# Some Curvature Tensors on a Trans-Sasakian Manifold 

C. S. Bagewadi and Venkatesha


#### Abstract

The object of the present paper is to study the geometry of trans-Sasakian manifold when it is projectively semi-symmetric, Weyl semi-symmetric and concircularly semi-symmetric.


Key words and phrases: Trans-Sasakian, projectively flat, concircularly flat.

## 1. Introduction

In 1985, J.A. Oubina [9] introduced a new class of almost contact manifold namely trans-Sasakian manifold. Many geometers like [1, 2, 6], [5], [9], have studied this manifold and obtained many interesting results. The notion of semi-symmetric manifold is defined by $R(X, Y) \cdot R=0$ and studied by many authors $[10,11,12]$. The conditions $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{P}=0$, $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{C}=0$ and $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \bar{C}=0$ are called projectively semi-symmetric, Weyl semisymmetric and concircularly semi-symmetric respectively, where $R(X, Y)$ is considered as derivation of tensor algebra at each point of the manifold. In this paper we consider the trans-Sasakian manifold under the condition $\phi(\operatorname{grad} \alpha)=(2 \mathrm{~m}-1) \operatorname{grad} \beta$ satisfying the properties $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{P}=0, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{C}=0$ and $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \bar{C}=0$ and show that such a manifold is either Einstein or $\eta$-Einstein.

[^0]
## BAGEWADI, VENKATESHA

## 2. Preliminaries

Let $M$ be a $(2 m+1)$ dimensional almost contact metric manifold with an almost contact metric structure $(\phi, \xi, \eta, g)$, where $\phi$ is a $(1,1)$ tensor field, $\xi$ is a vector field, $\eta$ is a 1-form and $g$ is the associated Riemannian metric such that [3],

$$
\begin{align*}
\phi^{2}=-I+\eta \otimes \xi, \eta(\xi) & =1, \phi \xi=0, \quad \eta \circ \phi=0 \\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y)  \tag{2.1}\\
g(X, \phi Y)=-g(\phi X, Y) & \text { and } g(X, \xi)=\eta(X) \forall X, Y \in T M \tag{2.2}
\end{align*}
$$

An almost Contact metric structure $(\phi, \xi, \eta, g)$ on $M$ is called a trans-Sasakian structure [9], if $(M \times R, J, G)$ belongs to the class $W_{4}[7]$, where J is the almost complex structure on $\mathrm{M} \times \mathrm{R}$ defined by $\mathrm{J}\left(\mathrm{X}, \mathrm{f} \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)$ for all vector fields X on M and smooth functions f on $\mathrm{M} \times \mathrm{R}$. This may be expressed by the condition [4],

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.3}
\end{equation*}
$$

for some smooth functions $\alpha$ and $\beta$ on M , and we say that the trans-Sasakian structure is of type $(\alpha, \beta)$.
From (1.3) it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi), \quad\left(\nabla_{X} \eta\right) Y=-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) . \tag{2.4}
\end{equation*}
$$

Trans-Sasakian manifolds have been studied by authors [5] and they obtained the following results:

$$
\begin{align*}
& R(X, Y) \xi=\left(\alpha^{2}-\beta^{2}\right)(\eta(Y) X-\eta(X) Y)+2 \alpha \beta(\eta(Y) \phi(X)-\eta(X) \phi(Y)) \\
& \quad+(Y \alpha) \phi X-(X \alpha) \phi Y+(Y \beta) \phi^{2} X-(X \beta) \phi^{2} Y  \tag{2.5}\\
& R(\xi, X) \xi=\left(\alpha^{2}-\beta^{2}-\xi \beta\right)(\eta(X) \xi-X) \tag{2.6}
\end{align*}
$$

$$
\begin{equation*}
2 \alpha \beta+\xi \alpha=0 \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
S(X, \xi)=\left(2 m\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-(2 m-1) X \beta-(\phi X) \alpha \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
Q \xi=\left(2 m\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \xi-(2 m-1) \operatorname{grad} \beta+\phi(\operatorname{grad} \alpha) \tag{2.9}
\end{equation*}
$$

When $\phi(\operatorname{grad} \alpha)=(2 m-1) \operatorname{grad} \beta,(1.8)$ and (1.9) reduce to

$$
\begin{array}{r}
S(X, \xi)=2 m\left(\alpha^{2}-\beta^{2}\right) \eta(X) \\
Q \xi=2 m\left(\alpha^{2}-\beta^{2}\right) \xi \tag{2.11}
\end{array}
$$

## BAGEWADI, VENKATESHA

## 3. Projectively flat Trans-Sasakian manifold

The Weyl-projective curvature tensor P is defined as

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{2 m}[S(Y, Z) X-S(X, Z) Y] \tag{3.1}
\end{equation*}
$$

where R is the curvature tensor and S is the Ricci tensor.
Suppose that $\mathrm{P}=0$. Then from (3.1), we have

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2 m}[S(Y, Z) X-S(X, Z) Y] \tag{3.2}
\end{equation*}
$$

From (3.2), we have

$$
\begin{equation*}
R(X, Y, Z, W)=\frac{1}{2 m}[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \tag{3.3}
\end{equation*}
$$

where ${ }^{\prime} \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}), \mathrm{W})$.
Putting $\mathrm{W}=\xi$ in (3.3), we get

$$
\begin{equation*}
\eta(R(X, Y) Z)=\frac{1}{2 m}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \tag{3.4}
\end{equation*}
$$

Again taking $X=\xi$ in (3.4), and using (2.1),(2.5) and (2.10), we get

$$
\begin{equation*}
S(Y, Z)=2 m\left(\alpha^{2}-\beta^{2}\right) g(Y, Z) \tag{3.5}
\end{equation*}
$$

Therefore, the manifold is Einstein. Hence we can state the following theorem
Theorem 3.1 A Weyl projectively flat trans-Sasakian manifold is an Einstein manifold.

## 4. Trans-Sasakian manifold satisfying $R(X, Y) \cdot P=0$

Using (2.2), (2.5) in (3.1), we get

$$
\begin{align*}
\eta(P(X, Y) Z)=\left(\alpha^{2}\right. & \left.-\beta^{2}\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
& -\frac{1}{2 m}[S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \tag{4.1}
\end{align*}
$$

Putting $\mathrm{Z}=\xi$ in (4.1), we get

$$
\begin{equation*}
\eta(P(X, Y) \xi)=0 \tag{4.2}
\end{equation*}
$$

## BAGEWADI, VENKATESHA

Again taking $\mathrm{X}=\xi$ in (4.1), we have

$$
\begin{equation*}
\eta(P(\xi, Y) Z)=\left(\alpha^{2}-\beta^{2}\right) g(Y, Z)-\frac{1}{2 m} S(Y, Z) \tag{4.3}
\end{equation*}
$$

where (2.1) and (2.10) are used.
Now,

$$
\begin{aligned}
(R(X, Y) P)(U, V) Z=R(X, Y) \cdot P(U, V) Z-P(R(X, Y) U, V) Z & -P(U, R(X, Y) V) Z \\
& -P(U, V) R(X, Y) Z .
\end{aligned}
$$

As it has been considered $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{P}=0$,so we have

$$
\begin{array}{r}
R(X, Y) \cdot P(U, V) Z-P(R(X, Y) U, V) Z-P(U, R(X, Y) V) Z \\
-P(U, V) R(X, Y) Z=0 . \tag{4.4}
\end{array}
$$

Therefore,

$$
\begin{array}{r}
g[R(\xi, Y) \cdot P(U, V) Z, \xi]-g[P(R(\xi, Y) U, V) Z, \xi] \\
-g[P(U, R(\xi, Y) V) Z, \xi]-g[P(U, V) R(\xi, Y) Z, \xi]=0 .
\end{array}
$$

From this, it follows that,

$$
\begin{aligned}
& -^{\prime} P(U, V, Z, Y)+\eta(Y) \eta(P(U, V) Z)-\eta(U) \eta(P(Y, V) Z)+g(Y, U) \eta(P(\xi, V) Z) \\
& \quad-\eta(V) \eta(P(U, Y) Z)+g(Y, V) \eta(W(U, \xi) Z)-\eta(Z) \eta(W(U, V) Y)=0,(4.5)
\end{aligned}
$$

where ${ }^{\prime} \mathrm{P}(\mathrm{U}, \mathrm{V}, \mathrm{Z}, \mathrm{Y})=\mathrm{g}(\mathrm{P}(\mathrm{U}, \mathrm{V}) \mathrm{Z}, \mathrm{Y})$.
Putting $\mathrm{Y}=\mathrm{U}$ in (4.5), we get

$$
\begin{array}{r}
-^{\prime} P(U, V, Z, Y)+g(U, U) \eta(P(\xi, V) Z)-\eta(V) \eta(P(U, U) Z) \\
+g(U, V) \eta(P(U, \xi) Z)-\eta(Z) \eta(P(U, V) U)=0 \tag{4.6}
\end{array}
$$

Let $\left\{e_{i}\right\}, \mathrm{i}=1,2, \ldots,(2 \mathrm{~m}+1)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq \mathrm{i} \leq 2 \mathrm{~m}+1$ of the relation (4.6) for $\mathrm{U}=e_{i}$ yields

$$
\begin{equation*}
\eta(P(\xi, V) Z)=\frac{1}{2 m}\left[\frac{r}{2 m}-(2 m+1)\left(\alpha^{2}-\beta^{2}\right)\right] \eta(V) \eta(Z) \tag{4.7}
\end{equation*}
$$

From (4.3) and (4.7), we have

$$
\begin{equation*}
S(V, Z)=\left[2 m\left(\alpha^{2}-\beta^{2}\right)\right] g(V, Z)-\left[\frac{r}{2 m}-(2 m+1)\left(\alpha^{2}-\beta^{2}\right)\right] \eta(V) \eta(Z) \tag{4.8}
\end{equation*}
$$

## BAGEWADI, VENKATESHA

Taking $\mathrm{Z}=\xi$ in (4.8) and using (2.10) we obtain

$$
\begin{equation*}
r=2 m(2 m+1)\left(\alpha^{2}-\beta^{2}\right) \tag{4.9}
\end{equation*}
$$

Now using (4.1),(4.2),(4.8) and (4.9) in (4.5) we get

$$
\begin{equation*}
-^{\prime} P(U, V, Z, Y)=0 \tag{4.10}
\end{equation*}
$$

From (4.10) it follows that

$$
\begin{equation*}
P(U, V) Z=0 \tag{4.11}
\end{equation*}
$$

Therefore, the trans-Sasakian manifold under consideration is Weyl projectively flat.
Hence we can state the next theorem
Theorem 4.1 If in a trans-Sasakian manifold $M$ of dimension $2 m+1$, $m>0$, the relation $R(X, Y) \cdot P$ holds, then the manifold is Weyl-projectively flat.

But from theorem 3.1, a Weyl-projectively flat trans-Sasakian manifold is an Einstein manifold. Hence we can state the following theorem.

Theorem 4.2 A trans-Sasakian manifold $M$ of dimension $2 m+1, m>0$, satisfying $R(X, Y) \cdot P=0$ is an Einstein manifold and also it is a manifold of constant curvature $2 m(2 m+1)\left(\alpha^{2}-\beta^{2}\right)$.

## 5. Conformally flat Trans-Sasakian manifold

The Weyl-conformal curvature tensor $C$ is defined by

$$
\begin{align*}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{2 m-1}[g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y] \\
& +\frac{r}{2 m(2 m-1)}[g(Y, Z) X-g(X, Z) Y] \tag{5.1}
\end{align*}
$$

Suppose that $\mathrm{C}=0$. Then form (5.1), we get

$$
\begin{align*}
R(X, Y) Z=\frac{1}{2 m-1}[g(y, Z) Q X- & g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y] \\
& +\frac{r}{2 m(2 m-1)}[g(Y, Z) X-g(X, Z) Y] \tag{5.2}
\end{align*}
$$

## BAGEWADI, VENKATESHA

From (5.2) we get

$$
\begin{array}{r}
R(X, Y, Z, W)=\frac{1}{2 m-1}[g(Y, Z) g(Q X, W)-g(X, Z) g(Q Y, W) \\
+S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \\
+\frac{r}{2 m(2 m-1)}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{5.3}
\end{array}
$$

where ${ }^{\prime} R(X, Y, Z, W)=g(R(X, Y, Z), W)$.
Putting $\mathrm{W}=\xi$ in (5.3), we get

$$
\begin{align*}
\eta(R(X, Y) Z) & =\frac{1}{2 m-1}[g(Y, Z) g(Q X, \xi)-g(X, Z) g(Q Y, \xi)+S(Y, Z) \eta(X) \\
& \left.-S(X, Z) \eta(Y)]+\frac{r}{2 m(2 m-1)}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y))\right] \tag{5.4}
\end{align*}
$$

Again taking $\mathrm{X}=\xi$ in (5.4), and using (2.1),(2.2),(2.5) and (2.10) we get

$$
\begin{align*}
& S(Y, Z)=-\left[\frac{r}{2 m}+\left(\alpha^{2}-\beta^{2}\right)\right] g(Y, Z) \\
+ & {\left[\frac{r}{2 m}+(2 m+1)\left(\alpha^{2}-\beta^{2}\right)\right] \eta(Y) \eta(Z) } \tag{5.5}
\end{align*}
$$

Therefore the manifold is $\eta$-Einstein. Hence we can state this theorem:
Theorem 5.1 A conformally flat trans-Sasakian manifold is $\eta$ - Einstein.

## 6. Trans-Sasakian manifold satisfying $R(X, Y) \cdot C=0$

From (5.1), (2.2) and (2.5) we have

$$
\begin{array}{r}
\eta(C(X, Y) Z)=\left(\alpha^{2}-\beta^{2}\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
-\frac{1}{(2 m-1)}[g(Y, Z) \eta(Q X)-g(X, Z) \eta(Q Y)+S(Y, Z) \eta(X)-S(X, Z) \eta(Y)] \\
\left.+\frac{r}{2 m(2 m-1)}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y))\right] \tag{6.1}
\end{array}
$$

Putting $X=\xi$ in (6.1) we get

$$
\begin{equation*}
\eta(C(X, Y) \xi)=0 \tag{6.2}
\end{equation*}
$$

## BAGEWADI, VENKATESHA

Again taking $\mathrm{X}=\xi$ in (6.1), we have

$$
\begin{align*}
& \eta(C(\xi, Y) Z)=\frac{1}{(2 m-1)}\left[\frac{r}{2 m}-\left(\alpha^{2}-\beta^{2}\right)\right][g(Y, Z)-\eta(Y) \eta(Z)] \\
& -\frac{1}{2 m-1}\left[S(Y, Z)-2 m\left(\alpha^{2}-\beta^{2}\right) \eta(Y) \eta(Z)\right], \tag{6.3}
\end{align*}
$$

where (2.1),(2.2) and (2.10) are used.
Now,
$(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{C})(\mathrm{U}, \mathrm{V}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{C}(\mathrm{U}, \mathrm{V}) \mathrm{Z}-\mathrm{C}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}, \mathrm{V}) \mathrm{Z}-\mathrm{C}(\mathrm{U}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}) \mathrm{Z}$ -C(U,V)R(X,Y)Z.
Let $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \cdot \mathrm{C}=0$, then we have

$$
\begin{array}{r}
R(X, Y) \cdot C(U, V) Z-C(R(X, Y) U, V) Z-C(U, R(X, Y) V) Z \\
-C(U, V) R(X, Y) Z=0 . \tag{6.4}
\end{array}
$$

Therefore,

$$
\begin{array}{r}
g[R(\xi, Y) \cdot C(U, V) Z, \xi]-g[C(R(\xi, Y) U, V) Z, \xi] \\
-g[C(R(\xi, Y) V) Z, \xi]-g[C(U, V) R(\xi, Y) Z, \xi]=0
\end{array}
$$

From this it follows that

$$
\begin{array}{r}
-^{\prime} C(U, V, Z, Y)+\eta(Y) \eta(C(U, V) Z)-\eta(U) \eta(C(Y, V) Z) \\
+g(Y, U) \eta(C(\xi, V) Z)-\eta(V) \eta(C(U, Y) Z) \\
+g(Y, V) \eta(C(U, \xi) Z)-\eta(Z) \eta(C(U, V) Y)=0 \tag{6.5}
\end{array}
$$

where ${ }^{\prime} \mathrm{C}(\mathrm{U}, \mathrm{V}, \mathrm{Z}, \mathrm{Y})=\mathrm{g}(\mathrm{C}(\mathrm{U}, \mathrm{V}) \mathrm{Z}, \mathrm{Y})$.
Putting $\mathrm{Y}=\mathrm{U}$ in (6.5), we get

$$
\begin{array}{r}
-^{\prime} C(U, V, Z, Y)+g(U, U) \eta(C(\xi, V) Z)-\eta(V) \eta(C(U, U) Z) \\
+g(U, V) \eta(C(U, \xi) Z)-\eta(Z) \eta(C(U, V) U)=0 \tag{6.6}
\end{array}
$$

Let $\left\{e_{i}\right\}, \mathrm{i}=1,2, \ldots,(2 \mathrm{~m}+1)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq 2 m+1$ of the relation (6.6) for $\mathrm{U}=e_{i}$, yields

$$
\begin{equation*}
\eta(C(\xi, V) Z)=\frac{1}{2 m(2 m-1)}\left[\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2 m}\right] \eta(V) \eta(Z) \tag{6.7}
\end{equation*}
$$

## BAGEWADI, VENKATESHA

From (6.3) and (6.7) we have

$$
\begin{array}{r}
S(V, Z)=\left[\frac{r}{2 m}-\left(\alpha^{2}-\beta^{2}\right)\right] g(V, Z) \\
+\left[\left((2 m+1)-\frac{1}{2 m}\right)\left(\alpha^{2}-\beta^{2}\right)+\frac{r}{2 m}\left(\frac{1}{2 m}-1\right)\right] \eta(V) \eta(Z) \tag{6.8}
\end{array}
$$

Taking $Z=\xi$ in (6.8) and using (2.10) we obtain

$$
\begin{equation*}
r=2 m\left(\alpha^{2}-\beta^{2}\right) . \tag{6.9}
\end{equation*}
$$

Now using (6.1),(6.2),(6.8) and (6.9) in (6.5), we get

$$
\begin{equation*}
-^{\prime} C(U, V, Z, Y)=0 \tag{6.10}
\end{equation*}
$$

From (6.10) it follows that

$$
\begin{equation*}
C(U, V) Z=0 . \tag{6.11}
\end{equation*}
$$

Therefore the trans-Sasakian manifold is conformally flat. Hence, we can state the following theorem

Theorem 6.1 If in a trans-Sasakian manifold $M$ of dimension $2 m+1, m>0$, the relation $R(X, Y) \cdot C=0$ holds, then the manifold is conformally flat.

Theorem 5.1 says that a conformally flat trans-Sasakian manifold is an $\eta$-Einstein manifold. Therefore, we can state this theorem:

Theorem 6.2 $A$ trans-Sasakian manifold $M$ of dimension $2 m+1$, $m>0$, satisfying $R(X, Y) \cdot C=0$ is an $\eta$-Einstein manifold and also a manifold of constant curvature $2 m\left(\alpha^{2}-\beta^{2}\right)$.

## 7. Trans-Sasakian manifold satisfying $\mathbf{R}(X, Y) \cdot \bar{C}=0$

The concircular curvature tensor $\bar{C}$ is defined as

$$
\begin{equation*}
\bar{C}(X, Y) Z=R(X, Y) Z-\frac{r}{2 m(2 m+1)}[g(Y, Z) X-g(X, Z) Y] \tag{7.1}
\end{equation*}
$$

## BAGEWADI, VENKATESHA

where R is the curvature tensor and r is the scalar curvature.
Hence, in view of (2.2) and (2.5), we get

$$
\begin{equation*}
\eta(\bar{C}(X, Y) Z)=\left[\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2 m(2 m+1)}\right][g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] . \tag{7.2}
\end{equation*}
$$

Putting $\mathrm{Z}=\xi$ in (7.2) we get

$$
\begin{equation*}
\eta(\bar{C}(X, Y) \xi)=0 . \tag{7.3}
\end{equation*}
$$

Again taking $\mathrm{X}=\xi$ in (7.2), we have

$$
\begin{equation*}
\eta(\bar{C}(\xi, Y) Z)=\left[\left(\alpha^{2}-\beta^{2}\right)-\frac{r}{2 m(2 m+1)}\right][g(Y, Z)-\eta(Y) \eta(Z)] \tag{7.4}
\end{equation*}
$$

where (2.2) and (2.10) are used.
Now,
$(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \bar{C})(\mathrm{U}, \mathrm{V}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \bar{C}(\mathrm{U}, \mathrm{V}) \mathrm{Z}-\bar{C}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}, \mathrm{V}) \mathrm{Z}$
$-\bar{C}(\mathrm{U}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}) \mathrm{Z}-\bar{C}(\mathrm{U}, \mathrm{V}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$.
As it has been considered $R(X, Y) \cdot \bar{C}=0$, we have

$$
\begin{array}{r}
R(X, Y) \cdot \bar{C}(U, V) Z-\bar{C}(R(X, Y) U, V) Z-\bar{C}(U, R(X, Y) V) Z \\
-\bar{C}(U, V) R(X, Y) Z=0 . \tag{7.5}
\end{array}
$$

Therefore,

$$
\begin{array}{r}
g[R(\xi, Y) \cdot \bar{C}(U, V) Z, \xi]-g[\bar{C}(R(\xi, Y) U, V) Z, \xi] \\
-g[\bar{C}(U, R(\xi, Y) V) Z, \xi]-g[\bar{C}(U, V) R(\xi, Y) Z, \xi]=0 .
\end{array}
$$

From this it follows that

$$
\begin{array}{r}
-^{\prime} \bar{C}(U, V, Z, Y)+\eta(Y) \eta(\bar{C}(U, V) Z)-\eta(U) \eta(\bar{C}(Y, V) Z) \\
+g(Y, U) \eta(\bar{C}(\xi, V) Z)-\eta(V) \eta(\bar{C}(U, Y) Z) \\
+g(Y, V) \eta(\bar{C}(U, \xi) Z)-\eta(Z) \eta(\bar{C}(U, V) Y)=0 \tag{7.6}
\end{array}
$$

where ${ }^{\prime} \bar{C}(\mathrm{U}, \mathrm{V}, \mathrm{Z}, \mathrm{Y})=\mathrm{g}(\bar{C}(\mathrm{U}, \mathrm{V}) \mathrm{Z}, \mathrm{Y})$.
Putting $\mathrm{Y}=\mathrm{U}$ in (7.6), we get

$$
\begin{array}{r}
-^{\prime} \bar{C}(U, V, Z, Y)+g(U, U) \eta(\bar{C}(\xi, V) Z)-\eta(V) \eta(\bar{C}(U, U) Z) \\
+g(U, V) \eta(\bar{C}(U, \xi) Z)-\eta(Z) \eta(\bar{C}(U, V) U)=0 . \tag{7.7}
\end{array}
$$

## BAGEWADI, VENKATESHA

Let $\left\{e_{i}\right\}, i=1,2, \ldots, 2 m+1$ be an orthonormal basis of the tangent space at any point of the manifold. Then the sum for $1 \leq i \leq 2 m+1$ of the relation (7.7) for $U=e_{i}$, yields

$$
\begin{align*}
& \eta(\bar{C}(\xi, V) Z)=\frac{1}{2 m} S(V, Z)-\frac{r}{2 m(2 m+1)} g(V, Z) \\
& \quad+\frac{1}{2 m}\left[\frac{r}{2 m}-(2 m+1)\left(\alpha^{2}-\beta^{2}\right)\right] \eta(V) \eta(Z) \tag{7.8}
\end{align*}
$$

From(7.4) and (7.8), we have

$$
\begin{equation*}
S(V, Z)=2 m\left(\alpha^{2}-\beta^{2}\right) g(V, Z)-\left[\frac{r}{2 m(2 m+1)}-\left(\alpha^{2}-\beta^{2}\right)\right] \eta(V) \eta(Z) \tag{7.9}
\end{equation*}
$$

Taking $Z=\xi$ in (7.9) and using (2.10), we have

$$
\begin{equation*}
r=2 m(2 m+1)\left(\alpha^{2}-\beta^{2}\right) \tag{7.10}
\end{equation*}
$$

Now using (7.2), (7.4),(7.9) and (7.10) in (7.6), we get

$$
\begin{equation*}
-^{\prime} \bar{C}(U, V, Z, Y)=0 \tag{7.11}
\end{equation*}
$$

From (7.11) it follows that

$$
\begin{equation*}
\bar{C}(U, V) Z=0 \tag{7.12}
\end{equation*}
$$

Therefore, the trans-Sasakian manifold is concircularly flat. Hence we can state the next theorem.

Theorem 7.1 If in a trans-Sasakian manifold $M$ of dimension $2 m+1, m>0$, the relation $R(X, Y) \cdot \bar{C}=0$ holds then the manifold is concircularly flat.

As we know, in general, a concircularly flat Riemannian manifold is Einstein and so, in particular, a concircularly flat trans-Sasakian manifold is Einstein. Hence we can state

Theorem 7.2 A trans-Sasakian manifold $M$ of dimension $2 m+1$, $m>0$, satisfying $R(X, Y) \cdot \bar{C}=0$ is an Einstein manifold and a manifold of constant curvature $2 m(2 m+1)\left(\alpha^{2}-\right.$ $\left.\beta^{2}\right)$.

## BAGEWADI, VENKATESHA

## References

[1] Bagewadi C.S and Girish Kumar E.: Note on Trans-Sasakian Manifolds, Tensor N.S., 65 (1), 80-88 (2004).
[2] Bagewadi C.S and Girish Kumar E.: Generalised Recurrent Manifolds, Tensor N.S., 65 (3), 261-271 (2004).
[3] Blair D.E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin 1976.
[4] Blair D.E and Oubina J.A.: Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ.Mathematiques, 34, 199-207 (1990).
[5] De U.C and Tripathi M.M.: Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math.J., 2, 247-255 (2003).
[6] Gatti N.B and Bagewadi C.S.: On irrotational Quasi conformal curvature tensor, Tensor N.S., 64 (3), 248-258 (2003).
[7] Gray A and Hervella L.M.: The Sixteen classes of almost Hermitian manifolds and their Linear invariants, Ann.Mat.Pura Appl., 123 (4), 35-58 (1980).
[8] Nomizu K.: On hypersurfaces satisfying certain condition on the curvature tensor, Tohoku Math. J., 15, 148-161 (1963).
[9] Oubina J.A.: New Classes of almost Contact metric structures, Publ.Math.Debrecen, 32, 187-193 (1985).
[10] Szabo Z.I.: Classification and construction of complete hypersurfaces satisfying $R(X, Y) \cdot R=0$, Acta.Sci.Math., 7, 321-34858 (1984).
[11] Szabo Z.I.: Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0, I$ The Local version, J.Diff.Geom., 17, 531-582 (1982).
[12] Szabo Z.I.: Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, II Global version, Geom.Dedicate., 19, 65-108 (1983).
C. S. BAGEWADI and VENKATESHA

Received 04.04.2005
Department of Mathematics and Computer Science
Kuvempu University
Jnana Sahyadri-577 451
Shimoga, Karnataka-INDIA
e-mail: verb+vens_2003@rediffmail.com


[^0]:    AMS Mathematics Subject Classification: Primary 55S10, 55S05

