Extreme Points of Certain Subsets of Hermitian Elements in Banach Algebras

Gerd Herzog and Christoph Schmoeger

Abstract

We consider the real Banach spaces $\mathcal{H}(\mathcal{A})$ of all hermitian elements of a complex Banach algebra \mathcal{A}. We prove that if an even power of $a \in \mathcal{H}(\mathcal{A})$ is hermitian, then a is an extreme point of the unit ball of $\mathcal{H}(\mathcal{A})$ if and only if $a^{2}=\mathbf{1}$. Moreover, if an odd power of $a \in \mathcal{H}(\mathcal{A})$ is hermitian and a is an extreme point of the unit ball of $\mathcal{H}(\mathcal{A})$, then $a^{3}=a$.

Key words and phrases: Extreme points, hermitian elements.

1. Terminology and Introduction

Let K be a subset of a (real or complex) vector space X. A point $x \in K$ is called an extreme point of K if $y, z \in K, 0<\mu<1$ and

$$
x=\mu y+(1-\mu) z
$$

imply that $x=y=z$. We denote the set of extreme points of K by $\operatorname{ext}(K)$.

Throughout this paper \mathcal{A} denotes a complex unital Banach algebra with unit 1. If \mathcal{B} is a subset of \mathcal{A} we write $(\mathcal{B})_{1}$ for the set

$$
(\mathcal{B})_{1}=\{a \in \mathcal{B}:\|a\| \leq 1\} .
$$

[^0]
HERZOG, SCHMOEGER

For $a \in \mathcal{A}$ we denote by $\sigma(a)$ the spectrum of a and by $r(a)$ the spectral radius of a. Let \mathcal{A}^{\prime} denote the topological dual space of \mathcal{A}. Given $a \in \mathcal{A}$ the set

$$
V(a)=\left\{\varphi(a): \varphi \in \mathcal{A}^{\prime}, \varphi(\mathbf{1})=1=\|\varphi\|\right\}
$$

is called the numerical range of a.

An element $a \in \mathcal{A}$ is called hermitian if $V(a) \subseteq \mathbb{R}$. The set of all hermitian elements in \mathcal{A} is denoted by $\mathcal{H}(\mathcal{A})$. Observe that if \mathcal{A} is a B^{*}-algebra, then $a \in \mathcal{H}(\mathcal{A})$ if and only if $a^{*}=a$ (see [1, page 47]).

Proposition 1.1

(1) If $a \in \mathcal{A}$, then $\sigma(a) \subseteq V(a)$;
(2) If $a \in \mathcal{H}(\mathcal{A})$, then $\sigma(a) \subseteq \mathbb{R}$;
(3) $\mathcal{H}(\mathcal{A})$ is a real Banach space;
(4) If $a \in \mathcal{H}(\mathcal{A})$, then $r(a)=\|a\|$; and
(5) $a \in \mathcal{H}(\mathcal{A}) \Longleftrightarrow \| \exp ($ ita $) \|=1$ for all $t \in \mathbb{R}$.

Proof. (1) [1, Theorem 2.6]. (2) follows from (1). (3) [1, Lemma 5.4]. (4) [5]. (5) [1, Lemma 5.2].

The following result is well-known. For the convenience of the reader we include a proof.

Proposition 1.2 Let $a \in \mathcal{A}$ and $\mathcal{M} \subseteq \mathcal{A}$.
(1) Suppose that $a \in(\mathcal{A})_{1}$, is invertible and that $a^{-1} \in(\mathcal{A})_{1}$. Then $a \in \operatorname{ext}\left((\mathcal{A})_{1}\right)$.
(2) If $a \in(\mathcal{M})_{1}$ is invertible and $a^{-1} \in(\mathcal{A})_{1}$, then $a \in \operatorname{ext}\left((\mathcal{M})_{1}\right)$.

Proof. (1) Let $a=\mu b+(1-\mu) c$ with $b, c \in(\mathcal{A})_{1}$ and $0<\mu<1$. Then $\mathbf{1}=\mu b a^{-1}+(1-\mu) c a^{-1}$.

For $\varphi \in \mathcal{A}^{\prime}$ with $\varphi(\mathbf{1})=1=\|\varphi\|$ it follows that

$$
1=\mu \varphi\left(b a^{-1}\right)+(1-\mu) \varphi\left(c a^{-1}\right)
$$

Since $b, c, a^{-1} \in(\mathcal{A})_{1}$ we have $\left|\varphi\left(b a^{-1}\right)\right| \leq 1$ and $\left|\varphi\left(c a^{-1}\right)\right| \leq 1$. Since 1 is an extreme point of the closed unit disc in \mathbb{C}, we get $\varphi\left(b a^{-1}\right)=\varphi\left(c a^{-1}\right)=1$. This shows that

$$
V\left(b a^{-1}\right)=V\left(c a^{-1}\right)=\{1\} .
$$

Hence $b a^{-1}, c a^{-1} \in \mathcal{H}(\mathcal{A})$. Proposition 1.1 (1) gives $\sigma\left(b a^{-1}\right)=\sigma\left(c a^{-1}\right)=\{1\}$. By Proposition $1.1(3), b a^{-1}-\mathbf{1}, c a^{-1}-\mathbf{1} \in \mathcal{H}(\mathcal{A})$. From $\sigma\left(b a^{-1}-\mathbf{1}\right)=\sigma\left(c a^{-1}-\mathbf{1}\right)=\{0\}$ we see (Proposition 1.1 (4)) that

$$
\left\|b a^{-1}-\mathbf{1}\right\|=\left\|c a^{-1}-\mathbf{1}\right\|=0
$$

thus $a=b=c$.
(2) If $a=\mu b+(1-\mu) c$ with $b, c \in(\mathcal{M})_{1}$ and $0<\mu<1$, then $b, c \in(\mathcal{A})_{1}$. It follows from (1) that $a=b=c$, thus $a \in \operatorname{ext}\left((\mathcal{M})_{1}\right)$.

Proposition 1.3 Let $a \in(\mathcal{A})_{1}$ and suppose that $\{-1,1\} \subseteq \sigma(a)$. Let

$$
\langle\mathbf{1}, a\rangle_{\mathbb{R}}=\{\alpha \mathbf{1}+\beta a: \alpha, \beta \in \mathbb{R}\} \quad \text { and } \quad\langle\mathbf{1}, a\rangle_{\mathbb{C}}=\{\alpha \mathbf{1}+\beta a: \alpha, \beta \in \mathbb{C}\}
$$

Then $a \in \operatorname{ext}\left(\left(\langle\mathbf{1}, a\rangle_{\mathbb{R}}\right)_{1}\right)$ and $a \in \operatorname{ext}\left(\left(\langle\mathbf{1}, a\rangle_{\mathbb{C}}\right)_{1}\right)$.
Proof. Let $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$. First we show that $\mathbf{1}$ and a are linearly independent. To this end assume that $\alpha, \beta \in \mathbb{K}$ and $0=\alpha \mathbf{1}+\beta a$. Since $1,-1 \in \sigma(a)$, the spectral mapping theorem gives $\alpha+\beta=0=\alpha-\beta$. Thus $\alpha=\beta=0$.
Now let $a=\mu b+(1-\mu) c$ with $b, c \in\left(\langle\mathbf{1}, a\rangle_{\mathbb{K}}\right)_{1}$ and $0<\mu<1$. There are $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in$ \mathbb{K} such that $b=\alpha_{1} \mathbf{1}+\alpha_{2} a$ and $c=\beta_{1} \mathbf{1}+\beta_{2} a$, hence

$$
a=\left(\mu \alpha_{1}+(1-\mu) \beta_{1}\right) \mathbf{1}+\left(\mu \alpha_{2}+(1-\mu) \beta_{2}\right) a
$$

Since $\mathbf{1}$ and a are linearly independent,

$$
\mu \alpha_{1}+(1-\mu) \beta_{1}=0
$$

and

$$
\mu \alpha_{2}+(1-\mu) \beta_{2}=1
$$

It follows that

$$
\begin{equation*}
\mu\left(\alpha_{2}+\alpha_{1}\right)+(1-\mu)\left(\beta_{2}+\beta_{1}\right)=1 \tag{1.1}
\end{equation*}
$$

HERZOG, SCHMOEGER

and

$$
\begin{equation*}
\mu\left(\alpha_{2}-\alpha_{1}\right)+(1-\mu)\left(\beta_{2}-\beta_{1}\right)=1 \tag{1.2}
\end{equation*}
$$

From $-1,1 \in \sigma(a)$ we get $\alpha_{1}+\alpha_{2}, \alpha_{1}-\alpha_{2} \in \sigma(b)$. Since $\|b\| \leq 1,\left|\alpha_{1}+\alpha_{2}\right|,\left|\alpha_{1}-\alpha_{2}\right| \leq 1$. Similarly, $\left|\beta_{1}+\beta_{2}\right|,\left|\beta_{1}-\beta_{2}\right| \leq 1$. From (1.1) and (1.2) we now see that $\alpha_{1}+\alpha_{2}=\beta_{1}+\beta_{2}=$ $1=\alpha_{2}-\alpha_{1}=\beta_{2}-\beta_{1}$, hence $\alpha_{2}=\beta_{2}=1$ and $\alpha_{1}=\beta_{1}=0$, thus $a=b=c$.

2. Extreme points of subsets of $\mathcal{H}(\mathcal{A})$

We first give an example, due to M. J. Crabb, which shows the existence of a hermitian element of which the square is not hermitian.

Example 2.1 ([1, page 57]).
Let $\mathcal{A}=\mathbb{C}^{3}$ with pointwise multiplications, and let $p: \mathbb{C}^{3} \rightarrow[0, \infty)$ be defined by

$$
p(\alpha, \beta, \gamma)=\sup \left\{\left|\lambda^{-1} \alpha+\beta+\lambda \gamma\right|: \lambda \in \mathbb{C},|\lambda|=1\right\}
$$

Define the norm $\|\cdot\|$ on \mathcal{A} by

$$
\|a\|=\sup \{p(x a): x \in \mathcal{A}, p(x)=1\}
$$

Then \mathcal{A} is a complex unital (commutative) Banach algebra with respect to $\|\cdot\|$. Let $a=(-1,0,1)$. The following properties are shown in [1]:
(1) $a \in \mathcal{H}(\mathcal{A}), a^{2} \notin \mathcal{H}(\mathcal{A}), \sigma(a)=\{-1,0,1\}$;
(2) $\mathcal{A}=\left\{\alpha \mathbf{1}+\beta a+\gamma a^{2}: \alpha, \beta, \gamma \in \mathbb{C}\right\}$;
(3) $\mathcal{H}(\mathcal{A})=\{\alpha \mathbf{1}+\beta a: \alpha, \beta \in \mathbb{R}\}$.

We have $a^{3}=a$ and, by Proposition 1.3 and (3), $a \in \operatorname{ext}\left((\mathcal{H}(\mathcal{A}))_{1}\right)$. This is not an accident, as we see in what follows.

Before we state the main results of this paper, we need the following lemma.

HERZOG, SCHMOEGER

Lemma 2.2 Let the functions $f_{1}, f_{2}, f_{3}, f_{4}:[-1,1] \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
& f_{1}(t)=t+\frac{1}{2 k}\left(1-t^{2 k}\right), f_{2}(t)=t-\frac{1}{2 k}\left(1-t^{2 k}\right) \\
& f_{3}(t)=t+\frac{1}{2 k+1}\left(t-t^{2 k+1}\right) \quad \text { and } \quad f_{4}(t)=t-\frac{1}{2 k+1}\left(t-t^{2 k+1}\right)
\end{aligned}
$$

where $k \in \mathbb{N}$. Then

$$
f_{j}([-1,1])=[-1,1] \quad(j=1, \ldots, 4)
$$

Proof. Routine.

Theorem 2.3 Suppose that $a \in(\mathcal{H}(\mathcal{A}))_{1}$, and that $a^{2 k} \in \mathcal{H}(\mathcal{A})$ for some $k \in \mathbb{N}$. Then the following assertions are equivalent:
(1) $a \in \operatorname{ext}\left((\mathcal{H}(\mathcal{A}))_{1}\right)$.
(2) $a^{2}=\mathbf{1}$.

Proof. $\quad(1) \Rightarrow(2)$: Let $h=\frac{1}{2 k}\left(\mathbf{1}-a^{2 k}\right)$. Then $h, a+h, a-h \in \mathcal{H}(\mathcal{A})$. Let $\lambda \in \sigma(a+h)$. By the spectral mapping theorem, $\lambda=\alpha+\frac{1}{2 k}\left(1-\alpha^{2 k}\right)$ for some $\alpha \in \sigma(a)$. Since $\sigma(a) \subseteq[-1,1], \lambda=f_{1}(\alpha)$ with $\alpha \in[-1,1]$, where f_{1} is as in Lemma 2.2. Hence $\lambda \in[-1,1]$. This shows that $\sigma(a+h) \subseteq[-1,1]$. Hence, by Proposition 1.1 (4), $\|a+h\|=r(a+h) \leq 1$. Thus $a+h \in(\mathcal{H}(\mathcal{A}))_{1}$. A similar argument (use the function f_{2} in Lemma 2.2) shows that $a-h \in(\mathcal{H}(\mathcal{A}))_{1}$. We have

$$
a=\frac{1}{2}(a+h)+\frac{1}{2}(a-h) .
$$

Since a is an extreme point of $(\mathcal{H}(\mathcal{A}))_{1}, a=a+h=a-h$, hence $h=0$. Therefore $a^{2 k}=\mathbf{1}$. If the entire function g is defined by $g(z)=z^{2 k}-1$, then g has only simple zeros and $g(a)=0$. It follows from [2, Proposition 8.11] that

$$
\sigma(a)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}, \quad g\left(\lambda_{j}\right)=0 \quad(j=1, \ldots, r)
$$

and

$$
\left(a-\lambda_{1} \mathbf{1}\right)\left(a-\lambda_{2} \mathbf{1}\right) \cdot \ldots \cdot\left(a-\lambda_{r} \mathbf{1}\right)=0
$$

HERZOG, SCHMOEGER

Since $\left|\lambda_{j}\right|=1(j=1, \ldots, r)$ and $\sigma(a) \subseteq[-1,1]$, it follows that $\sigma(a) \subseteq\{-1,1\}$, hence $a^{2}=1$.
(2) $\Rightarrow(1)$: Since $a \in \mathcal{H}(\mathcal{A})$ and $a=a^{-1}, 1=r\left(a^{2}\right)=r(a)^{2}=\|a\|^{2}$, hence $a \in(\mathcal{H}(\mathcal{A}))_{1}$. With $\mathcal{M}=\mathcal{H}(\mathcal{A})$ we see that $a \in \operatorname{ext}\left((\mathcal{M})_{1}\right)$, by Proposition 1.2 (2).

Theorem 2.4 If $a \in(\mathcal{H}(\mathcal{A}))_{1}$ is an extreme point of $(\mathcal{H}(\mathcal{A}))_{1}$ and if $a^{2 k+1} \in \mathcal{H}(\mathcal{A})$ for some $k \in \mathbb{N}$, then $a^{3}=a$.
Proof. Let $h=\frac{1}{2 k+1}\left(a-a^{2 k+1}\right)$. Then $h, a+h, a-h \in \mathcal{H}(\mathcal{A})$. As in the proof of Theorem 2.3 we see that $\sigma(a \pm h) \subseteq[-1,1]$ (use the functions f_{3} and f_{4} of Lemma 2.2). Thus $\|a \pm h\|=r(a \pm h) \leq 1$, therefore $a \pm h \in(\mathcal{H}(\mathcal{A}))_{1}$. Since a is an extreme point of $(\mathcal{H}(\mathcal{A}))_{1}$ and since

$$
a=\frac{1}{2}(a+h)+\frac{1}{2}(a-h)
$$

it follows that $a=a+h=a-h$, and so $h=0$. If the entire function g is defined by $g(z)=z-z^{2 k+1}$, then g has only simple zeros and $g(a)=0$. As in the proof of Theorem 2.3 we derive $\sigma(a) \subseteq\{0,1,-1\}$ and $a^{3}=a$.

Corollary 2.5 If $a \in(\mathcal{H}(\mathcal{A}))_{1}$ is an extreme point of $(\mathcal{H}(\mathcal{A}))_{1}$ and if $a^{n} \in \mathcal{H}(\mathcal{A})$ for some $n \in \mathbb{N}, n \geq 2$, then $a^{3}=a$.

We say that $a \in \mathcal{H}(\mathcal{A})$ is positive if $\sigma(a) \subseteq[0, \infty)$. We denote by $\operatorname{pos}(\mathcal{A})$ the set of all positive elements of \mathcal{A}.

Corollary 2.6 If $p \in(\operatorname{pos}(\mathcal{A}))_{1}$ and $p^{2} \in \mathcal{H}(\mathcal{A})$, then the following assertions are equivalent:
(1) $p \in \operatorname{ext}\left((\operatorname{pos}(\mathcal{A}))_{1}\right)$.
(2) $p^{2}=p$.

Proof. Since

$$
p \in(\operatorname{pos}(\mathcal{A}))_{1} \quad \Longleftrightarrow \quad 2\left(p-\frac{1}{2} \mathbf{1}\right) \in(\mathcal{H}(\mathcal{A}))_{1}
$$

and

$$
p^{2} \in \mathcal{H}(\mathcal{A}) \quad \Longleftrightarrow \quad\left(2\left(p-\frac{1}{2} \mathbf{1}\right)\right)^{2} \in \mathcal{H}(\mathcal{A})
$$

it follows from Theorem 2.3 that p is an extreme point of $(\operatorname{pos}(\mathcal{A}))_{1}$ if and only if $\left(2\left(p-\frac{1}{2} \mathbf{1}\right)\right)^{2}=\mathbf{1}$.

Now let H denote a complex Hilbert space and consider the B^{*}-algebra $\mathcal{A}=\mathcal{B}(H)$, the Banach algebra of all bounded linear operators on H. Then

$$
\mathcal{H}(\mathcal{A})=\{A \in \mathcal{B}(H): A \text { is selfadjoint }\}
$$

and

$$
\operatorname{pos}(\mathcal{A})=\{A \in \mathcal{H}(\mathcal{A}): A \geq 0\}
$$

thus $(\operatorname{pos}(\mathcal{A}))_{1}=\{A \in \mathcal{H}(\mathcal{A}): 0 \leq A \leq I\}$, where I denotes the identity operator on H. Observe that if $A \in \mathcal{H}(\mathcal{A})$, then $A^{n} \in \mathcal{H}(\mathcal{A})$ for all $n \in \mathbb{N}$.

As an immediate consequence of Theorem 2.3 and Corollary 2.6, we get the following well-know results (see [4, 2.5.6]):

Corollary 2.7 Let H and \mathcal{A} be as above.
(1) $A \in(\mathcal{H}(\mathcal{A}))_{1}$ is an extreme point of $(\mathcal{H}(\mathcal{A}))_{1}$, if and only if $A^{2}=I$.
(2) $P \in(\operatorname{pos}(\mathcal{A}))_{1}$ is an extreme point of $(\operatorname{pos}(\mathcal{A}))_{1}$ if and only if $P^{2}=P$.

For a characterisation of the extreme points of the unit ball of a general B^{*}-algebra see [3, Theorem 9.5.16].

References

[1] Bonsall, F. F. and Duncan, J.: Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, Cambridge Univ. Press, London, (1971).
[2] Bonsall, F. F. and Duncan, J.: Complete Normed Algebras, Springer, 1973.

HERZOG, SCHMOEGER

[3] Palmer, T. W.: Banach Algebras and the General Theory of *-Algebras II, Cambridge Univ. Press, (2001)
[4] Pedersen, G. K.: Analysis Now., Springer, (1989).
[5] Sinclair, A. M.: The norm of a hermitian element in a Banach algebra, Proc. Amer. Math. Soc. 28, 446-450, (1971).

Gerd HERZOG, Christoph SCHMOEGER
Mathematisches Institut I
Universität Karlsruhe (TH)
Englerstraße 2
76128 Karlsruhe-GERMANY
e-mail: gerd.herzog@math.uni-karlsruhe.de
e-mail: christoph.schmoeger@math.uni-karlsruhe.de

[^0]: 2000 AMS Mathematics Subject Classification: 46H05.

