Extreme Points of Certain Subsets of Hermitian Elements in Banach Algebras

Gerd Herzog and Christoph Schmoeger

Abstract

We consider the real Banach spaces $\mathcal{H}(\mathcal{A})$ of all hermitian elements of a complex Banach algebra \mathcal{A} . We prove that if an even power of $a \in \mathcal{H}(\mathcal{A})$ is hermitian, then a is an extreme point of the unit ball of $\mathcal{H}(\mathcal{A})$ if and only if $a^2 = \mathbf{1}$. Moreover, if an odd power of $a \in \mathcal{H}(\mathcal{A})$ is hermitian and a is an extreme point of the unit ball of $\mathcal{H}(\mathcal{A})$, then $a^3 = a$.

Key words and phrases: Extreme points, hermitian elements.

1. Terminology and Introduction

Let K be a subset of a (real or complex) vector space X. A point $x \in K$ is called an *extreme point* of K if $y, z \in K, 0 < \mu < 1$ and

 $x = \mu y + (1 - \mu)z$

imply that x = y = z. We denote the set of extreme points of K by ext(K).

Throughout this paper \mathcal{A} denotes a complex unital Banach algebra with unit **1**. If \mathcal{B} is a subset of \mathcal{A} we write $(\mathcal{B})_1$ for the set

 $(\mathcal{B})_1 = \{a \in \mathcal{B} : ||a|| \le 1\}.$

²⁰⁰⁰ AMS Mathematics Subject Classification: 46H05.

For $a \in \mathcal{A}$ we denote by $\sigma(a)$ the spectrum of a and by r(a) the spectral radius of a. Let \mathcal{A}' denote the topological dual space of \mathcal{A} . Given $a \in \mathcal{A}$ the set

$$V(a) = \{\varphi(a) : \varphi \in \mathcal{A}', \, \varphi(\mathbf{1}) = 1 = \|\varphi\|\}$$

is called the *numerical range* of a.

An element $a \in \mathcal{A}$ is called *hermitian* if $V(a) \subseteq \mathbb{R}$. The set of all hermitian elements in \mathcal{A} is denoted by $\mathcal{H}(\mathcal{A})$. Observe that if \mathcal{A} is a B^* -algebra, then $a \in \mathcal{H}(\mathcal{A})$ if and only if $a^* = a$ (see [1, page 47]).

Proposition 1.1

- (1) If $a \in \mathcal{A}$, then $\sigma(a) \subseteq V(a)$;
- (2) If $a \in \mathcal{H}(\mathcal{A})$, then $\sigma(a) \subseteq \mathbb{R}$;
- (3) $\mathcal{H}(\mathcal{A})$ is a real Banach space;
- (4) If $a \in \mathcal{H}(\mathcal{A})$, then r(a) = ||a||; and
- (5) $a \in \mathcal{H}(\mathcal{A}) \iff ||\exp(ita)|| = 1 \text{ for all } t \in \mathbb{R}.$

Proof. (1) [1, Theorem 2.6]. (2) follows from (1). (3) [1, Lemma 5.4]. (4) [5]. (5) [1, Lemma 5.2]. \Box

The following result is well-known. For the convenience of the reader we include a proof.

Proposition 1.2 Let $a \in \mathcal{A}$ and $\mathcal{M} \subseteq \mathcal{A}$.

- (1) Suppose that $a \in (\mathcal{A})_1$, is invertible and that $a^{-1} \in (\mathcal{A})_1$. Then $a \in ext((\mathcal{A})_1)$.
- (2) If $a \in (\mathcal{M})_1$ is invertible and $a^{-1} \in (\mathcal{A})_1$, then $a \in ext((\mathcal{M})_1)$.
- **Proof.** (1) Let $a = \mu b + (1 \mu)c$ with $b, c \in (\mathcal{A})_1$ and $0 < \mu < 1$. Then

$$\mathbf{1} = \mu b a^{-1} + (1 - \mu) c a^{-1} \,.$$

For $\varphi \in \mathcal{A}'$ with $\varphi(\mathbf{1}) = 1 = \|\varphi\|$ it follows that

 $1 = \mu \varphi(ba^{-1}) + (1 - \mu)\varphi(ca^{-1}).$

Since $b, c, a^{-1} \in (\mathcal{A})_1$ we have $|\varphi(ba^{-1})| \leq 1$ and $|\varphi(ca^{-1})| \leq 1$. Since 1 is an extreme point of the closed unit disc in \mathbb{C} , we get $\varphi(ba^{-1}) = \varphi(ca^{-1}) = 1$. This shows that

$$V(ba^{-1}) = V(ca^{-1}) = \{1\}.$$

Hence ba^{-1} , $ca^{-1} \in \mathcal{H}(\mathcal{A})$. Proposition 1.1 (1) gives $\sigma(ba^{-1}) = \sigma(ca^{-1}) = \{1\}$. By Proposition 1.1 (3), $ba^{-1} - \mathbf{1}$, $ca^{-1} - \mathbf{1} \in \mathcal{H}(\mathcal{A})$. From $\sigma(ba^{-1} - \mathbf{1}) = \sigma(ca^{-1} - \mathbf{1}) = \{0\}$ we see (Proposition 1.1 (4)) that

$$||ba^{-1} - \mathbf{1}|| = ||ca^{-1} - \mathbf{1}|| = 0$$
,

thus a = b = c.

(2) If $a = \mu b + (1 - \mu)c$ with $b, c \in (\mathcal{M})_1$ and $0 < \mu < 1$, then $b, c \in (\mathcal{A})_1$. It follows from (1) that a = b = c, thus $a \in ext((\mathcal{M})_1)$. \Box

Proposition 1.3 Let $a \in (\mathcal{A})_1$ and suppose that $\{-1, 1\} \subseteq \sigma(a)$. Let

$$\langle \mathbf{1}, a \rangle_{\mathbb{R}} = \{ \alpha \mathbf{1} + \beta a : \alpha, \beta \in \mathbb{R} \} \text{ and } \langle \mathbf{1}, a \rangle_{\mathbb{C}} = \{ \alpha \mathbf{1} + \beta a : \alpha, \beta \in \mathbb{C} \}.$$

Then $a \in ext((\langle \mathbf{1}, a \rangle_{\mathbb{R}})_1)$ and $a \in ext((\langle \mathbf{1}, a \rangle_{\mathbb{C}})_1)$.

Proof. Let $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. First we show that **1** and *a* are linearly independent. To this end assume that $\alpha, \beta \in \mathbb{K}$ and $0 = \alpha \mathbf{1} + \beta a$. Since $1, -1 \in \sigma(a)$, the spectral mapping theorem gives $\alpha + \beta = 0 = \alpha - \beta$. Thus $\alpha = \beta = 0$.

Now let $a = \mu b + (1 - \mu)c$ with $b, c \in (\langle \mathbf{1}, a \rangle_{\mathbb{K}})_1$ and $0 < \mu < 1$. There are $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathbb{K}$ such that $b = \alpha_1 \mathbf{1} + \alpha_2 a$ and $c = \beta_1 \mathbf{1} + \beta_2 a$, hence

$$a = (\mu \alpha_1 + (1 - \mu)\beta_1)\mathbf{1} + (\mu \alpha_2 + (1 - \mu)\beta_2)a.$$

Since $\mathbf{1}$ and a are linearly independent,

$$\mu\alpha_1 + (1-\mu)\beta_1 = 0$$

and

$$\mu \alpha_2 + (1 - \mu)\beta_2 = 1.$$

It follows that

$$\mu(\alpha_2 + \alpha_1) + (1 - \mu)(\beta_2 + \beta_1) = 1 \tag{1.1}$$

and

$$\mu(\alpha_2 - \alpha_1) + (1 - \mu)(\beta_2 - \beta_1) = 1.$$
(1.2)

From $-1, 1 \in \sigma(a)$ we get $\alpha_1 + \alpha_2, \alpha_1 - \alpha_2 \in \sigma(b)$. Since $||b|| \leq 1, |\alpha_1 + \alpha_2|, |\alpha_1 - \alpha_2| \leq 1$. Similarly, $|\beta_1 + \beta_2|, |\beta_1 - \beta_2| \leq 1$. From (1.1) and (1.2) we now see that $\alpha_1 + \alpha_2 = \beta_1 + \beta_2 = 1 = \alpha_2 - \alpha_1 = \beta_2 - \beta_1$, hence $\alpha_2 = \beta_2 = 1$ and $\alpha_1 = \beta_1 = 0$, thus a = b = c.

2. Extreme points of subsets of $\mathcal{H}(\mathcal{A})$

We first give an example, due to M. J. Crabb, which shows the existence of a hermitian element of which the square is not hermitian.

Example 2.1 (/1, page 57]).

Let $\mathcal{A} = \mathbb{C}^3$ with pointwise multiplications, and let $p : \mathbb{C}^3 \to [0, \infty)$ be defined by

$$p(\alpha, \beta, \gamma) = \sup\{|\lambda^{-1}\alpha + \beta + \lambda\gamma| : \lambda \in \mathbb{C}, |\lambda| = 1\}.$$

Define the norm $\|\cdot\|$ on \mathcal{A} by

 $||a|| = \sup\{p(xa) : x \in \mathcal{A}, p(x) = 1\}.$

Then \mathcal{A} is a complex unital (commutative) Banach algebra with respect to $\|\cdot\|$. Let a = (-1, 0, 1). The following properties are shown in [1]:

- (1) $a \in \mathcal{H}(\mathcal{A}), a^2 \notin \mathcal{H}(\mathcal{A}), \sigma(a) = \{-1, 0, 1\};$
- (2) $\mathcal{A} = \{ \alpha \mathbf{1} + \beta a + \gamma a^2 : \alpha, \beta, \gamma \in \mathbb{C} \};$
- (3) $\mathcal{H}(\mathcal{A}) = \{ \alpha \mathbf{1} + \beta a : \alpha, \beta \in \mathbb{R} \}.$

We have $a^3 = a$ and, by Proposition 1.3 and (3), $a \in ext((\mathcal{H}(\mathcal{A}))_1)$. This is not an accident, as we see in what follows.

Before we state the main results of this paper, we need the following lemma.

Lemma 2.2 Let the functions $f_1, f_2, f_3, f_4 : [-1, 1] \rightarrow \mathbb{R}$ be defined by

$$f_1(t) = t + \frac{1}{2k}(1 - t^{2k}), \ f_2(t) = t - \frac{1}{2k}(1 - t^{2k}),$$

$$f_3(t) = t + \frac{1}{2k+1}(t - t^{2k+1}) \quad and \quad f_4(t) = t - \frac{1}{2k+1}(t - t^{2k+1}),$$

where $k \in \mathbb{N}$. Then

$$f_j([-1,1]) = [-1,1] \quad (j = 1,...,4).$$

Proof. Routine.

Theorem 2.3 Suppose that $a \in (\mathcal{H}(\mathcal{A}))_1$, and that $a^{2k} \in \mathcal{H}(\mathcal{A})$ for some $k \in \mathbb{N}$. Then the following assertions are equivalent:

- (1) $a \in ext((\mathcal{H}(\mathcal{A}))_1).$
- (2) $a^2 = \mathbf{1}$.

Proof. (1) \Rightarrow (2): Let $h = \frac{1}{2k}(1 - a^{2k})$. Then $h, a + h, a - h \in \mathcal{H}(\mathcal{A})$. Let $\lambda \in \sigma(a + h)$. By the spectral mapping theorem, $\lambda = \alpha + \frac{1}{2k}(1 - \alpha^{2k})$ for some $\alpha \in \sigma(a)$. Since $\sigma(a) \subseteq [-1, 1], \lambda = f_1(\alpha)$ with $\alpha \in [-1, 1]$, where f_1 is as in Lemma 2.2. Hence $\lambda \in [-1, 1]$. This shows that $\sigma(a + h) \subseteq [-1, 1]$. Hence, by Proposition 1.1 (4), $||a + h|| = r(a + h) \leq 1$. Thus $a + h \in (\mathcal{H}(\mathcal{A}))_1$. A similar argument (use the function f_2 in Lemma 2.2) shows that $a - h \in (\mathcal{H}(\mathcal{A}))_1$. We have

$$a = \frac{1}{2}(a+h) + \frac{1}{2}(a-h)$$

Since a is an extreme point of $(\mathcal{H}(\mathcal{A}))_1$, a = a + h = a - h, hence h = 0. Therefore $a^{2k} = \mathbf{1}$. If the entire function g is defined by $g(z) = z^{2k} - 1$, then g has only simple zeros and g(a) = 0. It follows from [2, Proposition 8.11] that

$$\sigma(a) = \{\lambda_1, \dots, \lambda_r\}, \quad g(\lambda_j) = 0 \quad (j = 1, \dots, r)$$

and

$$(a - \lambda_1 \mathbf{1})(a - \lambda_2 \mathbf{1}) \cdot \ldots \cdot (a - \lambda_r \mathbf{1}) = 0$$

167

Since $|\lambda_j| = 1$ (j = 1, ..., r) and $\sigma(a) \subseteq [-1, 1]$, it follows that $\sigma(a) \subseteq \{-1, 1\}$, hence $a^2 = \mathbf{1}$. (2) \Rightarrow (1): Since $a \in \mathcal{H}(\mathcal{A})$ and $a = a^{-1}$, $1 = r(a^2) = r(a)^2 = ||a||^2$, hence $a \in (\mathcal{H}(\mathcal{A}))_1$. With $\mathcal{M} = \mathcal{H}(\mathcal{A})$ we see that $a \in ext((\mathcal{M})_1)$, by Proposition 1.2 (2).

Theorem 2.4 If $a \in (\mathcal{H}(\mathcal{A}))_1$ is an extreme point of $(\mathcal{H}(\mathcal{A}))_1$ and if $a^{2k+1} \in \mathcal{H}(\mathcal{A})$ for some $k \in \mathbb{N}$, then $a^3 = a$.

Proof. Let $h = \frac{1}{2k+1}(a - a^{2k+1})$. Then $h, a + h, a - h \in \mathcal{H}(\mathcal{A})$. As in the proof of Theorem 2.3 we see that $\sigma(a \pm h) \subseteq [-1, 1]$ (use the functions f_3 and f_4 of Lemma 2.2). Thus $||a \pm h|| = r(a \pm h) \leq 1$, therefore $a \pm h \in (\mathcal{H}(\mathcal{A}))_1$. Since a is an extreme point of $(\mathcal{H}(\mathcal{A}))_1$ and since

$$a = \frac{1}{2}(a+h) + \frac{1}{2}(a-h)$$

it follows that a = a + h = a - h, and so h = 0. If the entire function g is defined by $g(z) = z - z^{2k+1}$, then g has only simple zeros and g(a) = 0. As in the proof of Theorem 2.3 we derive $\sigma(a) \subseteq \{0, 1, -1\}$ and $a^3 = a$.

Corollary 2.5 If $a \in (\mathcal{H}(\mathcal{A}))_1$ is an extreme point of $(\mathcal{H}(\mathcal{A}))_1$ and if $a^n \in \mathcal{H}(\mathcal{A})$ for some $n \in \mathbb{N}$, $n \geq 2$, then $a^3 = a$.

We say that $a \in \mathcal{H}(\mathcal{A})$ is *positive* if $\sigma(a) \subseteq [0, \infty)$. We denote by $pos(\mathcal{A})$ the set of all positive elements of \mathcal{A} .

Corollary 2.6 If $p \in (pos(\mathcal{A}))_1$ and $p^2 \in \mathcal{H}(\mathcal{A})$, then the following assertions are equivalent:

(1) $p \in ext((pos(\mathcal{A}))_1).$

(2)
$$p^2 = p$$
.

Proof. Since

$$p \in (pos(\mathcal{A}))_1 \quad \Longleftrightarrow \quad 2\left(p - \frac{1}{2}\mathbf{1}\right) \in (\mathcal{H}(\mathcal{A}))_1$$

and

$$p^2 \in \mathcal{H}(\mathcal{A}) \quad \Longleftrightarrow \quad \left(2\left(p-\frac{1}{2}\mathbf{1}\right)\right)^2 \in \mathcal{H}(\mathcal{A}),$$

it follows from Theorem 2.3 that p is an extreme point of $(pos(\mathcal{A}))_1$ if and only if $(2(p-\frac{1}{2}\mathbf{1}))^2 = \mathbf{1}.$

Now let H denote a complex Hilbert space and consider the B^* -algebra $\mathcal{A} = \mathcal{B}(H)$, the Banach algebra of all bounded linear operators on H. Then

$$\mathcal{H}(\mathcal{A}) = \{ A \in \mathcal{B}(H) : A \text{ is selfadjoint} \}$$

and

$$pos(\mathcal{A}) = \{A \in \mathcal{H}(\mathcal{A}) : A \ge 0\},\$$

thus $(pos(\mathcal{A}))_1 = \{A \in \mathcal{H}(\mathcal{A}) : 0 \le A \le I\}$, where *I* denotes the identity operator on *H*. Observe that if $A \in \mathcal{H}(\mathcal{A})$, then $A^n \in \mathcal{H}(\mathcal{A})$ for all $n \in \mathbb{N}$.

As an immediate consequence of Theorem 2.3 and Corollary 2.6, we get the following well-know results (see [4, 2.5.6]):

Corollary 2.7 Let H and A be as above.

- (1) $A \in (\mathcal{H}(\mathcal{A}))_1$ is an extreme point of $(\mathcal{H}(\mathcal{A}))_1$, if and only if $A^2 = I$.
- (2) $P \in (pos(\mathcal{A}))_1$ is an extreme point of $(pos(\mathcal{A}))_1$ if and only if $P^2 = P$.

For a characterisation of the extreme points of the unit ball of a general B^* -algebra see [3, Theorem 9.5.16].

References

- Bonsall, F. F. and Duncan, J.: Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, Cambridge Univ. Press, London, (1971).
- [2] Bonsall, F. F. and Duncan, J.: Complete Normed Algebras, Springer, 1973.

169

- [3] Palmer, T. W.: Banach Algebras and the General Theory of *-Algebras II, Cambridge Univ. Press, (2001).
- [4] Pedersen, G. K.: Analysis Now., Springer, (1989).
- [5] Sinclair, A. M.: The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28, 446–450, (1971).

Gerd HERZOG, Christoph SCHMOEGER Mathematisches Institut I Universität Karlsruhe (TH) Englerstraße 2 76128 Karlsruhe-GERMANY e-mail: gerd.herzog@math.uni-karlsruhe.de e-mail: christoph.schmoeger@math.uni-karlsruhe.de Received 29.06.2005