is easy to see that 4Z ∈ Spec(M)
has no lying over and so LO does not hold for (M,M ′). In this example, we show that
INC holds for (M,M ′). Let p′1 �= 2 and p′2 �= 2 be prime numbers. If P ′

1 = p′1Z and
P ′

2 = p′2Z, then P ′
1 ∩ 2Z = 2p′1Z and P ′

2 ∩ 2Z = 2p′2Z. We must have 2p′1Z = 2p′2Z �= 2Z
and so p′1 = p′2. Therefore P ′

1 = P ′
2 and INC holds for (M,M ′). Also it is clear that GD

holds for (V,W ), where V is a vector space with dimF V ≥ 2 and proper subspace W .

Theorem 2.1 Let ϕ ∈ HomR(M,M ′) and Kerϕ ⊆ radM(0). If for each m′ ∈ M ′,
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P ∈ Spec(M) and r ∈ (P :M) there exists s ∈ R\(P :M) such that rsm′ ∈ ϕ(radM (0)),
then GD holds for (M,M ′).

Proof. Suppose P0 ⊆ P1 in Spec(M) and Q1 ∈ Spec(M ′) such that ϕ−1(Q1) = P1.
Put T = {L′ ≤ M ′|L′ ⊆ Q1 and ϕ−1(L′) ⊆ P0}. Since {0} ∈ T , T �= ∅, it follows by
Zorn’s Lemma that T has a maximal element Q0. Now we show that ϕ−1(Q0) = P0.
Assume that ϕ−1(Q0) ⊂ P0. Hence there exists p0 ∈ P0 such that ϕ(p0) �∈ Q0. Since
Q0 ⊂ Q0 + 〈ϕ(p0)〉 ⊆ Q1, there exists m ∈ ϕ−1(Q0 + 〈ϕ(p0)〉) such that m �∈ P0. Hence
there exists q ∈ Q0 and r ∈ R such that ϕ(m) − rϕ(p0) = q, and so m ∈ P0, which is a
contradiction. Therefore ϕ−1(Q0) = P0.

Now we show that Q0 ∈ Spec(M ′). Let rm′ ∈ Q0, r ∈ R, m′ ∈ M ′ and m′ �∈ Q0.
Suppose that Q0 + Rm′ ⊆ Q1 and hence there exists m ∈ ϕ−1(Q0 + Rm′) such that
m �∈ P0. Therefore ϕ(m) = q + tm′, where q ∈ Q0 and t ∈ R. Thus rϕ(m) = rq + rtm′

and so rm ∈ P0. Since P0 ∈ Spec(M), and m �∈ P0, hence r ∈ (P0 : M). By Lemma 1.2
(ii), r ∈ (P1 :M) = (Q1 :M ′).

Now if Q0 + Rm′ �⊆ Q1. Then there exists x ∈ (Q0 + Rm′)\Q1. Hence there exists
q ∈ Q0 and s ∈ R such that rx = rq + rsm′, and so rx ∈ Q1. Since Q1 ∈ Spec(M ′)
and x �∈ Q1, hence r ∈ (Q1 : M ′). Assume that r �∈ (Q0 : M ′). Hence there exists
m′

1 ∈ M ′ such that rm′
1 �∈ Q0. By assumption, there exists s ∈ R\(P1 : M) such that

rsm′
1 ∈ ϕ(radM (0)). Since radM(0) ⊆ P0, hence ϕ(radM (0)) ⊆ ϕ(P0) ⊆ Q0 and so

rsm′
1 ∈ Q0. Since rm′

1 �∈ Q0, hence Q0 ⊂ Q0 + 〈rm′
1〉 ⊆ Q1 and by a proof similar to

the above, s ∈ (P0 :M) and so s ∈ (P1 :M); which is a contradiction. We conclude that
Q0 ∈ Spec(M ′) and the proof is complete. ✷

Example. Let M be an R-module such that AnnR(M) = m, where m ∈ Max(R) (
for example, vector spaces ). Define the monomorphism ϕ ∈ HomR(M,M ⊕ R/m) by
ϕ(x) = (x, 0), x ∈ M . Let P be a prime submodule of M . It is clear that (P : M) = m.
For any s ∈ R\(P :M), r ∈ (P : M) and (x, t+m) ∈ (M ⊕R/m), we have sr(x, t+m) =
s(rx, rt+m) = (0, 0) ∈ ϕ(radM(0)). Therefore by theorem 2.1, GD holds for (M,M ′).

Lemma 2.2 Let M ⊂ M ′ be R-modules. The INC holds if one of the following conditions
holds.

(i) For each m′ ∈ M ′ and P ∈ Spec(M) there exists s ∈ R\(P : M) such that
sm′ ∈ M ;

(ii) M ′ is a multiplication R-module.
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(iii)
√
M :M ′ + AnnR(M) = R.

Proof. Let P ′
0 and P ′

1 in Spec(M ′) and P ′
0 ∩ M = P ′

1 ∩ M �= M . Assume that (i)
holds and there exists p′0 ∈ P ′

0\P ′
1. By assumption and Lemma 1.2 (ii), there exists

s ∈ R\(P ′
1 : M ′) such that sp′0 ∈ M and hence sp′0 ∈ P ′

1. Since P ′
1 ∈ Spec(M ′) and

p′0 �∈ P ′
1, so s ∈ (P ′

1 : M
′), which is a contradiction. Now assume that (ii) holds. By

Lemma 1.2 (ii), we have

(P ′
1 :M

′) = (P ′
1 ∩M :M) = (P0 ∩M :M) = (P ′

0 :M).

Hence P ′
0 = (P ′

0 :M)M ′ = (P ′
1 :M ′)M ′ = P ′

1.
(iii) The proof is obvious by part (i). ✷

In the following we will show that LO and GD are local properties.

Lemma 2.3 Let M ⊆ M ′ be R-modules then the following conditions are equivalent.
(i) LO holds for M ⊆ M ′.
(ii) LO holds for MP ⊆ M ′

P , for all P ∈ Spec(R).
(iii) LO holds for MQ ⊆ M ′

Q, for all Q ∈ Max(R).

Proof. (i) → (ii) Let P ∈ Spec(R), S = R\P and N ′
1 ∈ Spec(MP ). There exists

N1 ∈ Spec(M) such that S−1N1 = N ′
1, by [5, Proposition 1]. By (i), there exists

N2 ∈ Spec(M ′) such that N2 ∩ M = N1. Thus S−1(N2) ∩ MP = S−1(N2 ∩ M) =
S−1N1 = N ′

1.
(ii)→ (iii) The proof is obvious.
(iii) → (i) Let N ∈ Spec(M) there exists Q ∈ Max(R) such that (N : M) ⊆ Q.

Put S = R\Q, and so S−1N ∈ Spec(MQ), by [5, Corollary 3]. By (iii), there exists
S−1N ′ ∈ Spec(MQ) such that S−1N ′ ∩MQ = S−1N and hence N = N ′ ∩M . ✷

Lemma 2.4 Let M ⊆ M ′ be R-modules. Then the following conditions are equivalent.
(i) GD holds for M ⊆ M ′,
(ii) GD holds for MP ⊆ M ′

P , for all P ∈ Spec(R).
(iii) GD holds for MQ ⊆ M ′

Q, for all Q ∈ Max(R).

Proof. The proof is similar to the Lemma 2.3. ✷
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3. On the dimension of a module

Let R be a ring andM be an R-module. Let N be a prime submodule ofM . Then we
define the height of N to be the maximal positive integer k, if it exists, such that there
exists a chain of prime submodules of M as follows:

N = N0 ⊃ N1 ⊃ · · · ⊃ Nk.

We shall denote the height of N in M by htM (N) (see [6]). Suppose that M is an
R-module and P be a prime ideal of R. Put S = R\P and define the distinguished
submodule PM(SP ) = {x ∈ M : sx ∈ PM , for some s ∈ S} of M . We define [see 1]
the dimension of M to be the maximal positive integer k, if such exists, such that there
exists a chain of prime distinguished submodules of M as

N0 ⊂ N1 ⊂ · · · ⊂ Nk.

Lemma 3.1 Let M ⊆ M ′ be R-modules. Assume that for every m′ ∈ M ′ and
P ∈ Spec(M) there exists s ∈ R\(P : M) such that sm′ ∈ M . If PM(SP ) �= M

then PM ′(SP ) ∩M = PM(SP ).

Proof. Since PM(SP ) �=M , by [1, Proposition 1.1], PM(SP ) ∈ Spec(M). It is clear
that PM(SP ) ⊆ M ∩ PM ′(SP ). Suppose that PM ′(SP ) ∩ M �⊆ PM(SP ). Hence there
exists m ∈ PM ′(SP )∩M such that m �∈ PM(SP ). Thus there exists s ∈ R\P such that

sm =
n∑

i=1

pim
′
i, where pi ∈ P and m′

i ∈ M ′. By assumption there exists si ∈ R\P such

that sim
′
i ∈ M . Since (

n∏
j=1

si)sm =
n∑

i=1

pi(
n∏

j=1

si)m′
i, hence m ∈ PM(SP ), which is a

contradiction. ✷

Lemma 3.2 Let M ⊆ M ′ be R-modules and assume that GD holds for (M,M ′). Suppose
P ∈ Spec(M) and htM (P ) = k. If P ′ ∈ Spec(M ′) such that P ′ ∩ M = P then
htM ′(P ′) ≥ k.

Proof. Since htM (P ) = k, there exists a chain of prime submodules of M as follows

P = P0 ⊃ P1 ⊃ · · · ⊃ Pk.
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Since GD holds for (M,M ′) and so there exists a chain of prime submodules of M ′ as
follows

P ′ = P ′
0 ⊃ P ′

1 ⊃ · · · ⊃ P ′
k.

Hence htM ′(P ′) ≥ k. ✷

Corollary 3.3 Let M ⊆ M ′ be R-modules. Let M ′ be multiplication module and for
each m′ ∈ M ′, P ∈ Spec(M) and r ∈ (P : M), there exists s ∈ R\(P : M) such that
rsm′ ∈ radM (0). Suppose that htM (P ) = k. Then there exists P ′ ∈ Spec(M ′) such that
P ′ ∩M = P and htM ′(P ′) = k.

Proof. By Theorem 1.5, there exists P ′ ∈ Spec(M ′) such that P ′ ∩ M = P and by
Lemma 3.2, htM ′(P ′) ≥ k. Suppose that htM ′(P ′) = n, so there exists a chain of prime
submodules of M ′ as follows:

P ′ = P ′
0 ⊃ P ′

1 ⊃ · · · ⊃ P ′
n.

By Theorem 2.1 and Lemma 2.2, since GD and INC hold, we have the following chain of
prime submodules of M :

P = P ′ ∩M ⊃ P ′
1 ∩M ⊃ · · · ⊃ P ′

n ∩M.

Therefore htM(P ) ≥ n and so htM ′(P ′) = k. ✷

Proposition 3.4 Let M ⊆ M ′ be R-modules and M ′ be a finitely generated module such
that AnnR(M ′) ⊆ N(R). If for all P1, P2 in Spec(M ′) we have P1 ⊆ P2 or P2 ⊆ P1 then
dimM ≤ dimM ′.

Proof. Let dimM = n. Hence there exists a chain of distinguished submodules of M
as follows:

N0 ⊂ N1 ⊂ · · · ⊂ Nn.

Put (Ni :M) = Pi, for all i. SinceM ′ is finitely generated and AnnR(M ′) ⊆ N(R), hence
PiM

′(SPi ) �= M ′ by [1, Corollary 1.2]. By assumption PiM
′(SPi ) ⊆ Pi+1(M ′)(SPi+1 ) or
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Pi+1M
′(SPi+1 ) ⊆ PiM

′(SPi ). Since Pi ⊆ Pi+1 implies that PiM
′(SPi ) ⊆ Pi+1M

′(SPi+1 ),
we have the chain

P0M
′(SP0 ) ⊂ P1M

′(SP1 ) ⊂ · · · ⊂ PnM
′(SPn).

Therefore dimM ≤ dimM ′. ✷

Proposition 3.5 Let M ⊆ M ′ be R-modules and M be a finitely generated module such
that AnnR(M) ⊆ N(R). If for all P1, P2 in Spec(M) we have P1 ⊆ P2 or P2 ⊆ P1, then
dimM ′ ≤ dimM .

Proof. It is similar to the proof of Proposition 3.4. ✷

Proposition 3.6 Let M ⊆ M ′ be R-modules. Suppose that for every m′ ∈ M ′ and
P ∈ Spec(M) there exists s ∈ R\(P : M) such that sm′ ∈ M . If dimM = n then
dimM = dimM ′.
Proof. Since dimM = n, there exists a chain of distinguished submodules of M as
follows

N0 ⊂ N1 ⊂ · · · ⊂ Nn.

Let (Ni : M) = Pi, for all i. Then by Lemma 3.1, we have the following chain of
distinguished submodules of M ′

P0M
′(SP0 ) ⊂ P1M

′(SP1 ) ⊂ · · · ⊂ PnM
′(SPn).

This implies dimM ≤ dimM ′. Now let there exist a chain of distinguished submodules
of M ′ as follows

P0M
′(SP0 ) ⊂ P1M

′(SP1 ) ⊂ · · · ⊂ PkM
′(SPk ).

We show thatM �⊂ PkM
′(SPk ). Suppose thatM ⊂ PkM

′(SPk ). Since PkM
′(SPk ) �=M ′,

there exists m′ ∈ M ′\PkM
′(SPk ). By assumption there exists s ∈ R\Pk such that

sm′ ∈ M ⊂ PkM
′(SPk ). Since m′ �∈ PkM

′(SPk ), hence s ∈ Pk, which is a contradiction.
Therefore PiM(SPi ) �= M , for all i, and so we have the following chain of distinguished
submodules of M

P0M(SP0 ) ⊂ · · · ⊂ PkM(SPk )

hence dimM ≥ k. ✷
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