On Dimension of Modules

S. Karimzadeh, R. Nekooei

Abstract

In this paper we prove the lying over and going down theorems for modules. Finally, we apply the above theorems and prove some results on the dimension of a module and its submodule.

Key Words: Prime Submodule, Multiplication module, Dimension of a module.

Introduction

Throughout this note, all rings are commutative with identity and all modules are unital. For R-modules M and M^{\prime}, we denote all R-module homomorphisms of M into M^{\prime} by $\operatorname{Hom}_{R}\left(M, M^{\prime}\right)$. For any submodule N of an R-module M, we define

$$
(N: M)=\{r \in R: r M \subseteq N\}
$$

and denote $(O: M)$ by $A n n_{R}(M)$.
A submodule P of M is called prime if $P \neq M$, and whenever $r \in R, m \in M$ and $r m \in P$, then $m \in P$ or $r \in(P: M)$ [see 8]. It is easy to show that, if P is a prime submodule of an R-module M, then $(P: M)$ is a prime ideal of R. The sets of all prime submodules and proper maximal submodules of M are respectively denoted by $\operatorname{Spec}(M)$ and $\operatorname{Max}(M)$. Following [4], we denote the intersection of all prime submodules of an R-module M by $\operatorname{rad}_{M}(0)$ and the intersections of all proper maximal submodules by $\operatorname{Rad}(M)$. The radicals of R and an ideal I of R are denoted by $N(R)$ and \sqrt{I}, respectively.

[^0]
KARIMZADEH, NEKOOEI

An R-module M is called a multiplication module if for any submodule N of M there exists an ideal I of R such that $N=I M$. It is easy to check that M is a multiplication module if and only if $N=(N: M) M$ for every submodule N of M (See [7]).

Let R be a principal ideal domain (PID) and m and n be positive integers. Let $A=\left(a_{i j}\right) \in M_{m \times n}(R)$ and F be the free R-module $R^{(n)}$. We shall use the notation $\langle A\rangle$ for the submodule N of F generated by the rows of A, and the notation $\left(r_{1}, \ldots, r_{m}\right) A$, $r_{i} \in R$, for an element of N.

In this paper we shall first prove the lying-over and going-down theorem for modules, and then prove results on the dimension of a module and its submodule.

1. Lying over Theorem for Modules

The following Proposition is used widely in the sequel.

Proposition 1.1 Let $\varphi \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right), N$ and N^{\prime} be submodules of M and M^{\prime} respectively. Then we have:
(i) If $\varphi^{-1}\left(N^{\prime}\right) \subseteq N$ then there exists a submodule P^{\prime} of M^{\prime} containing N^{\prime} which is maximal with respect to $\varphi^{-1}\left(P^{\prime}\right) \subseteq N$. Furthermore, $\varphi^{-1}\left(P^{\prime}\right)=N$;
(ii) If $N \in \operatorname{Spec}(M)$ and $r m^{\prime} \in P^{\prime}$, for $r \in R$ and $m^{\prime} \in M^{\prime}$, then $m^{\prime} \in P^{\prime}$ or $r \in(N: M)$.

Proof. (i) Put $T=\left\{L^{\prime} \leq M^{\prime} \mid N^{\prime} \subseteq L^{\prime}\right.$ and $\left.\varphi^{-1}\left(L^{\prime}\right) \subseteq N\right\}$. Since $N^{\prime} \in T, T \neq \emptyset$. By Zorn's Lemma, T has a maximal element P^{\prime}. Suppose that $\varphi^{-1}\left(P^{\prime}\right) \subset N$. Then there exists $n \in N$ such that $\varphi(n) \notin P^{\prime}$. Hence $P^{\prime} \subset P^{\prime}+\langle\varphi(n)\rangle \notin T$ and so there exists $m \in \varphi^{-1}\left(P^{\prime}+\langle\varphi(n)\rangle\right)$ such that $m \notin N$. Therefore $\varphi(m-r n) \in P^{\prime}$ for some $r \in R$, and hence $m \in N$, which is a contradiction. Thus $\varphi^{-1}\left(P^{\prime}\right)=N$.
(ii) Let $r m^{\prime} \in P^{\prime}$ and $m^{\prime} \notin P^{\prime}$. Hence $P^{\prime} \subset P^{\prime}+R m^{\prime} \notin T$ and so there exists $m \in \varphi^{-1}\left(P^{\prime}+R m^{\prime}\right)$ such that $m \notin N$. Therefore $r \varphi(m) \in P^{\prime}$ and so $r m \in N$. Since $N \in \operatorname{Spec}(M)$ and $m \notin N$, hence $r \in(N: M)$.

Lemma 1.2 Let $\varphi \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right)$. If $N^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $\varphi(M) \nsubseteq N^{\prime}$, then
(i) $\varphi^{-1}\left(N^{\prime}\right) \in \operatorname{Spec}(M)$;
(ii) $\left(\varphi^{-1}\left(N^{\prime}\right): M\right)=\left(N^{\prime}: M^{\prime}\right)$.

KARIMZADEH, NEKOOEI

Proof. (i) By [6, Proposition 1.2].
(ii) Suppose that $r \in\left(N^{\prime}: M^{\prime}\right)$ and $m \in M$. Hence $r \varphi(m) \in N^{\prime}$ and so $r m \in \varphi^{-1}\left(N^{\prime}\right)$. Therefore $\left(N^{\prime}: M^{\prime}\right) \subseteq\left(\varphi^{-1}\left(N^{\prime}\right): M\right)$. Now let $r \in\left(\varphi^{-1}\left(N^{\prime}\right): M\right)$ and $m \in M \backslash \varphi^{-1}\left(N^{\prime}\right)$. Since $N^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $\varphi(m) \notin N^{\prime}, r \in\left(N^{\prime}: M^{\prime}\right)$, hence $\left(\varphi^{-1}\left(N^{\prime}\right): M\right) \subseteq\left(N^{\prime}: M^{\prime}\right)$ and the proof is complete.

Definition. Let M and M^{\prime} be R-modules. We said to be lying over (or simply, LO) holds for $\left(M, M^{\prime}\right)$ if $M \subseteq M^{\prime}$ and for any $P \in \operatorname{Spec}(M)$ there exists $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ with $P^{\prime} \cap M=P$.

Example. Let V be a vector space over a field F with $\operatorname{dim}_{F} V \geq 2$. Let W be a proper subspace of V. Since every proper subspace of a vector space is prime, hence $L O$ holds for (V, W).

Proposition 1.3 Let $\varphi \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right)$. Suppose that, for every $m^{\prime} \in M^{\prime}$ and $P \in \operatorname{Spec}(M)$, there exists $s \in R \backslash(P: M)$ such that $s m^{\prime} \in \varphi(M)$.
If $\operatorname{Ker} \varphi \subseteq \operatorname{rad}_{M}(0)$, then for any $P \in \operatorname{Spec}(M)$ there exists $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ with $\varphi^{-1}\left(P^{\prime}\right)=P$.

Proof. Suppose that $P \in \operatorname{Spec}(M)$. Since $\varphi^{-1}(\{0\})=\operatorname{Ker} \varphi \subseteq P$, by Proposition 1.1 (i), there exists a submodule P^{\prime} of M^{\prime} which is maximal with respect to $\varphi^{-1}\left(P^{\prime}\right)=P$. Now we show that $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$. It is clear that P^{\prime} is a proper submodule of M^{\prime}. Suppose that $r \in R, m^{\prime} \in M^{\prime}$ and $r m^{\prime} \in P^{\prime}$. If $m^{\prime} \notin P^{\prime}$, then by Proposition 1.1 (ii), $r \in(P: M)$. Assume that $r M^{\prime} \nsubseteq P^{\prime}$, hence there exists $m_{1}^{\prime} \in M^{\prime}$ such that $r m_{1}^{\prime} \notin P^{\prime}$. By assumption, there exists $s \in R \backslash(P: M)$ such that $r s m_{1}^{\prime} \in \varphi((P: M) M)$. Hence $s r m_{1}^{\prime} \in P^{\prime}$. Again by Proposition $1.1(i i), s \in(P: M)$, which is a contradiction. Therefore $r M^{\prime} \subseteq P^{\prime}$ and $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$.

Example. Let R be a commutative ring with identity. Let M be a flat R-module which is not faithfully flat (for example, \mathbf{Q} as \mathbf{Z}-module).
By [9, Proposition 2.11.24] , $m M=M$ for some maximal ideal m of R. Define the monomorphism $\varphi \in \operatorname{Hom}_{R}(M, M \oplus R / m)$ by $\varphi(x)=(x, 0), x \in M$. Let P be a prime submodule of M. Since $m M=M$ and $P \neq M$, hence $(P: M) \neq m$. Therefore there exists $s \in(R \backslash(P: M)) \cap m$. Now for any $(x, r+m) \in(M \oplus R / m)$, we have

KARIMZADEH, NEKOOEI

$s(x, r+m)=(s x, 0) \in \varphi(M)$. By Proposition 1.3, we conclude that for any $P \in \operatorname{Spec}(M)$ there exists $P^{\prime} \in \operatorname{Spec}(M \oplus R / m)$ with $\varphi^{-1}\left(P^{\prime}\right)=P$.

Theorem 1.4 (Lying Over) Let $M \subseteq M^{\prime}$ be R-modules.
If for each $m^{\prime} \in M^{\prime}, P \in \operatorname{Spec}(M)$, there exists $s \in R \backslash(P: M)$ such that sm $m^{\prime} \in M$, then LO holds for (M, M^{\prime}).
Proof. This follows by Proposition 1.3.

A ring R is called Von Neumann regular ring if for every $a \in R$ there exists an element $b \in R$ such that $a=a b a$.

Theorem 1.5 Let $M \subseteq M^{\prime}$ be R-modules and $P \in \operatorname{Spec}(M)$. Then there exists $P^{\prime} \in$ $\operatorname{Spec}\left(M^{\prime}\right)$ with $P^{\prime} \cap M=P$, if one of the following conditions hold.
(i) For each $m^{\prime} \in M^{\prime}$ and $r \in(P: M)$ there exists $s \in R \backslash(P: M)$ such that $r s m^{\prime} \in P$;
(ii) R is Von Neumann regular ring and $(P: M) \subseteq \sqrt{P: M^{\prime}}$.

Proof. By Proposition 1.1, there exists a submodule P^{\prime} of M^{\prime} that is maximal with respect to $P^{\prime} \cap M=P$. Now we show that $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$. Let $r e \in P^{\prime}$ and $e \notin P^{\prime}$, where $r \in R$ and $e \in M^{\prime}$. By Proposition 1.1 (ii), $r \in(P: M)$. Suppose that (i) holds. If $r M^{\prime} \nsubseteq P^{\prime}$ then there exists $m^{\prime} \in M^{\prime}$ such that $r m^{\prime} \notin P^{\prime}$. By assumption there is $s \in R \backslash(P: M)$ such that $r s m^{\prime} \in P$. Thus $r s m^{\prime} \in P^{\prime}$ and so by Proposition 1.1, $s \in(P: M)$, which is a contradiction. Now suppose that (ii) holds. Since $r \in(P: M)$, hence there is $n \in \mathbb{N}$ such that $r^{n} \in\left(P: M^{\prime}\right) \subseteq\left(P^{\prime}: M^{\prime}\right)$. Therefore P^{\prime} is a primary submodule of M^{\prime} and so $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$.

Proposition 1.6 Let $\varphi \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right)$ and M^{\prime} be a multiplication module. If $\operatorname{Ker} \varphi \subseteq \operatorname{rad}_{M}(0)$, then for every $P \in \operatorname{Spec}(M)$, there exists $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ with $\varphi^{-1}\left(P^{\prime}\right)=P$ if and only if $\left(\varphi(M): M^{\prime}\right) \nsubseteq(P: M)$.
Proof. Suppose that there exists $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $\varphi^{-1}\left(P^{\prime}\right)=P$. By Lemma $1.2,\left(P^{\prime}: M^{\prime}\right)=(P: M)$. If $\left(\varphi(M): M^{\prime}\right) \subseteq(P: M)$ then $\varphi(M) \subseteq P^{\prime}$, because M^{\prime} is a multiplication module. Hence $P=M$, which is a contradiction. Conversely, suppose that $\left(\varphi(M): M^{\prime}\right) \nsubseteq(P: M)$. Then there exists $s \in\left(\varphi(M): M^{\prime}\right) \backslash(P: M)$. Let $m^{\prime} \in M^{\prime}$ and $r \in(P: M)$. Hence $r s m^{\prime} \in \varphi((P: M) M)$ and so by Proposition 1.3, there exists

KARIMZADEH, NEKOOEI

$P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $\varphi^{-1}\left(P^{\prime}\right)=P$.

Corollary 1.7 Let $M \subseteq M^{\prime}$ be R-modules. If $\sqrt{\left(M: M^{\prime}\right)}+A n n_{R}(M)=R$ then $L O$ holds for (M, M^{\prime}).
Proof. Suppose that $P \in \operatorname{Spec}(M)$. We have $A n n_{R}(M) \subseteq(P: M)$. Since $\sqrt{\left(M: M^{\prime}\right)}+\operatorname{Ann}_{R}(M)=R$, hence $\left(M: M^{\prime}\right) \nsubseteq(P: M)$. Therefore LO holds.

Corollary 1.8 Let $M \subseteq M^{\prime}$ be R-modules and M^{\prime} be a multiplication module. LO holds for $\left(M, M^{\prime}\right)$ if and only if for every $P \in \operatorname{Spec}(M),\left(M: M^{\prime}\right) \nsubseteq(P: M)$.

Definition. (See [2]) Let R be a principal ideal domain (PID). Let $J=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ be a subset of the integer between 1 and n and let $p \in R$ be a prime element. A matrix $A \in M_{n}(R), A=\left(a_{i j}\right)$, is said to be a prime matrix (or simply prime), if A satisfies the following conditions:
(i) A is a upper triangular;
(ii) For all $i, 1 \leq i \leq n, a_{i i}=p$ if $i \in J$ and $a_{i i}=1$ if $i \notin J$;
(iii) For all $i, 1 \leq i \leq j \leq n, a_{i j}=0$ except possibly when $i \notin J$ and $j \in J$.

Sometimes we call J the set of integers associated with A and denote it by J_{A}.
By (i) and (ii) it's clear that $\operatorname{det}(A)=p^{\alpha}$.

Theorem 1.9 Let R be a PID.
(i) Let M be a free R-module of rank m such that $M=\left\langle A_{m \times n}\right\rangle(m \leq n)$ and $N=\langle C A\rangle$ for some $C \in M_{\ell \times m}(R)$. Then N is a prime submodule of M if and only if $\langle C\rangle$ is a prime submodule of R^{m}.
(ii) Let M be a free R-module such that $M=\left\langle A_{n \times n}\right\rangle(\operatorname{det} A \neq 0)$ and $N=\langle C A\rangle$ for some $C \in M_{n}(R)$ then $\operatorname{det} C \in(N: M)$.
(iii) Let M be a free R-module such that $M=\left\langle A_{n \times n}\right\rangle(\operatorname{det} A \neq 0)$. If N is a prime submodule of M and rankN $=n$, then there exists a prime matrix $C_{n \times n}$ such that $N=\langle C A\rangle$.
Proof. (i) Suppose that $N \in \operatorname{Spec}(M)$. If $r\left(x_{1}, \ldots, x_{m}\right) \in\langle C\rangle$ for $r, x_{i} \in R$, $1 \leq i \leq n$, then there exists $\left(d_{1}, \ldots, d_{\ell}\right) \in R^{\ell}$ such that $r\left(x_{1}, \ldots, x_{m}\right)=\left(d_{1}, \ldots, d_{\ell}\right) C$ and
so $r\left(x_{1}, \ldots, x_{m}\right) A=\left(d_{1}, \ldots, d_{\ell}\right) C A$. Since $r\left(\left(x_{1}, \ldots, x_{m}\right) A\right) \in N$, hence $r \in(N: M)$ or $\left(x_{1}, \ldots, x_{m}\right) A \in N$.

Case 1. Let $\left(x_{1}, \ldots, x_{m}\right) A \in N$. There exists $\left(b_{1}, \ldots, b_{\ell}\right) \in R^{\ell}$ such that $\left(x_{1}, \ldots, x_{m}\right) A$ $=\left(b_{1}, \ldots, b_{\ell}\right) C A$. Put $\left(c_{1}, \ldots, c_{m}\right)=\left(b_{1}, \ldots, b_{\ell}\right) C$. Suppose that a_{1}, \ldots, a_{m} are rows of A, then $x_{1} a_{1}+\cdots+x_{m} a_{m}=c_{1} a_{1}+\cdots+c_{m} a_{m}$. Since $\operatorname{rank} M=m$, we have $\left(x_{1}, \ldots, x_{m}\right)=\left(c_{1}, \ldots, c_{m}\right)$. This implies that $\left(x_{1}, \ldots, x_{m}\right)=\left(b_{1}, \ldots, b_{\ell}\right) C$ and therefore $\left(x_{1}, \ldots, x_{m}\right) \in\langle C\rangle$.

Case 2. Now let $r \in(N: M)$. Suppose that $j, 1 \leq j \leq n$, is fixed. Since $(0, \ldots, 0, r, 0, \ldots, 0) A \in N$, there exists $\left(d_{1}, \ldots, d_{\ell}\right) \in R^{\ell}$ such that $(0, \ldots, 0, r, 0, \ldots, 0) A=$ $\left(d_{1}, \ldots, d_{\ell}\right) C A$. Put $\left(c_{1}, \ldots, c_{m}\right)=\left(d_{1}, \ldots, d_{\ell}\right) C$. Suppose that a_{1}, \ldots, a_{m} are rows of A. We have $(0, \ldots, 0, r, 0, \ldots, 0) A=\left(c_{1}, \ldots, c_{m}\right) A$ and so $r a_{j}=c_{1} a_{1}+\cdots+c_{m} a_{m}$. Therefore $c_{j}=r, c_{i}=0(i \neq j)$. Then $\left(c_{1}, \ldots, c_{m}\right)=(0, \ldots, 0, r, 0, \ldots, 0)=\left(d_{1}, \ldots, d_{\ell}\right) C$ and hence $r \in\left(\langle C\rangle: R^{m}\right)$.

Conversely, suppose that $\langle C\rangle \in \operatorname{Spec}\left(R^{m}\right)$. If $r\left(x_{1}, \ldots, x_{n}\right) \in N$, for $r \in R$ and $\left(x_{1}, \ldots, x_{n}\right) \in M$, there exist $\left(y_{1}, \ldots, y_{m}\right) \in R^{m}$ and $\left(d_{1}, \ldots, d_{\ell}\right) \in R^{\ell}$ such that $r\left(x_{1}, \ldots, x_{n}\right)=\left(d_{1}, \ldots, d_{\ell}\right) C A$ and $\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{m}\right) A$. Suppose that $\left(b_{1}, \ldots, b_{m}\right)$ $=\left(d_{1}, \ldots, d_{\ell}\right) C$ such that $\left(b_{1}, \ldots, b_{m}\right) \in R^{m}$ and a_{1}, \ldots, a_{m} are rows of A. Then $r y_{1} a_{1}+\cdots+r y_{m} a_{m}=b_{1} a_{1}+\cdots+b_{m} a_{m}$ and therefore $r\left(y_{1}, \ldots, y_{m}\right)=\left(b_{1}, \ldots, b_{m}\right)$. We have $r\left(y_{1}, \ldots, y_{m}\right)=\left(b_{1}, \ldots, b_{m}\right)=\left(d_{1}, \ldots, d_{\ell}\right) C$. Hence $r\left(y_{1}, \ldots, y_{m}\right) \in\langle C\rangle$ and $\langle C\rangle \in \operatorname{Spec}\left(R^{m}\right)$, and this implies that $r \in\left(\langle C\rangle: R^{m}\right)$ or $\left(y_{1}, \ldots, y_{m}\right) \in\langle C\rangle$.

Case 1. Suppose that $r \in\left(\langle C\rangle: R^{m}\right)$ and $j, 1 \leq j \leq m$. We have $(0, \ldots, 0, r, 0, \ldots, 0) \in$ $\langle C\rangle$. There exists $\left(d_{1}, \ldots, d_{\ell}\right) \in R^{\ell}$ such that $(0, \ldots, 0, r, 0, \ldots, 0)=\left(d_{1}, \ldots, d_{\ell}\right) C$. Also $(0, \ldots, 0, r, 0, \ldots, 0) A=\left(d_{1}, \ldots, d_{\ell}\right) C A$; hence $r \in(N: M)$.

Case 2. Suppose that $\left(y_{1}, \ldots, y_{m}\right) \in\langle C\rangle$. There exists $\left(d_{1}, \ldots, d_{\ell}\right) \in R^{\ell}$ such that $\left(y_{1}, \ldots, y_{m}\right)=\left(d_{1}, \ldots, d_{\ell}\right) C$. Hence $\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{m}\right) A=\left(d_{1}, \ldots, d_{\ell}\right) C A$, therefore $\left(x_{1}, \ldots, x_{n}\right) \in N$.
(ii) Suppose that $\operatorname{det} C \neq 0$ and $A^{\prime}=\left(a_{i j}^{\prime}\right), C^{\prime}=\left(c_{i j}^{\prime}\right)$ are the adjoint matrices of A and C respectively. If $\left(x_{1}, \ldots, x_{n}\right) \in M$, then by [2, Lemma 1.2] $\operatorname{det} A \mid \sum_{i=1}^{n} x_{i} a_{i j}^{\prime}$, for every $j, 1 \leq j \leq n$. But $(\operatorname{det} C)(\operatorname{det} A)=\operatorname{det}(C A) \mid \sum_{i=1}^{n}(\operatorname{det} C) x_{i}\left(\sum_{k=1}^{n} a_{i k}^{\prime} c_{k j}^{\prime}\right)$, hence by $[2$, Lemma 1.2] we have $\left((\operatorname{det} C) x_{1}, \ldots,(\operatorname{det} C) x_{n}\right) \in N$.

KARIMZADEH, NEKOOEI

(iii) By (i), we have $\langle C\rangle \in \operatorname{Spec}\left(R^{n}\right)$. Now there exists a prime matrix $B_{n \times n}$ such that $\langle C\rangle=\langle B\rangle$ and by [2, Theorem 2.5], we have $\langle C A\rangle=\langle B A\rangle$.

Theorem 1.10 Let R be a PID and M be a free R-module such that $M=\langle A\rangle, A \in$ $M_{n}(R)(\operatorname{det} A \neq 0)$.
(i) Let $N \in \operatorname{Spec}(M), N=\langle B A\rangle$ for some $B \in M_{n}(R)$. If $(\operatorname{det} B, \operatorname{det} A)=1$ then there exists $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$ such that $N^{\prime} \cap M=N$.
(ii) Let $N \in \operatorname{Spec}(M)$ and $N=\langle B A\rangle$ such that A is a diagonal matrix and B is a prime matrix. If there exists a prime element $p \in R$ such that $p \mid(\operatorname{det} B, \operatorname{det} A)$ then there exists $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$ such that $N^{\prime} \cap M=N$ if and only if for $I=\left\{i: p \mid a_{i i}, 1 \leq i \leq n\right\}, A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ we have (1) for all $i \in I, b_{i i}=1$ and (2) if $i_{0}=\min I, j>i_{0}, b_{j j}=p$ then $p \mid b_{i j}, \forall i \in I$.
(iii) If $N \in \operatorname{Spec}(M)$ and $\operatorname{rank} N<\operatorname{rankM}$ then there exists $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$ such that $N^{\prime} \cap M=N$.

Proof. (i) Suppose that $N \in \operatorname{Spec}(M)$. By [2], $\operatorname{det} B=u p^{\alpha}(\alpha \geq 1)$ such that p is prime and u is a unit element of R. By theorem $1.9(i i), u p^{\alpha} \in(N: M)$ and therefore $p \in(N: M)$. Also, $\operatorname{det} A \in\left(M: R^{n}\right)$. Since $(\operatorname{det} B, \operatorname{det} A)=1, \operatorname{det} A \notin(N: M)$. By theorem 1.4, there exists $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$ such that $N^{\prime} \cap M=N$.
(ii) Let $P=\left(p_{i j}\right)$ be a diagonal matrix such that $p_{i i}=p, 1 \leq i \leq n$. We show that $\langle P\rangle \cap M \subseteq N$.

If $m \in\langle P\rangle \cap M$ then $m=\left(d_{1} a_{11}, \ldots, d_{n} a_{n n}\right)$ such that $d_{j} \in R$ and $p \mid d_{j} a_{j j}$ for all $j, 1 \leq j \leq n$. Let i be the smallest integer such that $p \not \backslash d_{i}$ and therefore $p \mid a_{i i}$ and $i \in I$. Now $\left(d_{1} a_{11}, \ldots, d_{i-1} a_{i-1 i-1}, 0, \ldots, 0\right) \in N$, since by Theorem 1.9.(ii), $\operatorname{det} B \in(N: M)$. But,

$$
B A=\left(\begin{array}{cccc}
b_{11} a_{11} & \ldots & \ldots & b_{1 n} a_{n n} \\
0 & b_{22} a_{22} & \ldots & b_{2 n} a_{n n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & \ldots & b_{n n} a_{n n}
\end{array}\right)
$$

It is enough to show that $\left(0, \ldots, 0, d_{i} a_{i i}, \ldots, d_{n} a_{n n}\right)=\left(r_{1}, \ldots, r_{n}\right) B A$, for some $r_{j} \in R$.

Put $r_{1}=\cdots=r_{i-1}=0$, thus $d_{i} a_{i i}=r_{i} b_{i i} a_{i i}$, hence $d_{i}=r_{i} b_{i i}$. By (1), $b_{i i}=1$. So $r_{i}=d_{i}$. We will show that the equation $d_{i} b_{i+1} a_{i+1}{ }_{i+1}+r_{i+1} b_{i+1}{ }_{i+1} a_{i+1}{ }_{i+1}=$ $d_{i+1} a_{i+1}{ }_{i+1}$ or equivalently, $d_{i} b_{i+1}+r_{i+1} b_{i+1}{ }_{i+1}=d_{i+1}$ has a solution.

Case 1: If $b_{i+1}{ }_{i+1}=1$ then $r_{i+1}=d_{i+1}-d_{i} b_{i i+1}$.
Case 2: If $b_{i+1}{ }_{i+1}=p$ then $i+1 \notin I$.
Since $i+1 \notin I$ by hypothesis $p \nmid a_{i+1} i_{i+1}$, which implies that $p \mid d_{i+1}$. Now $d_{i+1}=p d_{i+1}^{\prime}$ and by $(2), b_{i i+1}=p b_{i i+1}^{\prime}$ and hence $r_{i+1}=d_{i+1}^{\prime}-d_{i} b_{i+1}^{\prime}$.

Suppose that for every $j<k$ the equation $d_{i} b_{i j}+r_{i+1} b_{i+1 j}+\cdots+r_{j-1} b_{j-1 j}+r_{j} b_{j j}=d_{j}$ has a solution, we shall find $r_{k} \in R$ such that $d_{i} b_{i k}+r_{i+1} b_{i+1 k}+\cdots+r_{k} b_{k k}=d_{k}$.

For $b_{k k}=1$,

$$
r_{k}=d_{k}-\left(d_{i} b_{i k}+\cdots+r_{k-1} b_{k-1 k}\right)
$$

If $b_{k k}=p$ then $k \notin I$. Hence $p \nmid a_{k k}$ and therefore $p \mid d_{k}$, by (2). If $1 \leq j<k$ and $j \in I$ by hypothesis we have $p \mid b_{j k}$. It follows that $p \mid r_{j} b_{j k}$.
If $j \notin I$ we have two cases for $b_{j j}$:
If $b_{j j}=p$, since B is a prime matrix, $b_{j k}=0(k<j)$, which implies that $p \mid r_{j} b_{j k}(j<k)$. If $b_{j j}=1$, since B is a prime matrix, $b_{\ell j}=0$ for $1 \leq \ell<j$ and so $r_{j}=d_{j}, p \mid d_{j}$ since $j \notin I$. Hence in any case we have $p \mid r_{j} b_{j k}, 1 \leq j<k$, and so the equation has a solution. Therefore $\langle P\rangle \cap M \subseteq N$. Put $T=\left\{L \leq R^{n} \mid\langle P\rangle \subseteq L\right.$ and $\left.L \cap M \subseteq N\right\}$. Since $\langle P\rangle \in T$, $T \neq \emptyset$. By Zorn's Lemma T has a maximal element N^{\prime}. It is clear that $N^{\prime} \cap M=N$. Since $\langle p\rangle=\left(\langle P\rangle: R^{n}\right) \subseteq\left(N^{\prime}: R^{n}\right) \subseteq(N: M)=\langle p\rangle$, we have $\left(N^{\prime}: R^{n}\right)=(N: M)$. Therefore $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$.

Conversely, let there exist $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$ such that $N^{\prime} \cap M=N$. By Lemma 1.2, $\langle p\rangle=(N: M)=\left(N^{\prime}: R^{n}\right)$. Let P be as above. Since $\langle P\rangle \subseteq N^{\prime}$, hence $\langle P\rangle \cap M \subseteq N$. If $i \in I$ then $p \mid a_{i i}$ and hence $\left(0, \ldots, 0, a_{i i}, 0, \ldots, 0\right) \in\langle P\rangle$. But $\left(0, \ldots, 0, a_{i i}, 0, \ldots, 0\right) \in M$, implies that $\left(0, \ldots, 0, a_{i i}, 0, \ldots, 0\right) \in N$. Thus $\left(0, \ldots, 0, a_{i i}, 0, \ldots, 0\right)=\left(r_{1}, \ldots, r_{n}\right) B A$, for some $r_{j} \in R$. Hence $r_{1}=\cdots=r_{i-1}=0$ and therefore $r_{i} b_{i i} a_{i i}=a_{i i}$. So $r_{i} b_{i i}=1$ and hence $b_{i i}=1$. Suppose that $k>i_{0}$ and $b_{k k}=p$, so $p \nmid a_{k k}$. If $k-1 \in I$ we have $p \mid a_{k-1 k-1}$. But

$$
\left(0, \ldots, 0, a_{k-1 k-1}, p a_{k k}, 0, \ldots, 0\right) \in\langle P\rangle \cap M
$$

and hence $b_{k-1} k+r_{k} p=p$, for some $r_{k} \in R$, so $p \mid b_{k-1}$. In general, if $i \in I$ then $p \mid a_{i i}$ and

$$
\left(0, \ldots, 0, a_{i i}, 0, \ldots, 0, p a_{k k}, 0, \ldots, 0\right) \in\langle P\rangle \cap M
$$

Thus

$$
\left(0, \ldots, 0, a_{i i}, 0, \ldots, 0, p a_{k k}, 0, \ldots, 0\right)=\left(r_{1}, \ldots, r_{n}\right) B A
$$

for some $r_{j} \in R$. Hence $r_{1}=r_{2}=\cdots=r_{i-1}=0$. Now $r_{i} b_{i i} a_{i i}=a_{i i}, i \in I$. It follows that $b_{i i}=1$, which implies that $r_{i}=1$. Since $\left(b_{i k}+r_{i+1} b_{i+1}{ }_{k}+\cdots+r_{k} b_{k k}\right) a_{k k}=p a_{k k}$, so $b_{i k}+r_{i+1} b_{i+1} k+\cdots+r_{k} b_{k k}=p$. We now show that $r_{j} b_{j k}=0, i+1 \leq j<k$. If $b_{j j}=p$, since B is a prime matrix, hence $b_{j k}=0$.
If $b_{j j}=1$. Since $b_{i j}+r_{i+1} b_{i+1}{ }_{j}+\cdots+r_{j} b_{j j}=0$, and B is a prime matrix, hence $b_{\ell j}=0$ for every $i \leq \ell \leq j-1$. It follows that $r_{j}=0$. Hence $r_{j} b_{j k}=0$. We have $b_{i k}+r p=p$,for some $r \in R$. Thus $p \mid b_{i k}$.
(iii) Put $T=\left\{N^{\prime} \leq R^{n} \mid N^{\prime} \cap M=N\right\}$. Since $N \in T, T \neq \emptyset$. By Zorn's Lemma T has a maximal element N^{\prime}. Hence $N^{\prime} \cap M=N$ and $\left(N^{\prime}: R^{n}\right)=(N: M)$, we have $N^{\prime} \in \operatorname{Spec}\left(R^{n}\right)$.

2. Going down and incomparability theorems for modules

Definition. Let M and M^{\prime} be R-modules.
(i) We say to be going down (or simply GD) holds for (M, M^{\prime}), if $M \subseteq M^{\prime}$, and given any $P_{1}^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $P_{0} \subseteq P_{1}$ in $\operatorname{Spec}(M)$ with $P_{1}^{\prime} \cap M=P_{1}$, we have $P_{0}^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $P_{0}^{\prime} \subseteq P_{1}^{\prime}$ and $P_{0}^{\prime} \cap M=P_{0}$.
(ii) INC="Incomparability" means that, if $M \subseteq M^{\prime}$ and given P_{1}^{\prime} and P_{2}^{\prime} in $\operatorname{Spec}\left(M^{\prime}\right)$ with $P_{1}^{\prime} \cap M=P_{2}^{\prime} \cap M \neq M$, we have $P_{1}^{\prime}=P_{2}^{\prime}$.

Examples. Let $M=2 \mathbf{Z}$ and $M^{\prime}=\mathbf{Z}$ be \mathbf{Z}-modules. Let p_{1} and p_{1}^{\prime} be prime numbers. Put $P_{1}^{\prime}=p_{1}^{\prime} \mathbf{Z} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $P_{0}=\{0\} \subseteq P_{1}=2 p_{1} \mathbf{Z} \in \operatorname{Spec}(M)$. Since $p_{1}^{\prime} \mathbf{Z} \cap 2 \mathbf{Z}=2 p_{1} \mathbf{Z}$, hence $2 \neq p_{1}^{\prime}=p_{1}$. We choose $P_{0}^{\prime}=\{0\} \in \operatorname{Spec}\left(M^{\prime}\right)$. Thus we have $P_{0}^{\prime} \cap 2 \mathbf{Z}=P_{0}$ and therefore $G D$ holds for $\left(M, M^{\prime}\right)$. It is easy to see that $4 \mathbf{Z} \in \operatorname{Spec}(M)$ has no lying over and so $L O$ does not hold for $\left(M, M^{\prime}\right)$. In this example, we show that $I N C$ holds for $\left(M, M^{\prime}\right)$. Let $p_{1}^{\prime} \neq 2$ and $p_{2}^{\prime} \neq 2$ be prime numbers. If $P_{1}^{\prime}=p_{1}^{\prime} \mathbf{Z}$ and $P_{2}^{\prime}=p_{2}^{\prime} \mathbf{Z}$, then $P_{1}^{\prime} \cap 2 \mathbf{Z}=2 p_{1}^{\prime} \mathbf{Z}$ and $P_{2}^{\prime} \cap 2 \mathbf{Z}=2 p_{2}^{\prime} \mathbf{Z}$. We must have $2 p_{1}^{\prime} \mathbf{Z}=2 p_{2}^{\prime} \mathbf{Z} \neq 2 \mathbf{Z}$ and so $p_{1}^{\prime}=p_{2}^{\prime}$. Therefore $P_{1}^{\prime}=P_{2}^{\prime}$ and $I N C$ holds for $\left(M, M^{\prime}\right)$. Also it is clear that $G D$ holds for (V, W), where V is a vector space with $\operatorname{dim}_{F} V \geq 2$ and proper subspace W.

Theorem 2.1 Let $\varphi \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right)$ and $\operatorname{Ker} \varphi \subseteq \operatorname{rad}_{M}(0)$. If for each $m^{\prime} \in M^{\prime}$,
$P \in \operatorname{Spec}(M)$ and $r \in(P: M)$ there exists $s \in R \backslash(P: M)$ such that $r s m^{\prime} \in \varphi\left(\operatorname{rad}_{M}(0)\right)$, then GD holds for $\left(M, M^{\prime}\right)$.
Proof. Suppose $P_{0} \subseteq P_{1}$ in $\operatorname{Spec}(M)$ and $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $\varphi^{-1}\left(Q_{1}\right)=P_{1}$. Put $T=\left\{L^{\prime} \leq M^{\prime} \mid L^{\prime} \subseteq Q_{1}\right.$ and $\left.\varphi^{-1}\left(L^{\prime}\right) \subseteq P_{0}\right\}$. Since $\{0\} \in T, T \neq \emptyset$, it follows by Zorn's Lemma that T has a maximal element Q_{0}. Now we show that $\varphi^{-1}\left(Q_{0}\right)=P_{0}$. Assume that $\varphi^{-1}\left(Q_{0}\right) \subset P_{0}$. Hence there exists $p_{0} \in P_{0}$ such that $\varphi\left(p_{0}\right) \notin Q_{0}$. Since $Q_{0} \subset Q_{0}+\left\langle\varphi\left(p_{0}\right)\right\rangle \subseteq Q_{1}$, there exists $m \in \varphi^{-1}\left(Q_{0}+\left\langle\varphi\left(p_{0}\right)\right\rangle\right)$ such that $m \notin P_{0}$. Hence there exists $q \in Q_{0}$ and $r \in R$ such that $\varphi(m)-r \varphi\left(p_{0}\right)=q$, and so $m \in P_{0}$, which is a contradiction. Therefore $\varphi^{-1}\left(Q_{0}\right)=P_{0}$.

Now we show that $Q_{0} \in \operatorname{Spec}\left(M^{\prime}\right)$. Let $r m^{\prime} \in Q_{0}, r \in R, m^{\prime} \in M^{\prime}$ and $m^{\prime} \notin Q_{0}$. Suppose that $Q_{0}+R m^{\prime} \subseteq Q_{1}$ and hence there exists $m \in \varphi^{-1}\left(Q_{0}+R m^{\prime}\right)$ such that $m \notin P_{0}$. Therefore $\varphi(m)=q+t m^{\prime}$, where $q \in Q_{0}$ and $t \in R$. Thus $r \varphi(m)=r q+r t m^{\prime}$ and so $r m \in P_{0}$. Since $P_{0} \in \operatorname{Spec}(M)$, and $m \notin P_{0}$, hence $r \in\left(P_{0}: M\right)$. By Lemma 1.2 (ii), $r \in\left(P_{1}: M\right)=\left(Q_{1}: M^{\prime}\right)$.

Now if $Q_{0}+R m^{\prime} \nsubseteq Q_{1}$. Then there exists $x \in\left(Q_{0}+R m^{\prime}\right) \backslash Q_{1}$. Hence there exists $q \in Q_{0}$ and $s \in R$ such that $r x=r q+r s m^{\prime}$, and so $r x \in Q_{1}$. Since $Q_{1} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $x \notin Q_{1}$, hence $r \in\left(Q_{1}: M^{\prime}\right)$. Assume that $r \notin\left(Q_{0}: M^{\prime}\right)$. Hence there exists $m_{1}^{\prime} \in M^{\prime}$ such that $r m_{1}^{\prime} \notin Q_{0}$. By assumption, there exists $s \in R \backslash\left(P_{1}: M\right)$ such that $r s m_{1}^{\prime} \in \varphi\left(\operatorname{rad}_{M}(0)\right)$. Since $\operatorname{rad}_{M}(0) \subseteq P_{0}$, hence $\varphi\left(\operatorname{rad}_{M}(0)\right) \subseteq \varphi\left(P_{0}\right) \subseteq Q_{0}$ and so $r s m_{1}^{\prime} \in Q_{0}$. Since $r m_{1}^{\prime} \notin Q_{0}$, hence $Q_{0} \subset Q_{0}+\left\langle r m_{1}^{\prime}\right\rangle \subseteq Q_{1}$ and by a proof similar to the above, $s \in\left(P_{0}: M\right)$ and so $s \in\left(P_{1}: M\right)$; which is a contradiction. We conclude that $Q_{0} \in \operatorname{Spec}\left(M^{\prime}\right)$ and the proof is complete.

Example. Let M be an R-module such that $\operatorname{Ann}_{R}(M)=m$, where $m \in \operatorname{Max}(R)($ for example, vector spaces). Define the monomorphism $\varphi \in \operatorname{Hom}_{R}(M, M \oplus R / m)$ by $\varphi(x)=(x, 0), x \in M$. Let P be a prime submodule of M. It is clear that $(P: M)=m$. For any $s \in R \backslash(P: M), r \in(P: M)$ and $(x, t+m) \in(M \oplus R / m)$, we have $s r(x, t+m)=$ $s(r x, r t+m)=(0,0) \in \varphi\left(\operatorname{rad}_{M}(0)\right)$. Therefore by theorem 2.1, GD holds for $\left(M, M^{\prime}\right)$.

Lemma 2.2 Let $M \subset M^{\prime}$ be R-modules. The INC holds if one of the following conditions holds.
(i) For each $m^{\prime} \in M^{\prime}$ and $P \in \operatorname{Spec}(M)$ there exists $s \in R \backslash(P: M)$ such that $s m^{\prime} \in M$;
(ii) M^{\prime} is a multiplication R-module.

KARIMZADEH, NEKOOEI

(iii) $\sqrt{M: M^{\prime}}+A n n_{R}(M)=R$.

Proof. Let P_{0}^{\prime} and P_{1}^{\prime} in $\operatorname{Spec}\left(M^{\prime}\right)$ and $P_{0}^{\prime} \cap M=P_{1}^{\prime} \cap M \neq M$. Assume that (i) holds and there exists $p_{0}^{\prime} \in P_{0}^{\prime} \backslash P_{1}^{\prime}$. By assumption and Lemma 1.2 (ii), there exists $s \in R \backslash\left(P_{1}^{\prime}: M^{\prime}\right)$ such that $s p_{0}^{\prime} \in M$ and hence $s p_{0}^{\prime} \in P_{1}^{\prime}$. Since $P_{1}^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ and $p_{0}^{\prime} \notin P_{1}^{\prime}$, so $s \in\left(P_{1}^{\prime}: M^{\prime}\right)$, which is a contradiction. Now assume that (ii) holds. By Lemma 1.2 (ii), we have

$$
\left(P_{1}^{\prime}: M^{\prime}\right)=\left(P_{1}^{\prime} \cap M: M\right)=\left(P_{0} \cap M: M\right)=\left(P_{0}^{\prime}: M\right)
$$

Hence $P_{0}^{\prime}=\left(P_{0}^{\prime}: M\right) M^{\prime}=\left(P_{1}^{\prime}: M^{\prime}\right) M^{\prime}=P_{1}^{\prime}$.
(iii) The proof is obvious by part (i).

In the following we will show that LO and GD are local properties.

Lemma 2.3 Let $M \subseteq M^{\prime}$ be R-modules then the following conditions are equivalent.
(i) LO holds for $M \subseteq M^{\prime}$.
(ii) LO holds for $M_{P} \subseteq M_{P}^{\prime}$, for all $P \in \operatorname{Spec}(R)$.
(iii) LO holds for $M_{Q} \subseteq M_{Q}^{\prime}$, for all $Q \in \operatorname{Max}(R)$.

Proof. $\quad(i) \rightarrow(i i)$ Let $P \in \operatorname{Spec}(R), S=R \backslash P$ and $N_{1}^{\prime} \in \operatorname{Spec}\left(M_{P}\right)$. There exists $N_{1} \in \operatorname{Spec}(M)$ such that $S^{-1} N_{1}=N_{1}^{\prime}$, by [5, Proposition 1]. By (i), there exists $N_{2} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $N_{2} \cap M=N_{1}$. Thus $S^{-1}\left(N_{2}\right) \cap M_{P}=S^{-1}\left(N_{2} \cap M\right)=$ $S^{-1} N_{1}=N_{1}^{\prime}$.
(ii) \rightarrow (iii) The proof is obvious.
(iii) $\rightarrow(i)$ Let $N \in \operatorname{Spec}(M)$ there exists $Q \in \operatorname{Max}(R)$ such that $(N: M) \subseteq Q$. Put $S=R \backslash Q$, and so $S^{-1} N \in \operatorname{Spec}\left(M_{Q}\right)$, by [5, Corollary 3]. By (iii), there exists $S^{-1} N^{\prime} \in \operatorname{Spec}\left(M_{Q}\right)$ such that $S^{-1} N^{\prime} \cap M_{Q}=S^{-1} N$ and hence $N=N^{\prime} \cap M$.

Lemma 2.4 Let $M \subseteq M^{\prime}$ be R-modules. Then the following conditions are equivalent.
(i) GD holds for $M \subseteq M^{\prime}$,
(ii) GD holds for $M_{P} \subseteq M_{P}^{\prime}$, for all $P \in \operatorname{Spec}(R)$.
(iii) GD holds for $M_{Q} \subseteq M_{Q}^{\prime}$, for all $Q \in \operatorname{Max}(R)$.

Proof. The proof is similar to the Lemma 2.3.

3. On the dimension of a module

Let R be a ring and M be an R-module. Let N be a prime submodule of M. Then we define the height of N to be the maximal positive integer k, if it exists, such that there exists a chain of prime submodules of M as follows:

$$
N=N_{0} \supset N_{1} \supset \cdots \supset N_{k}
$$

We shall denote the height of N in M by $h t_{M}(N)$ (see [6]). Suppose that M is an R-module and P be a prime ideal of R. Put $S=R \backslash P$ and define the distinguished submodule $P M\left(S_{P}\right)=\{x \in M: s x \in P M$, for some $s \in S\}$ of M. We define [see 1] the dimension of M to be the maximal positive integer k, if such exists, such that there exists a chain of prime distinguished submodules of M as

$$
N_{0} \subset N_{1} \subset \cdots \subset N_{k}
$$

Lemma 3.1 Let $M \subseteq M^{\prime}$ be R-modules. Assume that for every $m^{\prime} \in M^{\prime}$ and $P \in \operatorname{Spec}(M)$ there exists $s \in R \backslash(P: M)$ such that sm ${ }^{\prime} \in M$. If $P M\left(S_{P}\right) \neq M$ then $P M^{\prime}\left(S_{P}\right) \cap M=P M\left(S_{P}\right)$.
Proof. Since $P M\left(S_{P}\right) \neq M$, by [1, Proposition 1.1], $P M\left(S_{P}\right) \in \operatorname{Spec}(M)$. It is clear that $P M\left(S_{P}\right) \subseteq M \cap P M^{\prime}\left(S_{P}\right)$. Suppose that $P M^{\prime}\left(S_{P}\right) \cap M \nsubseteq P M\left(S_{P}\right)$. Hence there exists $m \in P M^{\prime}\left(S_{P}\right) \cap M$ such that $m \notin P M\left(S_{P}\right)$. Thus there exists $s \in R \backslash P$ such that $s m=\sum_{i=1}^{n} p_{i} m_{i}^{\prime}$, where $p_{i} \in P$ and $m_{i}^{\prime} \in M^{\prime}$. By assumption there exists $s_{i} \in R \backslash P$ such that $s_{i} m_{i}^{\prime} \in M$. Since $\left(\prod_{j=1}^{n} s_{i}\right) s m=\sum_{i=1}^{n} p_{i}\left(\prod_{j=1}^{n} s_{i}\right) m_{i}^{\prime}$, hence $m \in P M\left(S_{P}\right)$, which is a contradiction.

Lemma 3.2 Let $M \subseteq M^{\prime}$ be R-modules and assume that $G D$ holds for $\left(M, M^{\prime}\right)$. Suppose $P \in \operatorname{Spec}(M)$ and $h t_{M}(P)=k$. If $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $P^{\prime} \cap M=P$ then $h t_{M^{\prime}}\left(P^{\prime}\right) \geq k$.
Proof. Since $h t_{M}(P)=k$, there exists a chain of prime submodules of M as follows

$$
P=P_{0} \supset P_{1} \supset \cdots \supset P_{k}
$$

KARIMZADEH, NEKOOEI

Since GD holds for $\left(M, M^{\prime}\right)$ and so there exists a chain of prime submodules of M^{\prime} as follows

$$
P^{\prime}=P_{0}^{\prime} \supset P_{1}^{\prime} \supset \cdots \supset P_{k}^{\prime}
$$

Hence $h t_{M^{\prime}}\left(P^{\prime}\right) \geq k$.

Corollary 3.3 Let $M \subseteq M^{\prime}$ be R-modules. Let M^{\prime} be multiplication module and for each $m^{\prime} \in M^{\prime}, P \in \operatorname{Spec}(M)$ and $r \in(P: M)$, there exists $s \in R \backslash(P: M)$ such that $r s m^{\prime} \in \operatorname{rad}_{M}(0)$. Suppose that $h t_{M}(P)=k$. Then there exists $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $P^{\prime} \cap M=P$ and $h t_{M^{\prime}}\left(P^{\prime}\right)=k$.
Proof. By Theorem 1.5, there exists $P^{\prime} \in \operatorname{Spec}\left(M^{\prime}\right)$ such that $P^{\prime} \cap M=P$ and by Lemma 3.2, $h t_{M^{\prime}}\left(P^{\prime}\right) \geq k$. Suppose that $h t_{M^{\prime}}\left(P^{\prime}\right)=n$, so there exists a chain of prime submodules of M^{\prime} as follows:

$$
P^{\prime}=P_{0}^{\prime} \supset P_{1}^{\prime} \supset \cdots \supset P_{n}^{\prime}
$$

By Theorem 2.1 and Lemma 2.2, since GD and INC hold, we have the following chain of prime submodules of M :

$$
P=P^{\prime} \cap M \supset P_{1}^{\prime} \cap M \supset \cdots \supset P_{n}^{\prime} \cap M
$$

Therefore $h t_{M}(P) \geq n$ and so $h t_{M^{\prime}}\left(P^{\prime}\right)=k$.

Proposition 3.4 Let $M \subseteq M^{\prime}$ be R-modules and M^{\prime} be a finitely generated module such that $A n n_{R}\left(M^{\prime}\right) \subseteq N(R)$. If for all P_{1}, P_{2} in $\operatorname{Spec}\left(M^{\prime}\right)$ we have $P_{1} \subseteq P_{2}$ or $P_{2} \subseteq P_{1}$ then $\operatorname{dim} M \leq \operatorname{dim} M^{\prime}$ 。
Proof. Let $\operatorname{dim} M=n$. Hence there exists a chain of distinguished submodules of M as follows:

$$
N_{0} \subset N_{1} \subset \cdots \subset N_{n}
$$

Put $\left(N_{i}: M\right)=P_{i}$, for all i. Since M^{\prime} is finitely generated and $A n n_{R}\left(M^{\prime}\right) \subseteq N(R)$, hence $P_{i} M^{\prime}\left(S_{P_{i}}\right) \neq M^{\prime}$ by [1, Corollary 1.2]. By assumption $P_{i} M^{\prime}\left(S_{P_{i}}\right) \subseteq P_{i+1}\left(M^{\prime}\right)\left(S_{P_{i+1}}\right)$ or

KARIMZADEH, NEKOOEI

$P_{i+1} M^{\prime}\left(S_{P_{i+1}}\right) \subseteq P_{i} M^{\prime}\left(S_{P_{i}}\right)$. Since $P_{i} \subseteq P_{i+1}$ implies that $P_{i} M^{\prime}\left(S_{P_{i}}\right) \subseteq P_{i+1} M^{\prime}\left(S_{P_{i+1}}\right)$, we have the chain

$$
P_{0} M^{\prime}\left(S_{P_{0}}\right) \subset P_{1} M^{\prime}\left(S_{P_{1}}\right) \subset \cdots \subset P_{n} M^{\prime}\left(S_{P_{n}}\right) .
$$

Therefore $\operatorname{dim} M \leq \operatorname{dim} M^{\prime}$.

Proposition 3.5 Let $M \subseteq M^{\prime}$ be R-modules and M be a finitely generated module such that $\operatorname{Ann}_{R}(M) \subseteq N(R)$. If for all P_{1}, P_{2} in $\operatorname{Spec}(M)$ we have $P_{1} \subseteq P_{2}$ or $P_{2} \subseteq P_{1}$, then $\operatorname{dim} M^{\prime} \leq \operatorname{dim} M$.
Proof. It is similar to the proof of Proposition 3.4.

Proposition 3.6 Let $M \subseteq M^{\prime}$ be R-modules. Suppose that for every $m^{\prime} \in M^{\prime}$ and $P \in \operatorname{Spec}(M)$ there exists $s \in R \backslash(P: M)$ such that $s m^{\prime} \in M$. If dimM $=n$ then $\operatorname{dim} M=\operatorname{dim} M^{\prime}$.
Proof. Since $\operatorname{dim} M=n$, there exists a chain of distinguished submodules of M as follows

$$
N_{0} \subset N_{1} \subset \cdots \subset N_{n}
$$

Let $\left(N_{i}: M\right)=P_{i}$, for all i. Then by Lemma 3.1, we have the following chain of distinguished submodules of M^{\prime}

$$
P_{0} M^{\prime}\left(S_{P_{0}}\right) \subset P_{1} M^{\prime}\left(S_{P_{1}}\right) \subset \cdots \subset P_{n} M^{\prime}\left(S_{P_{n}}\right)
$$

This implies $\operatorname{dim} M \leq \operatorname{dim} M^{\prime}$. Now let there exist a chain of distinguished submodules of M^{\prime} as follows

$$
P_{0} M^{\prime}\left(S_{P_{0}}\right) \subset P_{1} M^{\prime}\left(S_{P_{1}}\right) \subset \cdots \subset P_{k} M^{\prime}\left(S_{P_{k}}\right)
$$

We show that $M \not \subset P_{k} M^{\prime}\left(S_{P_{k}}\right)$. Suppose that $M \subset P_{k} M^{\prime}\left(S_{P_{k}}\right)$. Since $P_{k} M^{\prime}\left(S_{P_{k}}\right) \neq M^{\prime}$, there exists $m^{\prime} \in M^{\prime} \backslash P_{k} M^{\prime}\left(S_{P_{k}}\right)$. By assumption there exists $s \in R \backslash P_{k}$ such that $s m^{\prime} \in M \subset P_{k} M^{\prime}\left(S_{P_{k}}\right)$. Since $m^{\prime} \notin P_{k} M^{\prime}\left(S_{P_{k}}\right)$, hence $s \in P_{k}$, which is a contradiction. Therefore $P_{i} M\left(S_{P_{i}}\right) \neq M$, for all i, and so we have the following chain of distinguished submodules of M

$$
P_{0} M\left(S_{P_{0}}\right) \subset \cdots \subset P_{k} M\left(S_{P_{k}}\right)
$$

hence $\operatorname{dim} M \geq k$.

KARIMZADEH, NEKOOEI

Acknowledgement

The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] Abu-Saymeh, S.: On dimensions of finitely generated modules, Comm. Algebra 23, 11311144 (1995).
[2] Hedayat, S., Nekooei, R.: Prime and radical submodules of free modules over a PID, Houston Journal of Mathematics, 32, 2,355-367 (2006).
[3] Lu, C.P.: Prime submodules of modules, Comment. Math. Univ. Sancti Pauli, 33, 1, 61-69 (1984).
[4] Lu, C.P.: M-Radicals of submodules in modules, Math. Japonica 34, 2, 211-219 (1989).
[5] Lu, C.P.: Spectra of modules, Comm. Alg. 23, 3471-3752 (1995).
[6] McCasland, R.L., Smith, P.F.: Prime submodules of Neotherian modules, Rocky mountain J. Math. 23, 1041-1062 (1993).
[7] Nekooei, R.: On finitely generated multiplication modules, Czechoslovak Mathematical Journal, 55, 130, 503-510 (2005).
[8] Pusat-Yilmaz, D.: On prime submodules of finitely generated free modules, Turkish Journal of Mathematics, 27, 329- 342 (2003).
[9] Rowen, L.: Ring Theory, Vol. I, Academic Press, San Diego, 1988.
[10] Sharp, D.W., Vamos, P.: Injective Modules, Cambridge University Press, London, 1972.
S. KARIMZADEH and R. NEKOOEI

Received 27.09.2005
Department of Mathematics,
Shahid Bahonar University of Kerman
Kerman-IRAN
e-mail: rnekooei@mail.uk.ac.ir

[^0]: 2000 Mathematics Subject Classification: 13C13, 13C99.

