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Extreme Points of Certain Subsets of Hermitian

Elements in Banach Algebras

Gerd Herzog and Christoph Schmoeger

Abstract

We consider the real Banach spaces H(A) of all hermitian elements of a complex
Banach algebra A. We prove that if an even power of a ∈ H(A) is hermitian, then
a is an extreme point of the unit ball of H(A) if and only if a2 = 1. Moreover, if an

odd power of a ∈ H(A) is hermitian and a is an extreme point of the unit ball of

H(A), then a3 = a.
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1. Terminology and Introduction

Let K be a subset of a (real or complex) vector space X. A point x ∈ K is called an
extreme point of K if y, z ∈ K, 0 < µ < 1 and

x = µy + (1− µ)z

imply that x = y = z. We denote the set of extreme points of K by ext(K).

Throughout this paper A denotes a complex unital Banach algebra with unit 1. If B
is a subset of A we write (B)1 for the set

(B)1 = {a ∈ B : ‖a‖ ≤ 1} .
2000 AMS Mathematics Subject Classification: 46H05.
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For a ∈ A we denote by σ(a) the spectrum of a and by r(a) the spectral radius of a. Let
A′ denote the topological dual space of A. Given a ∈ A the set

V (a) = {ϕ(a) : ϕ ∈ A′, ϕ(1) = 1 = ‖ϕ‖}

is called the numerical range of a.

An element a ∈ A is called hermitian if V (a) ⊆ R. The set of all hermitian elements
in A is denoted by H(A). Observe that if A is a B∗-algebra, then a ∈ H(A) if and only
if a∗ = a (see [1, page 47]).

Proposition 1.1

(1) If a ∈ A, then σ(a) ⊆ V (a);

(2) If a ∈ H(A), then σ(a) ⊆ R;

(3) H(A) is a real Banach space;

(4) If a ∈ H(A), then r(a) = ‖a‖; and

(5) a ∈ H(A) ⇐⇒ ‖ exp(ita)‖ = 1 for all t ∈ R.

Proof. (1) [1, Theorem 2.6]. (2) follows from (1). (3) [1, Lemma 5.4]. (4) [5]. (5) [1,
Lemma 5.2]. ✷

The following result is well-known. For the convenience of the reader we include a
proof.

Proposition 1.2 Let a ∈ A and M ⊆ A.

(1) Suppose that a ∈ (A)1, is invertible and that a−1 ∈ (A)1. Then a ∈ ext((A)1).

(2) If a ∈ (M)1 is invertible and a−1 ∈ (A)1, then a ∈ ext((M)1).

Proof. (1) Let a = µb+ (1− µ)c with b, c ∈ (A)1 and 0 < µ < 1. Then

1 = µba−1 + (1− µ)ca−1 .

For ϕ ∈ A′ with ϕ(1) = 1 = ‖ϕ‖ it follows that

1 = µϕ(ba−1) + (1− µ)ϕ(ca−1) .
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Since b, c, a−1 ∈ (A)1 we have |ϕ(ba−1)| ≤ 1 and |ϕ(ca−1)| ≤ 1. Since 1 is an extreme
point of the closed unit disc in C, we get ϕ(ba−1) = ϕ(ca−1) = 1. This shows that

V (ba−1) = V (ca−1) = {1} .

Hence ba−1, ca−1 ∈ H(A). Proposition 1.1 (1) gives σ(ba−1) = σ(ca−1) = {1}. By
Proposition 1.1 (3), ba−1 − 1, ca−1 − 1 ∈ H(A). From σ(ba−1 − 1) = σ(ca−1 − 1) = {0}
we see (Proposition 1.1 (4)) that

‖ba−1 − 1‖ = ‖ca−1 − 1‖ = 0 ,

thus a = b = c.
(2) If a = µb + (1 − µ)c with b, c ∈ (M)1 and 0 < µ < 1, then b, c ∈ (A)1 . It follows
from (1) that a = b = c, thus a ∈ ext((M)1). ✷

Proposition 1.3 Let a ∈ (A)1 and suppose that {−1, 1} ⊆ σ(a). Let

〈1, a〉R = {α1+ βa : α, β ∈ R} and 〈1, a〉C = {α1+ βa : α, β ∈ C} .

Then a ∈ ext((〈1, a〉R)1) and a ∈ ext((〈1, a〉C)1).
Proof. Let K = R or K = C. First we show that 1 and a are linearly independent.
To this end assume that α, β ∈ K and 0 = α1 + βa. Since 1, −1 ∈ σ(a), the spectral
mapping theorem gives α+ β = 0 = α− β. Thus α = β = 0.
Now let a = µb+(1−µ)c with b, c ∈ (〈1, a〉K)1 and 0 < µ < 1. There are α1, α2, β1, β2 ∈
K such that b = α11+ α2a and c = β11+ β2a, hence

a = (µα1 + (1− µ)β1)1+ (µα2 + (1− µ)β2)a .

Since 1 and a are linearly independent,

µα1 + (1− µ)β1 = 0

and

µα2 + (1− µ)β2 = 1 .

It follows that

µ(α2 + α1) + (1 − µ)(β2 + β1) = 1 (1.1)
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and

µ(α2 − α1) + (1 − µ)(β2 − β1) = 1 . (1.2)

From −1, 1 ∈ σ(a) we get α1+α2, α1−α2 ∈ σ(b). Since ‖b‖ ≤ 1, |α1+α2|, |α1−α2| ≤ 1.
Similarly, |β1+β2 |, |β1−β2 | ≤ 1. From (1.1) and (1.2) we now see that α1+α2 = β1+β2 =
1 = α2 − α1 = β2 − β1, hence α2 = β2 = 1 and α1 = β1 = 0, thus a = b = c. ✷

2. Extreme points of subsets of H(A)

We first give an example, due to M. J. Crabb, which shows the existence of a hermitian
element of which the square is not hermitian.

Example 2.1 ([1, page 57]).
Let A = C3 with pointwise multiplications, and let p : C3 → [0,∞) be defined by

p(α, β, γ) = sup{|λ−1α+ β + λγ| : λ ∈ C, |λ| = 1} .

Define the norm ‖ · ‖ on A by

‖a‖ = sup{p(xa) : x ∈ A, p(x) = 1} .

Then A is a complex unital (commutative) Banach algebra with respect to ‖ · ‖.
Let a = (−1, 0, 1). The following properties are shown in [1]:

(1) a ∈ H(A), a2 /∈ H(A), σ(a) = {−1, 0, 1};

(2) A = {α1+ βa + γa2 : α, β, γ ∈ C};

(3) H(A) = {α1+ βa : α, β ∈ R}.

We have a3 = a and, by Proposition 1.3 and (3), a ∈ ext((H(A))1). This is not an
accident, as we see in what follows.

Before we state the main results of this paper, we need the following lemma.
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Lemma 2.2 Let the functions f1, f2, f3, f4 : [−1, 1] → R be defined by

f1(t) = t+
1
2k

(1− t2k), f2(t) = t − 1
2k

(1− t2k) ,

f3(t) = t+
1

2k + 1
(t− t2k+1) and f4(t) = t − 1

2k + 1
(t − t2k+1) ,

where k ∈ N. Then

fj([−1, 1]) = [−1, 1] (j = 1, . . . , 4) .

Proof. Routine. ✷

Theorem 2.3 Suppose that a ∈ (H(A))1, and that a2k ∈ H(A) for some k ∈ N. Then
the following assertions are equivalent:

(1) a ∈ ext((H(A))1).

(2) a2 = 1.

Proof. (1) ⇒ (2): Let h = 1
2k
(1 − a2k). Then h, a + h, a − h ∈ H(A). Let

λ ∈ σ(a + h). By the spectral mapping theorem, λ = α + 1
2k (1 − α2k) for some

α ∈ σ(a). Since σ(a) ⊆ [−1, 1], λ = f1(α) with α ∈ [−1, 1], where f1 is as in Lemma 2.2.
Hence λ ∈ [−1, 1]. This shows that σ(a + h) ⊆ [−1, 1]. Hence, by Proposition 1.1 (4),
‖a+ h‖ = r(a+ h) ≤ 1. Thus a+ h ∈ (H(A))1. A similar argument (use the function f2
in Lemma 2.2) shows that a− h ∈ (H(A))1. We have

a =
1
2
(a + h) +

1
2
(a− h) .

Since a is an extreme point of (H(A))1 , a = a + h = a − h, hence h = 0. Therefore
a2k = 1. If the entire function g is defined by g(z) = z2k −1, then g has only simple zeros
and g(a) = 0. It follows from [2, Proposition 8.11] that

σ(a) = {λ1, . . . , λr}, g(λj) = 0 (j = 1, . . . , r)

and

(a − λ11)(a− λ21) · . . . · (a− λr1) = 0 .
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Since |λj| = 1 (j = 1, . . . , r) and σ(a) ⊆ [−1, 1], it follows that σ(a) ⊆ {−1, 1}, hence
a2 = 1.
(2) ⇒ (1): Since a ∈ H(A) and a = a−1, 1 = r(a2) = r(a)2 = ‖a‖2, hence a ∈ (H(A))1 .
With M = H(A) we see that a ∈ ext((M)1), by Proposition 1.2 (2). ✷

Theorem 2.4 If a ∈ (H(A))1 is an extreme point of (H(A))1 and if a2k+1 ∈ H(A) for
some k ∈ N, then a3 = a.

Proof. Let h = 1
2k+1(a − a2k+1). Then h, a + h, a − h ∈ H(A). As in the proof of

Theorem 2.3 we see that σ(a± h) ⊆ [−1, 1] (use the functions f3 and f4 of Lemma 2.2).
Thus ‖a± h‖ = r(a± h) ≤ 1, therefore a± h ∈ (H(A))1 . Since a is an extreme point of
(H(A))1 and since

a =
1
2
(a + h) +

1
2
(a− h) ,

it follows that a = a + h = a − h, and so h = 0. If the entire function g is defined by
g(z) = z− z2k+1, then g has only simple zeros and g(a) = 0. As in the proof of Theorem
2.3 we derive σ(a) ⊆ {0, 1,−1} and a3 = a. ✷

Corollary 2.5 If a ∈ (H(A))1 is an extreme point of (H(A))1 and if an ∈ H(A) for
some n ∈ N, n ≥ 2, then a3 = a.

We say that a ∈ H(A) is positive if σ(a) ⊆ [0,∞). We denote by pos(A) the set of all
positive elements of A.

Corollary 2.6 If p ∈ (pos(A))1 and p2 ∈ H(A), then the following assertions are
equivalent:

(1) p ∈ ext((pos(A))1).

(2) p2 = p.

Proof. Since

p ∈ (pos(A))1 ⇐⇒ 2
(
p− 1

2
1
)

∈ (H(A))1
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and

p2 ∈ H(A) ⇐⇒
(
2

(
p− 1

2
1
))2

∈ H(A) ,

it follows from Theorem 2.3 that p is an extreme point of (pos(A))1 if and only if
(2(p − 1

21))
2 = 1. ✷

Now let H denote a complex Hilbert space and consider the B∗-algebra A = B(H),
the Banach algebra of all bounded linear operators on H . Then

H(A) = {A ∈ B(H) : A is selfadjoint}

and

pos(A) = {A ∈ H(A) : A ≥ 0} ,

thus (pos(A))1 = {A ∈ H(A) : 0 ≤ A ≤ I}, where I denotes the identity operator on H .
Observe that if A ∈ H(A), then An ∈ H(A) for all n ∈ N.

As an immediate consequence of Theorem 2.3 and Corollary 2.6, we get the following
well-know results (see [4, 2.5.6]):

Corollary 2.7 Let H and A be as above.

(1) A ∈ (H(A))1 is an extreme point of (H(A))1, if and only if A2 = I.

(2) P ∈ (pos(A))1 is an extreme point of (pos(A))1 if and only if P 2 = P .

For a characterisation of the extreme points of the unit ball of a general B∗-algebra
see [3, Theorem 9.5.16].
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